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Quantum mechanics for quantum engineers

Shall I refuse my dinner because I do not fully understand the process of
digestion? No, not if I am satisfied with the result.

O. Heaviside, Electromagnetic Theory, vol. 2, 1899

1.1 Basic notions of quantum mechanics

1.1.1 Quantum axioms

Let us start with a brief recapitulation of quantum mechanics on the “how to” level.
According to the standard lore, the instantaneous state of any quantum system (that
is, everything that can be known about it at a given moment of time) is given by its
wave function (state vector)1 – a complex-valued vector in some abstract Hilbert
space; the nature of this space is determined by the system. All the observables (i.e.,
physical quantities defined for the system and determined by its state – e.g., the
position or momentum of a free particle, the energy of an oscillator) are described
by Hermitian operators defined in the same Hilbert space. All three elements – the
Hilbert space, the state vector, and the set of observables – are necessary to describe
the outcome of any experiment one could perform with the system. Since humans
cannot directly observe the behaviour of quantum objects, these outcomes are also
called measurements, being the result of using some classical apparatus in order to
translate the state of a quantum system into the state of the apparatus, which can
then be read out by the experimentalist. The classical (i.e., non-quantum) nature of
the apparatus is essential, as we shall see in a moment.

In addition, we need to know how the state of the system changes in time, and
how it determines the measured values of the observables. All of the above can be
presented as four textbook “axioms of quantum theory”:

1) The state of a quantum system at time t is described by a normalized2 vector
|ψ(t)〉 belonging to the Hilbert space H, which is specific for the system in
question.

1 A very important generalization of the wave function, the density matrix (statistical operator), will be discussed
in Section 1.2.

2 This is not strictly necessary, but makes the explanations shorter without much loss of generality.

1

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-11369-4 - Quantum Engineering: Theory and Design of Quantum Coherent Structures
A. M. Zagoskin
Excerpt
More information

http://www.cambridge.org/9780521113694
http://www.cambridge.org
http://www.cambridge.org


2 Quantum mechanics for quantum engineers

2) [Schrödinger equation] The state evolves with time according to ı� ˙|ψ(t)〉 =
H |ψ(t)〉, where H , the Hamiltonian, is a Hermitian operator associated with
the energy of the system.

3) [Collapse of the wave function] The measured value of an observable is always
one of the eigenvalues of its operator A, aj ; whatever the state of the system
was before the measurement, immediately after it the state vector of the system
is the corresponding normalized eigenvector of A, |aj 〉 (A|aj 〉 ≡ aj |aj 〉).

4) [Born’s rule] The probability of measuring a particular eigenvalue, aj , of the
observable A (collapsing the wave function |ψ(t)〉 into a given eigenvector
|aj 〉) is given by the square modulus of the former’s projection on the latter,

pj (t) = ∣∣〈aj |ψ(t)〉∣∣2.

The most striking features of these axioms are the special roles played by time
and energy (Hamiltonian) of all the other physical quantities associated with the
quantum system, and the jarring difference between the linear, reversible, unitary
quantum evolution determined by the Schrödinger equation, and the nonlinear,
irreversible, non-unitary measurement process. Indeed, the equation

ı� ˙|ψ(t)〉 = H |ψ(t)〉 (1.1)

has the solution (in the sufficiently general case of a time-independent Hamiltonian)

|ψ(t)〉 = U(t)|ψ(0)〉; U(t) = e− ı
�

Ht , (1.2)

and for Hermitian H the evolution operator is unitary, U(t)†U(t) = U(t)U(t)† = I

(where I is the identity operator in the Hilbert space of the system). The latter prop-
erty ensures that the normalization of the state vector is preserved. On the other
hand, after the measurement at moment t we find the system in a state |aj 〉, which
is not related to the state |ψ(t)〉 before the measurement by any reversible trans-
formation (ψ(t)〉 instantaneously collapses to |aj 〉). The after-collapse state |aj 〉
could be obtained from any state |ψ(t)〉 as long as |aj 〉 and |ψ(t)〉 are not mutu-
ally orthogonal. Taken together, axioms (3) and (4) are often called the projection
postulate: the measurement of the observable A projects the state vector |ψ(t)〉 on
the eigenvectors of A; the square modulus of the projection gives the probability
with which the system is likely to be found in the corresponding eigenstate of A.
The eigenvectors of a Hermitian operator A can be chosen to form a complete
orthonormal basis of the Hilbert space; therefore the sum of squared projections of
the state vector |ψ〉 on the vectors of this basis is, by Parseval’s equality, the square
of the norm of |ψ〉,

||ψ(t)〉||2 = 〈ψ(t)|ψ(t)〉 =
∑
j

|〈aj |ψ(t)〉|2 =
∑
j

pj . (1.3)

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-11369-4 - Quantum Engineering: Theory and Design of Quantum Coherent Structures
A. M. Zagoskin
Excerpt
More information

http://www.cambridge.org/9780521113694
http://www.cambridge.org
http://www.cambridge.org


1.1 Basic notions of quantum mechanics 3

Once we have chosen the state vector such that it is normalized to unity, Eq. (1.3)
ensures that the probabilities of finding different outcomes of the measurement of
the observable A sum to one, as they should. The unitarity of the evolution given
by Eq. (1.2) ensures that the probabilities “don’t leak”.

1.1.2 Quantum–classical boundary: the Schrödinger’s cat paradox

This picture does lead to serious questions. First of all, time is very different from
spatial coordinates: it is not an observable, but a parameter, which governs the
evolution of the state vector between the instantaneous “collapses”. Fortunately,
we do not have to deal with it, since our problems are strictly non relativistic. More
pertinent is the question of the nature of “measurement” and “collapse” and their
presumed instantaneity.

Measurement is understood as an interaction of the quantum system with a
macroscopic object (“apparatus”) such that the final state of the latter is deter-
mined by the value of the observable aj , and different states of the apparatus are
distinguishable and immutable (i.e., can be observed without perturbation). The
terminology originates from the early days of quantum mechanics. Of course, there
is no need for somebody to actually set up the apparatus; any appropriate macro-
scopic system will do, and now the tradition forces us to talk about, e.g., the liquid
“measuring” or “observing” the quantum state of a particle travelling through it.

The classical states of the apparatus correlated to the different outcomes of the
measurement are called “pointer states”. (The corresponding eigenstates of the
observable that is being measured we will also call pointer states, where it does
not lead to confusion.) In the Copenhagen interpretation, it is the apparatus that
predetermines what observables can be measured (so called “complementarity with
respect to the means of observation”). In principle, for any classical variable we
should be able to design an apparatus which would measure its quantum counterpart,
an observable.

One problem here is that there exists no well-defined boundary between the
“measured”, or “observed” microscopic system, and the macroscopic “apparatus”
or “observer”. The Copenhagen interpretation of quantum mechanics simply posits
the quantum behaviour for the one, and classical for the other, which is somewhat
circular. What is worse, it does not allow a description of the system and the appara-
tus within a single formalism, denying us any quantitative description of the process
of measurement. This was not too troubling when dealing with (quantum) electrons
going through double slits in a (classical) screen, since it was obvious which was
which, and the time of the electron’s interaction with the detector can be neglected
compared to all other relevant timescales. It becomes of crucial importance when
the quantum systems we deal with contain huge numbers of elementary particles,
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4 Quantum mechanics for quantum engineers

almost comparable with the number of particles in our “apparatus”, or are being
“measured” continually. How do we describe such a situation in a consistent way?

A natural thing to do is to directly extend the quantum description (as the more
fundamental one) to macroscopic systems. A difficulty of this approach lies in the
fact that only very special states can be measured by a macroscopic apparatus,
while at the quantum level they seem to be no different from all the rest of them.
The situation is highlighted by the famous “Schrödinger’s cat” paradox. Let us put
together a deadly contraption: a tank of poisonous gas with an electrically controlled
valve, connected to a Geiger counter. Put it in a sealed container with a live cat and
a radioactive atom (e.g., 210Po, which decays into the stable lead-206, 206Pb, with
the half-life T ≈ 138 days), and wait (Fig. 1.1).

If we had to deal just with the radioactive atom, the description would be simple.
Its wave function can be written as3

|ψ(t)〉 = 2−t/2T
∣∣∣210Po

〉
+

√
1 − 2−t/T

∣∣∣206Pb +α particle
〉
. (1.4)

If at any given time we measure (observe) this atom, with the probability 1−2−t/T

we’ll find lead-206. But putting the atom in the box with a cat makes things look
bizarre, once we try to describe the cat (and the rest of the contraption) by a wave

Fig. 1.1. Schrödinger’s cat paradox: Should we describe macroscopic systems by
wave functions, and if not, why not?

3 This expression is only valid for not too short and not too long times; see § 5.5.6.
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1.1 Basic notions of quantum mechanics 5

function. Now the state of the system before the observation will be

|ψ(t)〉 = 2−t/2T
∣∣∣210Po + live cat

〉
+

√
1 − 2−t/T

∣∣∣206Pb +α particle + dead cat
〉
.

(1.5)
We don’t doubt that after opening the box one will find either a live or a dead

cat, with the probabilities 2−t/T and 1 − 2−t/T respectively. This intuitively clear
outcome is in no way trivial. On the quantum side, we can always introduce an
observable, which is a linear combination of other observables with real coeffi-
cients – there is nothing in the formalism to prohibit it. For example, we can build
an observable, which will have as one of its eigenstates the superposition given
by Eq. (1.5). Nevertheless, we evidently cannot build a classical apparatus, which
would measure such a “zombie” state of the poor animal. The set of admissible
classical states thus must impose some preferred set of bases on the Hilbert state
of our quantum system.

Is the description (1.5) of a hybrid micro/macro system justified at all?And, what
does precipitate the transition from the “live–dead” superposition to the “either–
or” classical picture? The proposed answers run the full philosophical gamut from
the many-worlds interpretation to the key role of the observer’s conscience in the
collapse. Instead of plunging into these fascinating ontological and epistemological
depths, we will take a pragmatic approach and see how far it will take us.

We will not make any special difference between the “measurement” or “observa-
tion” and the interaction of our quantum system with its macroscopic surroundings.

AUTHORIZED 
 PERSONNEL 
      ONLY

Gentlemen, we have outsourced all our planet-pushing activities 
to Messrs Newton, Laplace & Associates. 
From now on we concentrate on our core business: state collapsing.

Fig. 1.2. The canonical view of the quantum–classical transition.
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6 Quantum mechanics for quantum engineers

Indeed, explaining the “collapse” through the action of conscience would be exor-
cizing Asmodeus with Beelzebub’s help, since we currently understand the latter,
if anything, less than the former.

We will assume that on the fundamental level every system is governed (and
described) by the laws of quantum mechanics, of which classical mechanics is
a limiting case – in full agreement with Bohr’s correspondence principle. The
difference between “quantum” and “classical” systems must naturally emerge from
the formalism.4

1.2 Density matrix formalism

1.2.1 Justification and properties

The notion of the state vector is inadequate for our purposes, but it can be generalized
to the density matrix, or statistical operator, first introduced independently by
Landau and von Neumann in 1927. To make the motivation clear, let us start from a
quantum system, which consists of two subsystems,Aand B, which we can measure
independently. Suppose, for example, that we have two particles with spin �/2, and
have an apparatus, which can measure the z-component of spin of either particle.
Let the system be in state

|�〉AB =
∑

j,k=↑,↓
Cjk|jAkB〉, (1.6)

which is obviously the most general form of such two-particle wave functions.
Now measure the spin of particle B. The corresponding observable is the operator
(�/2)σz, such that (�/2)σz| ↑〉 = �/2| ↑〉, and (�/2)σz| ↓〉 = −�/2| ↓〉. The result
of the measurement can then be written as

|�〉AB →

⎧⎪⎪⎨
⎪⎪⎩

spin B = �/2, | ↑A〉,probability|C↑↑|2;
spin B = �/2, | ↓A〉,probability|C↓↑|2;
spin B = −�/2, | ↑A〉,probability|C↑↓|2;
spin B = −�/2, | ↓A〉,probability|C↓↓|2.

(1.7)

If now we measure the spin of particle A, its average value will be〈
�

2
σz

〉
= �

2

(
|C↑↑|2 +|C↑↓|2 −|C↓↑|2 −|C↓↓|2

)
. (1.8)

The normalization of the initial state vector, |||�〉AB ||2 = ∑
ij |Cij |2 = 1, ensures

that the probabilities of the outcomes of (1.7) add up to unity, so everything is fine,

4 We are encouraged by the emergence of time-irreversible Boltzmann equations from time-reversible Newtonian
dynamics of point-like particles.
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1.2 Density matrix formalism 7

except that Eq. (1.7) is a very awkward way of dealing with even such a small
system. Just imagine we had three particles!

The situation improves once the state vector is replaced with the density matrix.
Let us choose a set of normalized, but not necessarily mutually orthogonal states
in the Hilbert space, {|�j 〉}, and write an operator

ρ =
∑
j

pj |�j 〉〈�j |, (1.9)

where pj ≥ 0, and
∑

j pj = 1. This obviously Hermitian operator can be interpreted
as describing a statistical ensemble of quantum systems, which can be in a state
|�j 〉 with probability pj . This is exactly the situation described by Eq. (1.7).

The convenience of using this operator becomes clear when calculating average
values of the observables. According to rule (3) of quantum mechanics, the mea-
sured value of an observable A is always one of the eigenvalues of A, and according
to rule (4), the probability of measuring a particular ak in state |�j 〉 is |〈ak|�j 〉|2.
Therefore

〈A〉�j
=

∑
k

|〈ak|�j 〉|2ak =
∑

k

〈�j |ak〉ak〈ak|�j 〉

=
∑

k

〈�j |ak|ak〉〈ak|�j 〉 = 〈�j |A
(∑

k

|ak〉〈ak|
)

|�j 〉 = 〈�j |A|�j 〉,

(1.10)

a standard formula. Since now the system is in state |�j 〉 only with some probability
pj , we must average over these too, with the result

〈A〉 =
∑
j

pj 〈A〉�j
=

∑
j

pj 〈�j |A|�j 〉 ≡ tr(ρA). (1.11)

The system, described by a density matrix, is said to be in a mixed state, instead of
a pure state (when a single state vector suffices). One can write a density matrix
for a pure state: it will include only one component, ρpure = |�〉〈�|.

As a Hermitian operator, the density matrix has an orthonormal set of eigenstates,
|ρj 〉, with corresponding eigenvalues, ρj . It can be, therefore, written in the spectral
representation,

ρ =
∑
j

ρj |ρj 〉〈ρj |. (1.12)

Since ρj can be interpreted as the probability of finding the system in state |ρj 〉, all
ρj ≥ 0; in other words, the density matrix is positive semidefinite.
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8 Quantum mechanics for quantum engineers

The density matrix can be written in any basis in the Hilbert space, and will
usually have neither the explicit form (1.9) nor (1.12). We will therefore list here
its invariant properties.

1) tr ρ = 1 (follows directly from the definition (1.9)).
2) ρ2 = ρ if and only if the state is pure. Indeed, if ρ = |�〉〈�|, then ρ2 =

|�〉〈�||�〉〈�|= |�〉〈�|=ρ.Conversely, ifρ2 =ρ, then (from (1.12))ρ2
j =ρj ,

and the eigenvalues of the density matrix are either zeros, or ones. Since its trace
is one, then only one eigenvalue can be equal to one, i.e., there is only one term
in the spectral decomposition, and the state is indeed pure.

3) tr(ρ2) ≤ 1, and there is equality if and only if the state is pure (therefore
the quantity ς = tr(ρ2) is sometimes called purity). Starting from (1.9) and
recalling that |〈�j |�k〉| ≤ 1,

tr(ρ2) = tr

⎛
⎝∑

jk

pjpk|�j 〉〈�j |�k〉〈�k|
⎞
⎠

=
∑
j

pj

∑
k

pk

∣∣〈�j |�k〉
∣∣2 ≤

∑
j

pj = 1.

On the other hand, if tr(ρ2) = 1, then
∑

j pj

(∑
k pk

∣∣〈�j |�k〉
∣∣2

)
= 1. Since

the non negative pj ’s add up to one, there is equality only if pj = δjq for some
q, that is, if the state is pure.

These properties provide us with a reliable way to check any approximate cal-
culations of a density matrix, as well as a criterion of whether a given system is in
a pure or a mixed state.

1.2.2 Averages, probabilities and coherences

Consider now, as before, a quantum-mechanical system in the pure state (1.6). Its
density matrix is

ρAB = |�〉AB〈�|AB =
∑

j,k,l,m=↑,↓
CjkC

∗
lm|jAkB〉〈lAmB |.

Let’s take a partial trace of this operator over the states of particle B:

ρA ≡ trBρAB =
∑

q=↑,↓
〈qB |�〉AB (〈�|AB) |qB〉

=
∑

q,j,k,l,m=↑,↓
CjkC

∗
lmδqk|jA〉〈lA|δqm =

∑
q,j,l=↑,↓

CjqC
∗
lq |jA〉〈lA|. (1.13)
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1.2 Density matrix formalism 9

To find the observed value of the z-component of spin of particle A, we now take
the trace of the spin operator with reduced density matrix ρA:

〈
�

2
σA

z

〉
= �

2
tr

(
ρAσA

z

)
= �

2
tr

∑
q,j,l=↑,↓

CjqC
∗
lqσz|jA〉〈lA|

= �

2
tr

∑
q,j=↑,↓

|Cjq |2〈jA|σz|jA〉. (1.14)

This equation automatically yields the same result as Equations (1.7) and (1.8), and
in a compact form. We see that as long as we are interested only in the results of
measurement on one subsystem, we can use the reduced density matrix by taking
the trace of the full density matrix over all the irrelevant degrees of freedom. This is
an important procedure, which is crucial for describing open quantum systems, i.e.,
systems for which one can neither neglect their interaction with the environment
nor take the latter into account explicitly.

Let us look at Eq. (1.13) in more detail. This expression contains more informa-
tion than just the average value of the operator σz. The diagonal terms provide the
probabilities of finding the system with spin up/down. What about the off-diagonal
ones?

Let us write a density matrix in an orthonormal basis of eigenstates of some
observable A, and we chose A such that its eigenstates are macroscopically observ-
able pointer states – e.g., charges, positions or momenta: ρ = ∑

ij ρij |ai〉〈aj |. Its
diagonal elements give the probabilities of finding the system in appropriate eigen-
states, and if we are only performing the measurements of A this is all we care
about or can extract from the experiment. The off-diagonal terms could have never
been there. Nevertheless, they are crucially important.

We have seen that a diagonal density matrix describes a pure state if and only if
its only element is unity (invariant property number 2). If this is the case, we will
always measure the same eigenvalue aj of the operator A and leave the system in
the same state |aj 〉.5 (This is called quantum non demolition (QND) measurement,
and we will discuss the implications of such experiments in § 5.5.2.) If not, the
density matrix must describe a mixed state, so the absence of the off-diagonal
matrix elements is a tell-tale sign. These elements describe quantum coherence. If
they are zero, mathematically there is no basis in which the density matrix contains
a single diagonal element; physically, the system is in a mixed state; from the point
of view of the observation, there is no observable of which the system is in an
eigenstate, and its measurement will yield some eigenstate at random, with a given

5 We need not bother here with the cases of degenerate eigenstates or the continuous spectrum of the operator A.
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10 Quantum mechanics for quantum engineers

probability. This is why the evolution of the off-diagonal elements of the density
matrix (“coherences”) is of special interest: their disappearance – “decoherence”,
due to whatever processes that cause it – means the reduction of the state of the
system to a mixture, with the loss of specifically quantum correlations. The rate of
this reduction can, therefore, be taken as the decoherence rate, and its inverse as
the decoherence time.

1.2.3 Entanglement

We have already seen that when several distinct systems (e.g., a cat and a 210Po
atom) are described by a single quantum state, this can lead to quite counterintuitive
conclusions. Suppose that two quantum systems (e.g., spin-1/2 particles A and B)
are in a pure quantum state |�〉AB . Then, generally speaking, separately, neither
of them can be in a definite quantum state. Consider, for example, the expectation
value of σz for particle A, Eq. (1.14):

〈
�

2
σA

z

〉
= �

2
tr

(
ρAσA

z

)
.

The reduced density matrix ρA = trB [|�〉AB〈�|AB] can only have the form
|ψ〉A〈ψ |A, corresponding to particle A being in a pure quantum state |ψ〉A, if
the quantum state of the whole system is factorized:

|�〉AB = |ψ〉A ⊗|ψ〉B. (1.15)

Otherwise, particle A by itself is in a mixed state, even though the whole system
consisting of A and B is in a pure state, and there is no interaction between A and
B. The non factorized states of multipartite systems are called entangled, which
expresses this specifically quantum correlation between its components. Essentially,
it means that the properties of a quantum system in general can never be reduced
to the sum of the properties of its constituents.

For a pure state |�〉ABC... of a system, comprising any number of subsystems, the
test for entanglement is straightforward: if all reduced density matrices correspond
to pure states, the state |�〉ABC... can be written as |ψ〉A ⊗ |ψ〉B ⊗ |ψ〉C . . . , and
there is no entanglement. But entanglement is not limited to pure states: certain
quantum correlation can exist even if the system itself is described by a density
matrix. For a given density matrix one can find different numerical measures of
entanglement (all of which are zero for a factorized state; see, e.g., Horodecki et al.,
2009).
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