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1 Introduction

According to wikipedia1 “multimedia is the use of several different media (e.g. text,

audio, graphics, animation, video, and interactivity) to convey information.” In a more

narrow sense, multimedia is a set of software and hardware means used to create, store,

and transmit information presented in various digital formats. Although multimedia data

is a general term referring to any type of information, we will focus on multimedia data

such as speech, images, audio, and video that are originally analog waveforms.

Due to the dramatic progress in microelectronic technologies during the last decades,

TV, photography, sound and video recording, communication systems etc., which came

into the world and during at least half of the previous century were developed as ana-

log systems, have been almost completely replaced by digital systems. At the same

time numerous digital areas and systems such as video conferencing via the Internet,

IP-telephony, multi-user games etc. using digitized speech, images, audio, and video

appeared as well. Relatively recently multimedia computer technologies started to

penetrate into education, medicine, scientific research, entertainment, advertising, and

marketing, as well as into many other universally important areas.

Everything mentioned above motivates a deep study of multimedia compression and

intensive research in this area. In order to use analog multimedia signals in digital sys-

tems it is necessary to solve two main problems. The first problem, related to using these

kinds of signal in digital systems, is how to convert them into digital forms. However,

it is not enough simply to digitize them. The number of bits required to store images,

audio or video signals converted into digital form is so large that this circumstance

limits the efficiency of the corresponding digital systems. Thus, the second problem is

to compress multimedia data in order to transmit them faster and to store them more

efficiently.

Typically, digitizing multimedia signals with a high precision results in large files

containing the obtained multimedia data. Surely, the exact meaning of the words “large

file” or “small file” depends on the level of existing microelectronic technologies. About

20 years ago when multimedia compression was not an everyday attribute of our lives,

a floppy disk of size 1.44 Mbytes was a typical storage medium. Data files of size

exceeding one diskette were considered as “huge” files at that time. It seemed com-

pletely impossible to store, on any kind of existing memory, for example, a digitized

1 http://en.wikipedia.org/wiki/Multimedia
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2 Introduction

color image of size 1408 × 1152 pixels. Each pixel of such an image is represented

by 3 bytes and thus the image requires 4.9 Mbytes of memory for storing. Trans-

mitting of a color image of size 288 × 352 through the Plain Old Telephone Service

(POTS) networks also looked extremely impractical. Since POTS networks were orig-

inally designed for the transmission of analog data they needed a so-called modem to

convert the digital data to be transmitted into analog form. It is easy to compute that

transmitting 288 × 352 × 24 = 2.4 Mb through the telephone channel using a standard

modem with transmitting rate equal to 33.6 kb/s requires approximately 1 min (72 s).

Nowadays a variety of storage devices of large capacity are offered by different com-

panies. Transmitting images through POTS networks also became a thing of the past.

New kinds of wideband channel are introduced. In the late nineties Digital Subscriber

Line (DSL) modems were developed. They are used to communicate over the same

twisted-pair metallic cable as used by telephone networks. Using not a voice channel

band but the actual range of frequencies supportable on a twisted-pair circuit, they pro-

vide transmitting rates exceeding 1 Mb/s. So, it might seem that compression will not be

needed in the future. But this is not the case. Together with increasing storage and chan-

nel capacities our requirements of the quality of digital multimedia also increase. First of

all, during the last decade typical resolutions of images and video became significantly

higher. For example, 2–4 Mpixel digital photocameras are replaced by 8–10 Mpixel

cameras. A color picture taken by a 10 Mpixel camera requires 30 Mbytes of memory

for storing, i.e. only 66 uncompressed pictures can be stored on a Compact-Flash (CF)

memory of rather large size, 2 Gbytes, say. For this reason each photocamera has an

embedded image compression algorithm. Moreover, the majority of photocameras do

not have a mode which allows us to store the uncompressed image.

Let us consider another example. One second of video film with resolution 480 ×

720 pixels recorded with 30 frames/s requires approximately 31 Mbytes of memory. It

means that only 21 s of this film can be recorded on a 650 Mbytes Compact Disc (CD)

without compression. However, neither does using 15.9 Gbyte Digital Versatile Disc

(DVD) solve the problem of storing video data since only 8.5 minutes of video film

with such resolution and frame rate can be recorded on the DVD of such a capacity.

As for transmitting high-resolution video through communication channels, it is still an

even more complicated problem than storing it. For example, it takes 4 s to transmit a

color image of size 480 × 720 pixels by using the High Data rate DSL (HDSL) modem

with rate 2 Mb/s. It means that a film with such a frame size can be transmitted with

frame rate equal to 0.25 frame/s only.

The considered examples show that actually it does not matter how much we can

increase telecommunication bandwidth or disk storage capacity, there will always

remain a need to compress multimedia data in order to transmit them faster and to store

them more efficiently.

Multimedia technologies continuously find new applications that create new prob-

lems in the multimedia compression field. Recently, new tendencies in multimedia

compression have arisen. One of many newly intensively developed areas is Digital

Multimedia Broadcasting (DMB), often called “mobile TV.” This technology is used

in order to send multimedia data to mobile phones and laptops. The world’s first DMB
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Introduction 3

service appeared in South Korea in 2005. This line of development requires a significant

revision of existing compression algorithms in order to tailor them to the specific needs

of broadcasting systems.

The Depth Image Based Rendering (DIBR) technique for three-dimensional tele-

vision (3D-TV) systems is another quickly developed area that is closely related to

multimedia compression. Each 3D image is represented as the corresponding 2D image

and an associated per-pixel “depth” information. As a result, the number of bits to

represent a 3D image drastically increases. It requires modifications of known 2D

compression techniques in order to efficiently compress 3D images and video.

It is, needless to say, about a variety of portable devices such as Personal Dig-

ital Assistant (PDA), smartphone, Portable Media Player (iPOD), and many others

intended for loading multimedia contents. Each such device requires a new compression

algorithm taking into account its specific features.

Multimedia compression systems can be split into two large classes. The first class

is lossless compression systems. With lossless compression techniques the original file

can be recovered exactly, bit by bit after compression and decompression. To do this

we usually use well-known methods of discrete source coding such as Huffman coding,

arithmetic coding, or coding based on the Ziv–Lempel algorithms.

Lossy compression implies that we remove or reduce the redundancy of the multi-

media data at the cost of changing or distorting the original file. These methods exploit

the tradeoff of compression versus distortion. Among lossy techniques are compres-

sion techniques based on transform coding (coding of the discrete Fourier transform or

discrete cosine transform coefficients, wavelet filtering), predictive coding etc.

In this book lossy compression techniques and their applications to image, video,

speech, and audio compression are considered. The book provides rather deep knowl-

edge of lossy compression systems. Modern multimedia compression techniques are

analyzed and compared in terms of achieving known theoretical limits. Some imple-

mentation issues important for the efficient implementation of existing multimedia

compression standards are discussed also.

The book is intended for undergraduate students. The required prerequisite is an ele-

mentary knowledge of linear systems, Fourier transforms, and signal processing. Some

prior knowledge of information theory and random processes would be useful. The

book can be also recommended for graduate students with an interest in compression

techniques for multimedia.

The book consists of 10 chapters and an Appendix. In Chapters 2 and 3 basic theoret-

ical aspects of source coding with fidelity criteria are given. In particular, in Chapter 3

the notion of the rate-distortion function is introduced. This function is a theoretical

limit for achievable performances of multimedia systems. This chapter can be recom-

mended for readers who are doing research in the multimedia compression area. In order

to compare the performances of different quantizers some results of the high-resolution

quantization theory are given in Section 3.3. This section can be omitted for readers

who have no prior knowledge of information theory.

In Chapters 4, 5, and 6, commonly used coding techniques are described. Chap-

ter 4 is devoted to linear predictive coding. It begins in Section 4.1 with descriptions of
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4 Introduction

discrete-time filters by different means which are presented for the sake of completeness

and can be omitted by readers familiar with this subject.

Chapters 7, 8, 9, and 10 are devoted to modern standards for speech, image, video, and

audio compression, respectively. For readers who are not familiar with lossless coding

techniques, the basics of lossless coding are briefly overviewed in the Appendix.
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2 Analog to digital conversion

Analog to digital transformation is the first necessary step to load multimedia signals

into digital devices. It contains two operations called sampling and quantization. The

theoretical background of sampling is given by the famous sampling theorem. The

first attempts to formulate and prove the sampling theorem date back to the begin-

ning of the twentieth century. In this chapter we present Shannon’s elegant proof of

the sampling theorem. Consequences of sampling “too slowly” in the time and fre-

quency domains are discussed. Quantization is the main operation which determines

the quality–compression ratio tradeoff in all lossy compression systems. We con-

sider different types of quantizer commonly used in modern multimedia compression

systems.

2.1 Analog and digital signals

First, we introduce some definitions.

• A function f (x) is continuous at a point x = a if limx→a f (x) = f (a). We say a

function is continuous if it is continuous at every point in its domain (the set of its

input values).

• We call a set of elements a discrete set if it contains a finite or countable number of

elements (elements of a countable set can be enumerated).

In the real world analog signals are continuous functions of continuous arguments

such as time, space, or any other continuous physical variables, although we often use

mathematical models with not continuous analog signals such as the saw-tooth signal.

We consider mainly time signals which can take on a continuum of values over a defined

interval of time. For example, each value can be a real number.

Discrete signals can be discrete over a set of function values and (or) over a set of

argument values. In other words, if the analog time signals are sampled, we call this

set of numbers which can take on an infinity of values within a certain defined range,

a discrete-time or sampled system. If the sample values are constrained to belong to a

discrete set, the system becomes digital.

Such signals as images, speech, audio, and video are originally analog signals.

In order to convert them into digital signals, we should perform the following two

operations:

www.cambridge.org/9780521114325
www.cambridge.org


Cambridge University Press
978-0-521-11432-5 — Compression for Multimedia
Irina Bocharova
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Analog to digital conversion

• First, the signal has to be sampled (the time axis must be discretized or quantized).

• The second operation is to transform the sample values (the obtained list of numbers)

in such a manner that each resulting number belongs to a discrete alphabet. We call

this operation quantization.

We start with a discussion of sampling which is a technique of converting an analog

signal with a continuous time axis into real values in discrete-time.

Let x(t) be a continuous time function. Sampling is taking samples of this func-

tion at time instants t = nTs for all integer values n, where Ts is called sampling

period. The value fs = 1/Ts is called sampling frequency. Thus, instead of the func-

tion x(t) we study the sequence of samples x(nTs), n = 0, 1, 2, . . . The first question

is: does sampling introduce distortion of the original continuous time function x(t)?

The second question is: how does the distortion, if any, depend on the value of Ts? The

answers are given by the so-called sampling theorem (Whittaker 1915; Nyquist 1928;

Kotelnikov 1933; Oliver et al. 1948), sometimes known as the Nyquist–Shannon–

Kotelnikov theorem and also referred to as the Whittaker–Shannon–Kotelnikov sam-

pling theorem.

Before considering the sampling theorem we briefly review the notions which will be

used to prove this theorem.

The Fourier transform of the analog signal x(t) is given by the formula

X ( f ) =

∫ ∞

−∞

x(t)e− jωt dt

where ω = 2π f is the radian frequency ( f is the frequency in Hz). This function is in

general complex, with X ( f ) = A( f )e jφ( f ), where A( f ) = |X ( f )| is called the spec-

trum of x(t) and φ( f ) is the phase. We can also represent x(t) in terms of its Fourier

transform via the inversion formula

x(t) =

∫ ∞

−∞

X ( f )e jωt d f.

The Fourier transform is closely related to the Laplace transform. For continuous

time functions existing only for t ≥ 0, the Laplace transform is defined as a function of

the complex variable s by the following formula

L(s) =

∫ ∞

0

x(t)e−st dt.

For s = jω the Laplace transform for x(t), t ≥ 0 coincides with the Fourier transform

for this function, if L(s) has no poles on the imaginary axis.

If x(t) is a periodic time function with period p it can be represented as the Fourier

series expansion

x(t) =
a0

2
+

∞
∑

k=1

(ak cos(ktωp) + bk sin(ktωp))
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2.1 Analog and digital signals 7

where

ωp =
2π

p
,

a0 =
2

p

∫ p/2

−p/2

x(t) dt,

ak =
2

p

∫ p/2

−p/2

x(t) cos(ktωp) dt, k = 1, 2, . . .,

bk =
2

p

∫ p/2

−p/2

x(t) sin(ktωp) dt, k = 1, 2, . . .

To replace two of the integrals (cos(ktωp) and sin(ktωp)) by one for each index k

(after simple derivations) we obtain

x(t) =
a0

2
+

∞
∑

k=1

Ak cos(ktωp + ϕk)

where ϕk is the initial phase.

Using Euler’s formula e jωt = cos(ωt) + j sin(ωt) we obtain the complex form of

the Fourier series expansion

x(t) =
a0

2
+

∞
∑

k=1

Ak

2

(

exp( jktωp + jϕk) + exp(− jktωp − jϕk)
)

=

∞
∑

k=−∞

cke jktωp

where

ck =
1

2
Ake jϕk =

1

2
(ak − jbk) =

1

p

∫ p/2

−p/2

x(t) exp(− jktωp) dt,

c0 = 1/2a0 , b0 = 0,

ak = a−k , bk = −b−k .

It is said that the Fourier series expansion for a periodical function with period p

decomposes this function into a sum of harmonical functions with frequencies kωp,

k = 1, 2, . . . The Fourier transform for a nonperiodical function represents this function

as a sum of an infinite number of harmonical functions with frequencies which differ

in infinitesimal quantities. Notice that a nonperiodical function of finite length T also

can be decomposed into the Fourier series expansion. To do this we have to construct

its periodical continuation with period T .
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8 Analog to digital conversion

2.1.1 Sampling theorem

If x(t) is a signal whose Fourier transform X ( f ) =
∫ ∞
−∞ x(t)e− j2π f t dt is identically

zero X ( f ) = 0 for | f | > fH , then x(t) is completely determined by its samples taken

every 1/(2 fH) s. The frequency fs = 1/Ts = 2 fH Hz is called the Nyquist sampling rate.

Proof. Since X ( f ) = 0 for | f | > fH we can continue X ( f ) periodically. Then we

obtain the periodical function X̂( f ) with period equal to 2 fH. The function X̂( f ) can

be decomposed into the Fourier series expansion

X̂( f ) =

∞
∑

k=−∞

ake j2π f k/(2 fH)

where

ak =
1

2 fH

∫ fH

− fH

X̂( f )e− j2π f k/(2 fH) d f. (2.1)

Since X ( f ) is the Fourier transform of x(t) then x(t) can be represented in terms of

its Fourier transform via the inversion formula

x(t) =

∫ ∞

−∞

X ( f )e j2π f t d f =

∫ fH

− fH

X̂( f )e j2π f t d f.

Consider the values of the time function x(t) in the discrete points t = k/(2 fH) for

all integers k. They can be expressed as follows

x

(
k

2 fH

)

=

∫ fH

− fH

X̂( f )e j2π f k/(2 fH) d f. (2.2)

Comparing (2.1) and (2.2), we obtain that

ak =
1

2 fH

x

(
−k

2 fH

)

.

Thus, if the time function x(t) is known at points . . . ,−2/(2 fH), −1/(2 fH), 0,

1/(2 fH), 2/(2 fH), . . . then the coefficients ak are determined. These coefficients in turn

determine X̂( f ) and thereby they determine X ( f ). On the other hand, X ( f ) determines

x(t) for all values of t . It means that there exists a unique time function which does not

contain frequencies higher than fH and passes through the given sampling points spaced

1/(2 fH) s.

In order to reconstruct the time function x(t) using its sampling points x(k/(2 fH))

we notice that

X ( f ) =

{ ∑∞
k=−∞ ake j2π f k/(2 fH), if | f | ≤ fH

0, if | f | > fH.

To simplify our notations we introduce the sinc-function which is defined as

sinc(x) =
sin(πx)

πx
.
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2.1 Analog and digital signals 9

Using the inverse transform we obtain

x(t) =

∫ fH

− fH

X ( f )e j2π f t d f

=

∫ fH

− fH

∞
∑

k=−∞

ake
j2π f ( k

2 fH
+t)

d f

=
∑

k

ak

∫ fH

− fH

e
j2π f ( k

2 fH
+t)

d f

=

∞
∑

k=−∞

ak

⎛

⎝

∫ fH

− fH

cos

(

2π f

(
k

2 fH

+ t

))

︸ ︷︷ ︸

even

d f

+ j

∫ fH

− fH

sin

(

2π f

(
k

2 fH

))

︸ ︷︷ ︸

odd

d f

⎞

⎠

= 2

∞
∑

k=−∞

ak

∫ fH

0

cos

(

2π f

(
k

2 fH

+ t

))

d f

= 2 fH

∞
∑

k=−∞

aksinc

(

2 fH

(
k

2 fH

+ t

))

.

Simple derivations complete the proof:

x(t) = 2 fH

∞
∑

k=−∞

aksinc(2 fHt + k)

=

∞
∑

k=−∞

x

(
−k

2 fH

)

sinc(2 fHt + k)

=

∞
∑

i=−∞

x

(
i

2 fH

)

sinc(2 fHt − i) , i = −k. (2.3)

In other words, the time function x(t) can be represented as a sum of elementary

functions in the form sinc(α), α = 2 fHt − i , centered in the sampling points. The sinc-

function sinc(α) is shown in Fig. 2.1. It is equal to 1 in the point α = 0, that is,

t = i/(2 fH) and is equal to zero in other sampling points.

It follows from (2.3) that at time instants t = kTs = k/(2 fH) the values of x(t)

coincide with the sample values x(k/(2 fH)). For the other time instants, it is necessary

to sum up an infinite number of series terms in order to reconstruct the exact value of

x(t). Therefore, we conclude that in order to reconstruct the function x(t), it is necessary

to generate an infinite train of impulses which have form sinc(α) and are proportional

to samples, and to summarize them.
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10 Analog to digital conversion
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sinc(α)

α

1

Figure 2.1 Function sinc(α)

The representation of x(t) in the form (2.3) is a particular case of the so-called orthog-

onal decomposition of the function over a system of basis functions. In our case the role

of basis functions is played by the sinc-functions sinc(2 fHt − i) which we call sampling

functions. They are orthogonal since

∫ ∞

−∞

sinc(2 fHt − j)sinc(2 fHt − i) dt =

{

1/(2 fH), if i = j

0, if i �= j.

2.1.2 Historical background

The sampling theorem has a rather long history. It started in 1897 when the theo-

rem was partly proved by the French mathematician Emil Borel. He showed that any

continuous-time function x(t) whose spectrum is limited by the maximal frequency

fH is uniquely defined by its samples with frequency 2 fH. However, he wrote nothing

about how to reconstruct x(t) from these samples. Then in 1915 the English mathemati-

cian Edmund Whittaker almost completed the proof by finding the so-called “cardinal

function” which had the form

∑

k

x(kTs)sinc

(
t

Ts
− k

)

but he never stated that this reconstructed function coincides with the original function

x(t). Kinnosuke Ogura actually was the first who in 1920 proved the sampling theo-

rem (ignoring some theoretical nuances). In 1928 Harry Nyquist improved the proof

by Ogura and in 1933 (independently of Nyquist) Vladimir Kotelnikov published the

theorem in its contemporary form. In 1948 Claude Shannon, who was not aware of

Kotelnikov’s results relying only on Nyquist’s proof, formulated and proved the theorem

once more.

It follows from the sampling theorem that, if the Fourier transform of a time function

is nonzero over a finite frequency band, then taking samples of this time function in the
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