The Causes of Epilepsy
The Causes of Epilepsy

Common and Uncommon Causes in Adults and Children

Edited by:

Simon D. Shorvon MA MD FRCP
Professor in Clinical Neurology, UCL Institute of Neurology, University College London;
Consultant Neurologist, National Hospital for Neurology and Neurosurgery, London, UK

Frederick Andermann OC MD FRCPC
Professor, Departments of Neurology and Neurosurgery and Pediatrics, McGill University;
Director, Epilepsy Service, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada

Renzo Guerrini MD
Professor of Child Neurology and Psychiatry, University of Florence;
Director, Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, Florence, Italy
The causes of epilepsy / edited by Simon D. Shorvon, Frederick Andermann, Renzo Guerrini.

Includes bibliographical references.
ISBN 978-0-521-11447-9 (Hardback)
616.8'53071—dc22 2010030379

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors, and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors, and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.
Contents

List of contributors ix
Foreword xvii
Preface xix

Section 1 – Introduction
1 Historical introduction: the causes of epilepsy in the pre-molecular era (1860–1960) 1
Simon D. Shorvon
2 The etiological classification of epilepsy 21
Simon D. Shorvon
3 Epileptogenesis in idiopathic epilepsy 24
Snezana Maljevic and Holger Lerche
4 Mechanisms of epileptogenesis in symptomatic epilepsy 35
Philip A. Schwartzkroin

Section 2 – Idiopathic epilepsy
5 Introduction to the concept of genetic epilepsy 43
Renzo Guerrini, Simon D. Shorvon, Frederick Andermann, and Eva Andermann
6 The genetic contribution to epilepsy: the known and missing heritability 62
Michael R. Johnson

Subsection 2.1 – Pure epilepsies due to single-gene disorders
7 Benign familial neonatal seizures 67
Perrine Plouin
8 Autosomal dominant nocturnal frontal lobe epilepsy 70
Paolo Tinuper and Francesca Bisulli
9 Genetic epilepsy with febrile seizures plus 74
Ingrid E. Scheffer and Yue-Hua Zhang
10 Severe myoclonic epilepsy of infancy or Dravet syndrome 78
Carla Marini and Renzo Guerrini
11 Benign adult familial myoclonic epilepsy 85
Teiichi Onuma

Subsection 2.2 – Pure epilepsies with presumed complex inheritance
12 Idiopathic generalized epilepsies 91
Carla Marini and Renzo Guerrini
13 Benign partial epilepsies of childhood 104
Roberto H. Caraballo and Natalio Fejerman

Section 3 – Symptomatic epilepsy
14 Introduction to the concept of symptomatic epilepsy 113
Simon D. Shorvon

Subsection 3.1 – Epilepsy syndromes
15 West syndrome and Lennox–Gastaut syndrome 119
Renzo Guerrini and Carla Marini

Subsection 3.2 – Progressive myoclonic epilepsies
16 Unverricht–Lundborg disease 135
Maria K. Lehtinen, Anna-Elena Lehesjoki, and Reetta Kälviäinen
17 Dentato-rubro-pallido-lingual atrophy 139
Teiichi Onuma
18 Lafora body disease 143
Anna C. Jansen
19 Mitochondrial cytopathies 147
Laurence A. Bindoff and Bernt A. Engelsen
20 Neuronal ceroid lipofuscinoses 158
Ruth E. Williams
21 Sialidosis and Gaucher disease 164
Silvana Franceschetti and Laura Canafoglia
Contents

22 Action myoclonus–renal failure syndrome 169
 Eva Andermann

23 Progressive myoclonus epilepsies: other rare causes 172
 Frederick Andermann and Eva Andermann

Subsection 3.3 – Neurocutaneous syndromes

24 Tuberous sclerosis complex 177
 Catherine J. Chu-Shore and Elizabeth A. Thiele

25 Neurofibromatoses 183
 Rosalie E. Ferner and Margaret J. Jackson

26 Sturge–Weber syndrome 189
 Alexis Arzimanoglou and Eleni Panagiotakaki

27 Other neurocutaneous syndromes 196
 Ignacio Pascual-Castroviejo

Subsection 3.4 – Other single-gene disorders with epilepsy as a prominent symptom

28 Angelman syndrome 201
 Bernard Dan and Stewart G. Boyd

29 Lysosomal disorders and Menkes syndrome 206
 Edwin H. Kolodny and Swati Sathe

30 Neuroacanthocytosis 212
 Anna C. Jansen

31 Organic acid, amino acids, and peroxisomal disorders 216
 Maria Alice Donati, Serena Gasperini, and Renzo Guerrini

32 Porphyria 231
 Geoffrey Dean and Simon D. Shorvon

33 Pyridoxine-dependent epilepsy 237
 Sidney M. Gospe, Jr.

34 Rett syndrome and MECP2 and CDKL5 genotypes 242
 Daniel G. Glaze

35 Urea cycle disorders 246
 Linda Huh and Kevin Farrell

36 Wilson disease 249
 J. M. Walshe

37 Disorders of cobalamin and folate metabolism 252
 Michael Shevell, David Watkins, and David Rosenblatt

38 Other single-gene disorders 258
 Vincent Navarro and Frédéric Sedel

Subsection 3.5 – Disorders of chromosome structure

39 Down syndrome 265
 Nadia Bahi-Buisson, Monika Eisermann, and Olivier Dulac

40 Fragile X syndrome 272
 Irissa M. Devine and Carl E. Stafstrom

41 4p (Wolf–Hirschhorn) syndrome 277
 Agatino Battaglia

42 Inverted duplicated chromosome 15 (isodicentric chromosome 15) 281
 Agatino Battaglia

43 Ring chromosome 20 285
 Geneviève Bernard and Frederick Andermann

Subsection 3.6 – Developmental anomalies of cerebral structure (cortical dysplasias)

44 Hemimegalencephaly 289
 M. Scott Perry and Michael Duchowny

45 Focal cortical dysplasia and related variants 293
 Ruben I. Kuzniecky

46 Agyria–pachygryria band spectrum 298
 Elena Parrini and Renzo Guerrini

47 Agenesis of the corpus callosum 305
 Dorothy Jones-Davis, Yolanda Lau, and Elliott H. Sherr

48 Polymicrogyria and schizencephaly 311
 Renzo Guerrini and Carmen Barba

49 Periventricular nodular heterotopia 322
 Rahul Rathakrishnan, Yahya Aghakhani, and François Dubeau

50 Microcephaly 330
 M. Elizabeth Ross
51 Arachnoid cysts 341
Concezio Di Rocco and Gianpiero Tamburrini

52 Malformations of human cerebral cortex 346
Wayne Squier

Subsection 3.7 – Hippocampal sclerosis and prenatal and perinatal injury
53 Hippocampal sclerosis 363
Fernando Cendes and Márcia Elisabete Morita

54 Neonatal seizures and postneonatal epilepsy – causes 373
Eli M. Mizrahi and Kevin E. Chapman

55 Cerebral palsy 382
Sameer M. Zuberi and Andreas Brunklaus

56 Vaccination and immunization 388
Simon D. Shorvon

Subsection 3.8 – Cerebral trauma
57 Open head injury 393
Flavio Giordano, Barbara Spacca, and Lorenzo Genitori

58 Closed head injury 400
Manuel Murie-Fernandez, Jorge G. Burneo, and Robert W. Teasell

59 De novo epilepsy after neurosurgery 407
Charles E. Polkey

60 Epilepsy after epilepsy surgery 413
Andre Palmiani

61 Non-accidental brain injury 425
Renzo Guerrini and Alessio De Ciantis

Subsection 3.9 – Cerebral tumor
62 Glioma 433
William P. Gray and Harry Bulstrode

63 Ganglioglioma, dysembryoplastic neuroepithelial tumor, and related tumors 441
Thomas S. Jacques and William Harkness

64 Hypothalamic hamartoma and gelastic epilepsy 449
John F. Kerrigan

65 Meningioma 454
Sumeet Vadera and William Bingaman

66 Metastatic disease 459
Rolando F. Del Maestro, Abdulrahman Sabbagh, Ahmed Lary, and Marie-Christine Guiot

Subsection 3.10 – Cerebral infection
67 Viral encephalitis 467
Jane E. Adcock

68 Bacterial meningitis and focal supplicative intracranial infections in children 475
Suresh S. Pujar and Richard F. M. Chin

69 Bacterial meningitis and pyogenic abscess in adults 482
Lina Nashef and Fahmida A. Chowdhury

70 Malaria 492
Charles R. J. C. Newton

71 Neurocysticercosis 495
Hector H. Garcia

72 Other parasitic diseases 501
Manish Modi and Gagandeep Singh

73 Tuberculosis 511
Nadir E. Bharucha, Roberta H. Raven, and Vivek Nambiar

74 HIV infection 520
P. Satishchandra and S. Sinha

75 Emerging and less common central nervous system viral encephalitides 528
H. T. Chong and C. T. Tan

Subsection 3.11 – Cerebrovascular disease
76 Cerebral hemorrhage 537
Henry B. Dinsdale

77 Cerebral infarction and occult degenerative cerebrovascular disease 544
Ruth E. Nemire and R. Eugene Ramsay

78 Arteriovenous malformations 551
Suzanne A. Tharin, Autumn Marie Klein, and Robert M. Friedlander

79 Cavernous malformations 559
Adrian M. Siegel

80 Other vascular disorders 565
Leif Gjerstad and Erik Tauboll
Subsection 3.12 – Cerebral immunological disorders

81 Rasmussen encephalitis and related conditions 573
Antonio Gambardella and Frederick Andermann

82 Systemic lupus erythematosus and other collagen vascular diseases 579
Rolando Cimaz and Andrea Taddio

83 Inflammatory and immunological diseases of the nervous system 585
Michael P. T. Lunn

Subsection 3.13 – Other cerebral disorders

84 Psychiatric disorders 593
Brent Elliott and John O'Donavan

85 Multiple sclerosis and other acquired demyelinating diseases 607
Mark R. Manford

86 Hydrocephalus and porencephaly 612
Pierangelo Veggiotti and Federica Teutonico

87 Alzheimer disease and other neurodegenerative diseases 618
Sigmund Jenssen and Kandan Kulandaivel

Section 4 – Provoked epilepsies

88 Introduction to the concept of provoked epilepsy 625
Simon D. Shorvon, Renzo Guerrini, and Frederick Andermann

Subsection 4.1 – Precipitating factors

89 Fever 631
Thomas P. Bleck

90 The menstrual cycle and catamenial epilepsy 635
Andrew G. Herzog

91 Sleep 643
Liborio Parrino, Giulia Milioli, Fernando De Paolis, Andrea Grassi, Gioia Gioi, and Mario Giovanni Terzano

92 Metabolic and endocrine-induced seizures 650
Bernhard J. Steinhoff

93 Electrolyte and sugar disturbances 655
Bindu Menon and Simon D. Shorvon

94 Drug-induced seizures 664
Aidan Neligan

95 Alcohol- and toxin-induced seizures 674
Michelle J. Shapiro and Andrew J. Cole

Subsection 4.2 – Reflex seizures

96 How reflex mechanisms cause epilepsy 683
Benjamin Zifkin and Frederick Andermann

97 Visual stimuli, photosensitivity, and photosensitive epilepsy 687
Dorothée Kasteleijn-Nolst Trenité, Laura Cantonetti, and Pasquale Parisi

98 Startle-induced (and other sensory-induced) epilepsy 695
Jean-Pierre Vignal, Sandrine Aubert, and Patrick Chauvel

99 Primary reading epilepsy 700
Matthias Koepp

100 Auditory-induced epilepsy 704
Carlo Di Bonaventura and Frederick Andermann

101 Focal reflex seizures – with emphasis on seizures triggered by eating 709
Benjamin Zifkin, Guy M. Rémillard, and Frederick Andermann

102 Hot-water epilepsy 713
P. Satishchandra, S. Sinha, and A. Anand

103 Reflex epilepsy with higher-level processing 720
Benjamin Zifkin and Frederick Andermann

Section 5 – Status epilepticus

104 Introduction – how status epilepticus is caused 723
Karthik Rajasekaran and Howard P. Goodkin

105 Causes of status epilepticus in children 730
Rod C. Scott

106 The causes of convulsive status epilepticus in adults 735
Elizabeth J. Waterhouse and Peter W. Kaplan

107 Uncommon causes of status epilepticus 745
Simon D. Shorvon, Raymond Y. L. Tan, and Aidan Neligan

108 Causes of non-convulsive status epilepticus in adults 752
Pierre Thomas

109 Causes of epilepsia partialis continua 759
Hirokazu Oguni and Frederick Andermann

110 Afterword 767
Simon D. Shorvon, Renzo Guerrini, and Frederick Andermann

Index 771
Color plates appear between pages 236 and 237.
Contributors

Jane E. Adcock
Department of Clinical Neurology,
University of Oxford,
John Radcliffe Hospital,
Oxford, UK

Yahya Aghakhani
Section of Neurology,
Department of Internal Medicine,
University of Manitoba,
Winnipeg, Alberta, Canada

A. Anand
Molecular Biology and Genetics Unit,
Jawaharlal Nehru Center for Advanced Sciences (JNCASR),
Bangalore, India

Eva Andermann
Neurogenetics Unit,
Montreal Neurological Institute and Hospital;
Departments of Neurology and Neurosurgery and Human Genetics,
McGill University,
Montreal, Québec, Canada

Frederick Andermann
Departments of Neurology, Neurosurgery and Pediatrics,
McGill University;
Epilepsy Service,
Montreal Neurological Institute and Hospital,
Montreal, Québec, Canada

Alexis Arzimanoglou
Institute for Children and Adolescents with Epilepsy IDEE,
Department of Epilepsy,
Sleep and Pediatric Neurophysiology,
University Hospitals of Lyon (HCL) and Hôpital Femme Mère Enfant,
Lyon, France

Sandrine Aubert
Service de Neurophysiologie Clinique,
Hôpital de la Timone,
APHM, Marseille, France

Nadia Bahi-Buisson
Department of Pediatric Neurology and Neurophysiology,
Hôpital Necker Enfants Malades,
Université Paris Descartes, Paris, France

Carman Barba
Pediatric Neurology Unit,
Anna Meyer Children’s Hospital,
University of Florence, Italy

Agatino Battaglia
Department of Child Neuropsychiatry,
University of Pisa,
Stella Maris Clinical Research Institute, Italy
Division of Medical Genetics,
Department of Pediatrics,
University of Utah School of Medicine,
Salt Lake City, UT, USA

Geneviève Bernard
Pediatric Neurologist and Fellow in Neurogenetics,
CHUM and Saint-Justine’s Hospital,
Montreal, Québec, Canada

Nadir E. Bharucha
Departments of Neurology and Neuroepidemiology,
Bombay Hospital Institute of Medical Science,
Mumbai, India

Laurence A. Bindoff
Department of Neurology,
Haukeland University Hospital,
Bergen; Department of Clinical Medicine,
University of Bergen, Norway

William Bingaman
Department of Neurosurgery,
Cleveland Clinic Foundation,
Cleveland, OH, USA

Francesca Bisulli
Department of Neurological Sciences,
University of Bologna, Italy
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas P. Bleck</td>
<td>Department of Neurological Sciences, Neurosurgery, Medicine, and Anesthesiology, Rush Medical College, Chicago, IL, USA</td>
</tr>
<tr>
<td>Stewart G. Boyd</td>
<td>Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK</td>
</tr>
<tr>
<td>Andreas Brunklaus</td>
<td>Fraser of Allander Neurosciences Unit, Royal Hospital for Sick Children, Glasgow, UK</td>
</tr>
<tr>
<td>Harry Bulstrode</td>
<td>Division of Clinical Neurosciences, Faculty of Medicine and Health and Life Sciences, University of Southampton, UK</td>
</tr>
<tr>
<td>Jorge G. Burneo</td>
<td>Department of Neurology, University of Western Ontario Epilepsy Programme, London, Ontario, Canada</td>
</tr>
<tr>
<td>Laura Canafoglia</td>
<td>Unit of Neurophysiopathology, Epilepsy Center, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy</td>
</tr>
<tr>
<td>Laura Cantonetti</td>
<td>Bambino Gesu, Santa Marinella, Rome, Italy</td>
</tr>
<tr>
<td>Roberto H. Caraballo</td>
<td>Department of Neurology, Hospital Nacional de Pediatría</td>
</tr>
<tr>
<td></td>
<td>"Prof. Dr. Juan P. Garrhan," Buenos Aires, Argentina</td>
</tr>
<tr>
<td>Fernando Cendes</td>
<td>Department of Neurology, University of Campinas – UNICAMP, Campinas, SP, Brazil</td>
</tr>
<tr>
<td>Kevin E. Chapman</td>
<td>Pediatric Epilepsy, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA</td>
</tr>
<tr>
<td>Patrick Chauvel</td>
<td>Laboratoire de Neurophysiologie et Neuropsychologie, INSERM, Marseille, France</td>
</tr>
<tr>
<td>Richard F. M. Chin</td>
<td>Neuroscience Unit, UCL Institute of Child Health, London; National Centre for Young People with Epilepsy, Lingfield, Surrey, UK</td>
</tr>
<tr>
<td>H. T. Chong</td>
<td>Division of Neurology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia</td>
</tr>
<tr>
<td>Fahmida A. Chowdhury</td>
<td>King’s College Hospital, London, UK</td>
</tr>
<tr>
<td>Catherine J. Chu-Shore</td>
<td>Instructor in Neurology, Harvard Medical School, Department of Neurology, Programs in Pediatric Epilepsy and Neurophysiology, Massachusetts General Hospital.</td>
</tr>
<tr>
<td>Rolando Cimaz</td>
<td>Rheumatology Unit, Department of Pediatrics, Anna Meyer Children’s Hospital, University of Florence, Italy</td>
</tr>
<tr>
<td>Andrew J. Cole</td>
<td>The MGH Epilepsy Service, Massachusetts General Hospital, Boston, MA, USA</td>
</tr>
<tr>
<td>Bernard Dan</td>
<td>Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium</td>
</tr>
<tr>
<td>The Late Geoffrey Dean</td>
<td>Medical Research Board, The Health Research Board, Dublin, Ireland</td>
</tr>
<tr>
<td>Alessio De Ciantis</td>
<td>Department of Neuroscience, Anna Meyer Children’s Hospital, University of Florence, Italy</td>
</tr>
<tr>
<td>Fernando De Paolis</td>
<td>Sleep Disorders Center, Department of Neurosciences, University of Parma, Italy</td>
</tr>
<tr>
<td>Rolando F. Del Maestro</td>
<td>Brain Tumor Research Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada</td>
</tr>
</tbody>
</table>
Irissa M. Devine
Division of Pediatric Neurology,
Department of Neurology,
University of Wisconsin,
Madison, WI, USA

Carlo Di Bonaventura
Epilepsy Unit, Department of Neurological Sciences,
“La Sapienza” University of Rome, Italy

Concezio Di Rocco
Institute of Neurosurgery,
Catholic University Medical School,
Rome, Italy

Henry B. Dinsdale
Queen's University,
Kingston, Ontario, Canada

Maria Alice Donati
Pediatric Neurology and Metabolic and Neuromuscular Disorders Units, Neuroscience Department,
Anna Meyer Children’s Hospital,
University of Florence, Italy

François Dubéau
Department of Neurology and Neurosurgery,
Montreal Neurological Hospital and Institute,
McGill University,
Montreal, Québec, Canada

Michael Duchowny
Comprehensive Epilepsy Program and the Brain Institute,
Miami Children’s Hospital,
Miami, FL, USA

Olivier Dulac
Department of Pediatric Neurology and Neurophysiology,
Hôpital Necker Enfants Malades,
Université Paris Descartes, Paris, France

Monika Eisermann
Department of Pediatric Neurology and Neurophysiology,
Hôpital Necker Enfants Malades,
Université Paris Descartes, Paris, France

Brent Elliott
Department of Neuropsychiatry,
National Hospital for Neurology and Neurosurgery,
London, UK

Bernt A. Engelsen
Department of Neurology,
Haukeland University Hospital,
Bergen; Department of Clinical Medicine,
University of Bergen, Norway

Kevin Farrell
Division of Neurology, Department of Pediatrics,
University of British Columbia and British Columbia’s Children’s Hospital,
Vancouver, Canada

Natalio Fejerman
Department of Neurology,
Hospital Nacional de Pediatría
“Prof. Dr. Juan P. Garrhan,” Buenos Aires,
Argentina

Rosalie E. Fener
Guy’s and St. Thomas’ NHS Foundation Trust,
London, UK

Silvana Franceschetti
Unit of Neuropathology, Epilepsy Center,
IRCCS Foundation C. Besta Neurological Institute,
Milan, Italy

Robert M. Friedlander
Department of Neurosurgery,
Brigham and Women’s Hospital,
Boston, MA, USA

Antonio Gambardella
Institute of Neurology, University Magna Graecia,
Catanzaro, Italy

Hector H. Garcia
Cysticercosis Unit, Department of Microbiology,
School of Sciences,
Universidad Peruana Cayetano Heredia,
Lima, Peru

Serena Gasperini
Pediatric Neurology and Metabolic and Neuromuscular Disorders Units, Neuroscience Department,
Anna Meyer Children’s Hospital,
University of Florence, Italy

Lorenzo Genitori
Department of Neurosurgery,
Anna Meyer Children’s Hospital,
University of Florence, Italy

Gioia Gioi
Sleep Disorders Center,
Department of Neurology,
Policlinico Monserrato,
Cagliari, Italy

Flavio Giordano
Department of Neurosurgery,
Anna Meyer Children’s Hospital,
University of Florence, Italy
List of contributors

Leif Gjerstad
Department of Neurology, Division of Clinical Neuroscience, Rikshospitalet University Hospital, Oslo, Norway

Daniel G. Glaze
Departments of Pediatrics and Neurology, Baylor College of Medicine and Blue Bird Circle Rett Center, Texas Children’s Hospital, Houston, TX, USA

Howard P. Goodkin
Department of Neurology, University of Virginia, Charlottesville, VA, USA

Sidney M. Gospe, Jr.
Division of Pediatric Neurology, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA

Andrea Grassi
Sleep Disorders Center, Department of Neurosciences, University of Parma, Italy

William P. Gray
Department of Neurosurgery, University of Southampton, UK

Renzo Guerrini
Department of Child Neurology and Psychiatry, University of Florence Pediatric Neurology Unit and Laboratories, Anna Meyer Children’s Hospital, University of Florence, Italy

Marie-Christine Guiot
Department of Neuropathology, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada

William Harkness
Department of Neurosurgery, Great Ormond Street Hospital, London, UK

Andrew G. Herzog
Department of Neurology, Harvard Medical School, and Neuroendocrine Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA

Linda Huh
Division of Neurology, Department of Pediatrics, University of British Columbia and British Columbia’s Children’s Hospital, Vancouver, Canada

Margaret J. Jackson
Department of Neurology, Newcastle-upon-Tyne Hospitals Trust, Newcastle-upon-Tyne, UK

Thomas S. Jacques
Neural Development Unit, UCL Institute of Child Health and Department of Histopathology, Great Ormond Street Hospital, London, UK

Anna C. Jansen
Department of Pediatric Neurology, UZ Brussel, Brussels, Belgium

Sigmund Jenssen
Department of Neurology, Hahnemann University Hospital, Philadelphia, PA, USA

Michael R. Johnson
Division of Neuroscience, Imperial College London, UK

Dorothy Jones-Davis
Department of Neurology, University of California, San Francisco, CA, USA

Reetta Kälviäinen
Kuopio Epilepsy Center, Department of Neurology, Kuopio University Hospital, Kuopio, Finland

Peter W. Kaplan
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

John F. Kerrigan
Department of Clinical Pediatrics and Neurology, University of Arizona College of Medicine, Phoenix; Pediatric Epilepsy Program and Hypothalamic Hamartoma Program, Barrow Neurological Institute, Phoenix, AZ, USA

Autumn Marie Klein
Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA

Matthias Koeppe
Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK

Edwin H. Kolodny
Department of Neurology, New York University School of Medicine, New York, NY, USA
Kandan Kulandaivel
Department of Neurology,
Hahnemann Hospital,
Drexel University College of Medicine,
Philadelphia, PA, USA

Ruben I. Kuzniecky
NYU Epilepsy Center,
Department of Neurology,
NYU School of Medicine,
New York, NY, USA

Ahmed Lary
Department of Neurosurgery,
Neurosciences Center,
King Fahd Medical City,
Riyadh, Saudi Arabia

Yolanda Lau
Department of Neurology,
University of California,
San Francisco, CA, USA

Anna-Elina Lehesjoki
Folkhalsan Institute of Genetics,
Department of Medical Genetics and Neuroscience Center,
Biocentre Helsinki,
University of Helsinki, Finland

Maria K. Lehtinen
Howard Hughes Medical Institute,
Beth Israel Deaconess Medical Center,
Harvard Medical School,
Boston, MA, USA

Holger Lerche
Neurological Clinic and Institute of Applied Physiology,
University of Ulm, Germany

Michael P. T. Lunn
National Hospital for Neurology and Neurosurgery,
London, UK

Snezana Maljevic
Neurological Clinic and Institute of Applied Physiology,
University of Ulm, Germany

Mark R. Manford
Department of Neurology, Addenbrooke’s Hospital,
Cambridge, UK

Carla Marini
Pediatric Neurology Unit and Laboratories,
Anna Meyer Children’s Hospital,
University of Florence, Italy

Bindu Menon
Department of Neurology,
Narayana Medical College and Superspeciality Hospital,
Nellore, Andhra Pradesh, India

Giulia Milioli
Sleep Disorders Center, Department of Neurosciences,
University of Parma, Italy

Eli M. Mizrahi
Peter Kellaway Section of Neurophysiology,
Department of Neurology and Section of Pediatric Neurology,
Department of Pediatrics, Baylor College of Medicine,
Houston, TX, USA

Manish Modi
Department of Neurology,
Postgraduate Institute of Medical Education and Research,
Chandigarh, India

Márcia Elisabete Morita
Department of Neurology,
University of Campinas – UNICAMP,
Campinas, SP, Brazil

Manuel Murie-Fernandez
Department of Physical Medicine and Rehabilitation,
St. Joseph’s Healthcare,
London, Ontario, Canada

Vivek Nambiar
Department of Neurology,
Bombay Hospital Institute of Medical Science,
Mumbai, India

Lina Nashef
King’s College Hospital,
London, UK

Vincent Navarro
Epilepsy Unit, Salpêtrière Hospital,
Pierre et Marie Curie University;
Cortex and Epilepsy Unit,
Centre de Recherche de l’Institut du Cerveau et de la Moelle, Paris, France

Aidan Neligan
UCL Institute of Neurology,
University College London, UK

Ruth E. Nemire
Touro College of Pharmacy,
New York, NY, USA

Charles R. J. C. Newton
The Wellcome Trust,
KEMRI Unit, Kilifi, Kenya
List of contributors

John O'Donavan
Department of Neuropsychiatry,
The National Hospital for Neurology and Neuropsychiatry,
London, UK

Hirokazu Oguni
Department of Pediatrics,
Tokyo Women’s Medical University, Tokyo, Japan

Teiichi Onuma
Musasinokokubunnji Clinic, Tokyo, Japan

Andre Palmini
Neurology Service and Faculty of Medicine,
Hospital São Lucas, Pontifícia Universidade Católica do
Rio Grande do Sul (PUCRS),
Porto Alegre, RS, Brazil

Eleni Panagiotaaki
Institute for Children and Adolescents with Epilepsy (IDEE),
Hôpital Femme Mère Enfant, Lyon, France

Pasquale Parisi
Department of Child Neurology,
II Faculty of Medicine, “La Sapienza” University of Rome, Italy

Elena Parrini
Pediatric Neurology and Neurogenetics Unit and Laboratories,
Anna Meyer Children’s Hospital,
University of Florence, Italy

Liborio Parrino
Sleep Disorders Center, Department of Neurosciences,
University of Parma, Italy

Ignacio Pascual-Castroviejo
University Hospital La Paz, Madrid, Spain

M. Scott Perry
Comprehensive Epilepsy Program and the Brain Institute,
Miami Children’s Hospital, Miami, FL, USA

Perrine Plouin
Clinical Neurophysiology Unit,
Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France

Charles E. Polkey
Department of Clinical Neurosciences, Institute of Psychiatry, King’s College,
London, UK

Suresh S. Pujar
Neuroscience Unit, UCL Institute of Child Health, London; National Centre for Young People with Epilepsy,
Lingfield, Surrey, UK

Karthik Rajasekaran
Department of Neurology, University of Virginia,
Charlottesville, VA, USA

R. Eugene Ramsey
International Center for Epilepsy,
University of Miami School of Medicine, Miami, FL, USA

Rahul Rathakrishnan
Department of Neurology and Neurosurgery,
Montreal Neurological Hospital and Institute,
McGill University, Montreal, Québec, Canada

Roberta H. Raven
Department of Neuroepidemiology,
Bombay Hospital Institute of Medical Science, Mumbai, India

Guy M. Rémillard
Department of Neurology,
Hôpital du Sacré-Coeur de Montréal, Montreal, Québec, Canada

David Rosenblatt
Department of Human Genetics and Department of Pediatrics and Medicine, McGill University,
Montreal, Québec, Canada

M. Elizabeth Ross
Laboratory of Neurogenetics and Development, Weill Medical College of Cornell University,
New York, NY, USA

Abdulrahman Sabbagh
Department of Neurosurgery, Neurosciences Center,
King Fahd Medical City, Riyadh, Saudi Arabia

P. Satishchandra
Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India

Swati Sathe
Department of Neurology, New York University School of Medicine,
New York, NY, USA

Ingrid E. Scheffer
Department of Medicine, The University of Melbourne, Victoria;
Department of Pediatrics, The University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
Philip A. Schwartzkroin
Department of Neurological Surgery,
University of California–Davis,
Davis, CA, USA

Rod C. Scott
UCL Institute of Child Health, London, UK

Frédéric Sedel
Federation of Nervous System Diseases,
Reference Center for Lysosomal Diseases,
Assistance Publique-Hôpitaux de Paris, Paris, France

Michelle J. Shapiro
McMaster University, Hamilton General Hospital,
Hamilton, Ontario, Canada

Elliott H. Sherr
Department of Neurology,
University of California,
San Francisco, CA, USA

Michael Shevell
Departments of Neurology, Neurosurgery and Pediatrics,
McGill University, Montreal, Québec, Canada

Simon D. Shorvon
UCL Institute of Neurology, London; National Hospital for Neurology and Neurosurgery, London, UK

Adrian M. Siegel
Department of Neurology,
Zuger Kantonsspital, Baar, Switzerland

Gagandeep Singh
Department of Neurology,
Dayanand Medical College and Hospital,
Ludhiana, India

S. Sinha
Department of Neurology,
National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India

Barbara Spacca
Department of Neurosurgery,
Royal Liverpool Children’s Hospital NHS Trust,
Liverpool, UK

Waney Squier
Department of Neuropathology,
John Radcliffe Hospital, Oxford, UK

Carl E. Stafstrom
Department of Neurology,
University of Wisconsin, Madison, WI, USA

Bernhard J. Steinhoff
Kork Epilepsy Centre,
Kehl-Kork, Germany

Andrea Taddio
Department of Pediatrics,
IRCCS Burlo Garofolo, Trieste, Italy

Gianpietro Tamburrini
Institute of Neurosurgery,
Catholic University Medical School,
Rome, Italy

C.T. Tan
Division of Neurology, Faculty of Medicine,
University of Malaya,
Kuala Lumpur, Malaysia

Raymond Y.L. Tan
National Hospital for Neurology and Neurosurgery,
London, UK

Erik Taubøll
Department of Neurology,
Division of Clinical Neuroscience,
Rikshospitalet University Hospital,
Oslo, Norway

Robert W. Teasell
Department of Physical Medicine and Rehabilitation,
St. Joseph’s Healthcare,
London, Ontario, Canada

Mario Giovanni Terzano
Sleep Disorders Center,
Department of Neurosciences,
University of Parma, Italy

Federica Teutonico
Department of Child Neurology
and Psychiatry, "C. Mondino" Foundation,
University of Pavia, Italy

Suzanne A. Tharin
Department of Neurosurgery,
Brigham and Women’s Hospital,
Harvard Medical School,
Boston, MA, USA

Elizabeth A. Thiele
Herscot Center for Tuberous Sclerosis Complex,
Boston, MA, USA

Pierre Thomas
UF EEG-Epileptologie, Service de Neurologie,
University of Nice-Sophia-Antipolis, Nice, France
Paolo Tinuper
Department of Neurological Sciences,
University of Bologna, Italy

Dorothée Kasteleijn-Nolst Trenité
University of Utrecht,
The Netherlands; II Faculty of Medicine,
"La Sapienza" University of Rome, Italy

Sumeet Vadera
Department of Neurosurgery, Cleveland Clinic Foundation,
Cleveland, OH, USA

Pierangelo Veggiotti
Department of Child Neurology and Psychiatry,
"C. Mondino" Foundation,
University of Pavia, Italy

Jean-Pierre Vignal
Service de Neurologie,
Hôpital Central CHU de Nancy, Nancy, France

J. M. Walsh
Department of Neurology,
The Middlesex Hospital, London, UK

Elizabeth J. Waterhouse
Department of Neurology,
Medical College of Virginia Commonwealth University,
Richmond, VA, USA

David Watkins
Department of Human Genetics, McGill University,
Montreal, Québec, Canada

Ruth E. Williams
Department of Pediatric Neurology,
Evelina Children's Hospital, London, UK

Yue-Hua Zhang
Department of Pediatrics,
Peking University First Hospital, Beijing, China

Benjamin Zifkin
Epilepsy Clinic, Montreal Neurological Hospital,
Montreal, Québec, Canada

Sameer M. Zuberi
Fraser of Allander Neurosciences Unit,
Royal Hospital for Sick Children,
Glasgow, UK
Foreword

The written history of epilepsy goes back 3000 years with accurate descriptions of epileptic phenomena appearing in the writings of ancient Mesopotamia and the Indian Ayurvedic texts. Although physicians of the Hippocratic school in Greece, about 400 BC, understood that epileptic seizures originated in the brain, as did Galen several hundred years later, epilepsy was generally viewed as a mysterious condition attributed to supernatural causes, at least in the West, until the mid nineteenth century. At that time, the nascent disciplines of basic neuroscience and clinical neurology defined a variety of ictal manifestations, including focal seizures and absences, and recognized them as part of a constellation of disorders referred to as epilepsy. In particular, postmortem clinical pathological correlations not only revealed specific anatomic substrates for different ictal manifestations, but led directly to concepts of localization of function within the human brain, and to surgical treatment for certain types of focal epilepsies. The development of radiology in the twentieth century further improved physicians’ abilities to identify “invisible” lesions as responsible for epileptic seizures in some patients, but it was application of the electroencephalogram (EEG), and the subsequent field of both clinical and basic electrophysiology, that provided a means to begin classifying and characterizing different types of epileptic seizures and epilepsy syndromes, and investigating their underlying fundamental pathophysiological neuronal mechanisms.

The careful delineation of different types of ictal phenomena provided the basis for creating experimental animal models for both in vitro and in vivo electrophysiological and microanatomical investigations of epilepsy. EEG localization of the epileptogenic region greatly increased the application of surgical treatment for focal epilepsies, which also provided novel opportunities for parallel invasive in vitro and in vivo electrophysiological and microanatomical investigations in patients. Towards the end of the twentieth century, explosive advances in three-dimensional neuroimaging, first with structural X-ray computerized tomography (CT), then functional positron emission tomography (PET), and finally both structural and functional high-resolution magnetic resonance imaging (MRI) provided intricate insights into the pathophysiological mechanisms and anatomic substrates of epilepsy disorders in individual patients that could be used to create more informed categorizations and classifications. These efforts were joined by the burgeoning field of neurogenetics, which not only is identifying an increasing number of “epilepsy genes” responsible for specific types of epilepsy, and further characterizing genetic disorders associated with epilepsy, but also advancing the concept of susceptibility genes, which will explain variable individual predispositions to develop certain forms of acquired epilepsies. Now, in the twenty-first century, we are poised to reap the benefits of these dramatic advances in our understanding of the causes of epilepsy.

Methodology for characterizing different types of epileptic seizures and the disorders associated with them, particularly through electroclinical correlations, that is the association of particular behavioral ictal signs and symptoms with their unique EEG correlates, led the International League Against Epilepsy (ILAE) to propose international classifications for epileptic seizures, and for the epilepsies in 1970. These have undergone several revisions, but the most recent version of the International Classification of Epileptic Seizures was proposed in 1981, and the most recent International Classification of the Epilepsies was proposed in 1989. These were purported to be purely phenomenological, because the authors felt there was, at the time, insufficient mechanistic information on which to base a classification on specific causes of epilepsy. Nevertheless, the inclusion of EEG characteristics permitted categorization of ictal phenomena in a way that implied certain pathophysiological differences, as well as anatomic substrates. For instance, generalized seizures were distinguished from focal seizures that appeared to originate in a part of one hemisphere. Epilepsies were classified not only based on their characteristic associated seizure types, but also according to broad etiologic categories: idiopathic, meaning epilepsy and nothing else, presumably primary genetic disorders; and symptomatic, meaning secondary to some other disease process. In addition, diseases associated with epilepsy were well described, and some epilepsy diseases were recognized as conditions with a single known cause, but most of the defined epilepsy conditions were syndromes, characterized by specific seizure types, and other clinical features, such as age of onset, response to antiepileptic drugs, and comorbidity. Using this approach, the vast majority of accepted epilepsy syndromes are pediatric idiopathic conditions, while the majority of epilepsies that affect adults, most of which are symptomatic, still defy a reasonable syndromic classification.

For over a decade, the ILAE has attempted to revise the 1981 and 1989 classifications, with multiple reports that have
updated the list of epileptic seizure types and epilepsy syndromes. They now recognize certain seizure types as diagnostic entities with associated therapeutic, prognostic, and etiologic implications that can be used when a definitive syndrome or disease diagnosis cannot be made. These deliberations provide a basis for a more scientific classification of epilepsy disorders based on underlying genetic and pathophysiologic mechanisms, as well as anatomic substrates. Ironically, however, as the chapters in this book clearly confirm, with the increasing sophistication of our investigative methodology, the elucidation of distinctive epilepsy conditions as diagnostic entities has become more, rather than less, complicated. The old dichotomies of idiopathic versus symptomatic, and generalized versus focal, are artificial and often impossible to apply. Well-defined classical syndromes, such as childhood absence epilepsy, are not as homogeneous as once believed. Some idiopathic childhood epilepsies, such as Dravet syndrome, are not benign, and there appear to be several distinctly different forms of temporal lobe epilepsy with hippocampal sclerosis. However, the causes of epilepsy discussed in this textbook represent a major effort to put flesh on the bones of what hopefully will ultimately become a biologically based international classification of the epilepsies.

With the hundreds of textbooks that have been published on epilepsy in the past decade or so, it is rather amazing that none have focused specifically on the causes of epilepsy. The editors have undertaken this monumental task and succeeded in documenting the current state of knowledge concerning the genetic and pathological substrates of disorders characterized by epileptic seizures, as well as the situations that provoke ictal events. This comprehensive compendium will not only serve as an important resource for rethinking the organization and classification of epileptic phenomena and epilepsy syndromes and diseases, but will also provide a foundation for basic research attempting to identify the diverse pathophysiological mechanisms at the subcellular, cellular, and systems levels, that are responsible for epileptogenesis and seizure generation. Identification of these fundamental neuronal processes in turn will lead to novel and more effective approaches to treatment, cure, and prevention of epilepsy.

Jerome Engel, Jr
Los Angeles, California

Medicine is undergoing a remarkable transition as we move from descriptions of disease and a taxonomy based on clinical characteristics to a more detailed and precise understanding of disease pathogenesis. This revolution has been driven by the adoption of a range of molecular tools and, more particularly, by the application of molecular genetics to medicine. These approaches are providing us with insights, often for the first time, of the pathways and precise events associated with disease pathogenesis and this will change forever the foundations on which we base diagnosis and treatment of disease.

The developments in the molecular understanding of disease are nowhere more evident than in neurological disease, particularly the epilepsies. These clinical syndromes, often dramatic in their clinical characteristics, have been associated with a range of taxonomies that have developed over many centuries. The clinical characteristics of seizures and an understanding of the abnormal electrophysiology provided a framework on which taxonomy could be based, but clearly could not address the fundamental issue of the underpinning events in disease pathogenesis. That has had to wait until the past twenty years when the tools available for characterizing both families and individual patients have gradually become available.

Initial progress in this field focused, as with other diseases, on Mendelian forms of epilepsy using family based studies. Although these studies revealed a range of interesting pathophysiological mechanisms, including a number of ion channels, it has been clear that this describes only a portion of the epilepsy syndromes, many of which involve more complex genetics. These now are increasingly tractable with the new tools for genetic association and these are beginning to reveal non-channel molecules and pathways associated with neural excitation. Together, these techniques are providing a crucial framework for redefining the epilepsies based on pathophysiology and, in turn, this will have a profound impact on our ability to predict, diagnose, and, ultimately, treat disease. Anticonvulsive therapy has been remarkably successful, given how little we know about the pathogenic mechanisms of the disease, so it is likely that future therapeutic interventions based on a clearer understanding of the relevant pathways will be even more effective.

Together, these advances have made epilepsy one of the most significant examples in medicine of the importance of genetic tools in clarifying pathophysiology and these disorders demonstrate clearly how powerful the change from pure phenotypic classification of disease to one based on pathophysiology can be. The authors of this important book have been able to bring together a wide range of scientific insight and data on this topic into a single volume that covers the whole range of clinical syndromes. They demonstrate how powerful these new genetic tools have already been in defining pathways in disease and they also clearly demonstrate that, together, their observations are likely to lead to a fundamental new classification of these diseases. Not only is this volume timely, given the recent exciting developments in this field, but it also demonstrates the enormous influence that these key basic insights will have on the way we categorize and, ultimately, treat individuals with disease. Epilepsy and its associated syndromes give us a clear vision of what the future of medicine is likely to look like.

Professor Sir John Bell,
University of Oxford, UK
Preface – an act of supererogation?

An inquiring mind must return again and again to the problem of origin or cause... physicians have dug away at diverse etiologic theories or facts; physical or psychic; general or individual; genetic or acquired; fundamental or contributory. When a crime is committed, everyone in the vicinity is suspect. William Lennox, Epilepsy and Related Conditions, 1960

Thus Lennox opened his chapter on "The diverse sources of seizures," and indeed he devoted a great many pages of his famous book to the question of etiology. Yet, 50 years later, causation is an aspect of epilepsy now somewhat neglected in the scientific literature on epilepsy, in the classification of epilepsy, and in the conceptualization of epilepsy at a clinical and experimental level. It was to go some way to remedying this deficiency that this book was conceived.

Kinnier Wilson in 1940 wrote that the listing of all causes of epilepsy would be an act of supererogation, but the editors of this book beg to differ. This is the first book ever published, as far as we know, which is devoted to the topic of causation in epilepsy, and we have attempted within its 800 pages to catalog the known causes of epilepsy, and corral these into a single tome.

Such an attempt is only possible because of the great advances made in imaging, molecular biology, and molecular genetics in the last 40 years or so, and we believe that progress has now been sufficient to permit at least a stab at a comprehensive listing of causation. The literature on epilepsy has rapidly increased in recent years. Kinnier Wilson noted that the index catalogue of the US Surgeon-General’s office (1925) contained about 3000 titles and the “Gruhle’s review for the years 1910–1920 deals with some 1000 articles.” In the last 10-year period, a search on PubMed® using the keyword epilepsy produces more than 37,000 references, many of which deal at least tangentially with etiology. It is this literature-base which we have asked our contributors to summarize in the various chapters of this volume.

One striking omission has been the absence of any detailed consideration of etiology in the standard classifications of epilepsy. This is partly because at the time that these schemes were being devised neither modern investigatory imaging methods nor modern molecular biology were available – and the ascertainment of “cause” in life was often simply not possible. Although it was fully recognized that epilepsy was often “a symptom” of neurological disease, the underlying cause of the symptom was completely absent from the current classification schemes, based as they are largely on clinical semiology and electroencephalography, and it is interesting to muse on what form the epilepsy classification might have taken if MRI scanning had preceded EEG as a clinical investigatory tool.

We thus open this book with, in Chapter 2, the presentation of a draft etiological classification which goes some way we hope to filling the nosological void. The main part of the book is organized according to this classificatory scheme. We have divided the etiologies into four categories: idiopathic epilepsies, symptomatic epilepsies, cryptogenic epilepsies, and provoked epilepsies, and these are defined in Chapter 2. In doing so, of course, we recognize, as Lennox, and many before him, frequently reiterated, that epilepsy is in the great majority of cases multifactorial, and frequently has a developmental basis with therefore a temporal dimension. The epilepsy is often the result of both genetic and acquired influences and also influenced by provoking factors, and assignment in such cases to any single etiology is therefore to an extent arbitrary.

The approach to the problem of etiology between 1860 and 1960 forms the subject of the historical introduction (Chapter 1) which ends with Lennox’s work, and this is included as we believe it is important to understand the evolution of concepts of causation within its historical context.

In subsequent chapters, we have asked the authors to consider their topic in a consistent fashion, dealing with the phenomenon of epilepsy in each etiology, including its epidemiology, clinical features, and prognosis, and any specific aspects of investigation or treatment.

The purpose of the book is to be a comprehensive reference work, a catalog of all the important causes of epilepsy, and a clinical tool for all clinicians dealing with patients with epilepsy. It is aimed at specialists and the interested generalist and it is hoped provides a distillation of knowledge in a form that is helpful in the clinical setting. We hope too that it will act as a clinical guide to scientists probing the dark interior of the subject.

We have attempted to take a worldwide perspective, and have included chapters on the causes of epilepsy that are rare in the West but common in other parts of the world. To match the worldwide spread of the conditions considered here, we have a distinguished faculty with a similar global reach, and
the book has 165 contributors from 21 countries and all continents many of whom are the leaders in their fields.

The editors have exercised a heavy editorial blue pen, have tried to minimize overlap or repetition, and have asked the authors to follow where possible a pre-assigned template. Our contributors have responded magnificently in our opinion, and we extend our grateful thanks for their hard work and for their time and effort. We would like to thank also Professor Jerome (Pete) Engel and Professor Sir John Bell for graciously agreeing to write the foreword to the book. Pete Engel is a famous leader in the field of epilepsy and a prolific author, who has made major contributions to many fields of epilepsy. Sir John Bell is President of the Academy of Medical Sciences and Regius Professor of Medicine at the University of Oxford, and a renowned medical geneticist. The book is indeed fortunate to have their contributions. We are also enormously grateful to Nicholas Dunton, the Senior Commissioning Editor at Cambridge University Press, who has guided the project since its inception with extraordinary skill and expertise, and without whose assistance the book would not have made it to the shelves. We also thank Assistant Editor Joanna Chamberlin and Production Editor Caroline Brown for their great efforts on behalf of the book. Finally, we would like to thank all our colleagues around the world for their stimulating ideas and knowledge, which have informed and illuminated all the pages of this book.

Simon Shorvon, Renzo Guerrini, and Fred Andermann