Contents

Contributors xvi
Preface xix

Part I Enabling technologies 1

1 Optical switching fabrics for terabit packet switches 3
 Davide Cuda, Roberto Gaudino, Guido A. Gavilanes Castillo, and Fabio Neri
 1.1 Optical switching fabrics 5
 1.1.1 Wavelength-selective (WS) architecture 7
 1.1.2 Wavelength-routing (WR) architecture 8
 1.1.3 Plane-switching (PS) architecture 9
 1.2 Modeling optical devices 10
 1.2.1 Physical model 11
 1.2.2 Device characterization 12
 1.2.3 Multi-plane-specific issues 15
 1.3 Scalability analysis 16
 1.4 Cost analysis 18
 1.5 Results 21
 1.5.1 Scalability of the aggregate switching bandwidth 21
 1.5.2 CAPEX estimation 23
 1.6 Conclusions 24

References 25

2 Broadband access networks: current and future directions 27
 Abu (Sayeem) Reaz, Lei Shi, and Biswanath Mukherjee
 2.1 Introduction 27
 2.1.1 Current broadband access solutions 27
 2.1.2 Passive Optical Network (PON) 28
 2.1.3 Extending the reach: Long-Reach PON (LR-PON) 30
 2.2 Technologies and demonstrations 32
 2.2.1 Enabling technologies 32
 2.2.2 Demonstrations of LR-PON 33
2.3 Research challenges in LR-PON

2.3.1 Low-cost devices: colorless ONU

2.3.2 Resource allocation: DBA with Multi-Thread Polling

2.3.3 Traffic management: behavior-aware user assignment

2.4 Reaching the end-users: Wireless-Optical Broadband Access Network (WOBAN)

2.4.1 WOBAN architecture

2.4.2 Motivation of WOBAN

2.4.3 Research challenges in WOBAN

2.5 Conclusion

References

3 The optical control plane and a novel unified control plane architecture for IP/WDM networks

Georgios Ellinas, Antonis Hadjiantonis, Ahmad Khalil, Neophytos Antoniades, and Mohamed A. Ali

3.1 Introduction

3.2 Overview of optical control plane design

3.2.1 Link Management Protocol

3.2.2 GMPLS routing protocol

3.2.3 GMPLS signaling protocol

3.3 IP-over-WDM networking architecture

3.3.1 The overlay model

3.3.2 The peer and augmented models

3.4 A new approach to optical control plane design: an optical layer-based unified control plane architecture

3.4.1 Node architecture for the unified control plane

3.4.2 Optical layer-based provisioning

3.5 Conclusions

References

4 Cognitive routing protocols and architecture

Suyang Ju and Joseph B. Evans

4.1 Introduction

4.2 Mobility-aware routing protocol

4.2.1 Background

4.2.2 Approach

4.2.3 Benefits

4.2.4 Protocol architecture

4.3 Spectrum-aware routing protocol

4.3.1 Background

4.3.2 Approach
5 Grid networking
Anusha Ravula and Byrav Ramamurthy

5.1 Introduction
5.2 The Grid
 5.2.1 Grid Computing
 5.2.2 Lambda Grid networks
5.3 Cloud Computing
5.4 Resources
 5.4.1 Grid network resources
 5.4.2 Optical network testbeds and projects
 5.4.3 Computational resources
 5.4.4 Other resources
5.5 Scheduling
5.6 Optical Circuit Switching and Optical Burst Switching
 5.6.1 Studies on OCS-based Grids
 5.6.2 Studies on OBS-based Grids
5.7 Conclusion

References

Part II Network architectures

6 Host identity protocol (HIP): an overview
Pekka Nikander, Andrei Gurtov, and Thomas R. Henderson

6.1 Introduction
6.2 Fundamental problems in the Internet today
 6.2.1 Loss of universal connectivity
 6.2.2 Poor support for mobility and multi-homing
 6.2.3 Unwanted traffic
 6.2.4 Lack of authentication, privacy, and accountability
6.3 The HIP architecture and base exchange
 6.3.1 Basics
 6.3.2 HITs and LSIs
 6.3.3 Protocols and packet formats
 6.3.4 Detailed layering
 6.3.5 Functional model
 6.3.6 Potential drawbacks

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Mobility, multi-homing, and connectivity</td>
<td>121</td>
</tr>
<tr>
<td>6.4.1</td>
<td>HIP-based basic mobility and multi-homing</td>
<td>121</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Facilitating rendezvous</td>
<td>122</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Mobility between addressing realms and through NATs</td>
<td>123</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Subnetwork mobility</td>
<td>124</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Application-level mobility</td>
<td>126</td>
</tr>
<tr>
<td>6.5</td>
<td>Privacy, accountability, and unwanted traffic</td>
<td>126</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Privacy and accountability</td>
<td>126</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Reducing unwanted traffic</td>
<td>127</td>
</tr>
<tr>
<td>6.6</td>
<td>Current status of HIP</td>
<td>129</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary</td>
<td>131</td>
</tr>
</tbody>
</table>

References | 131 |

7 | Contract-switching for managing inter-domain dynamics | 136 |
Murat Yüksel, Aparna Gupta, Koushik Kar, and Shiv Kalyanaraman		
7.1	Contract-switching paradigm	137
7.2	Architectural issues	138
7.2.1	Dynamic contracting over peering points	139
7.2.2	Contract routing	139
7.3	A contract link: bailouts and forwards	143
7.3.1	Bailout forward contract (BFC)	144
7.3.2	Formalization for pricing a bailout forward contract (BFC)	144
7.3.3	Bailout forward contract (BFC) performance evaluation	147
7.4	Summary	152

References | 153 |

8 | PHAROS: an architecture for next-generation core optical networks | 154 |
8.1	Introduction	154
8.2	Background	157
8.3	PHAROS architecture: an overview	157
8.4	Resource allocation	161
8.4.1	Resource management strategies	161
8.4.2	Protection	164
8.4.3	Playbooks	166
8.4.4	Sub-lambda grooming	168
8.5	Signaling system	169
8.5.1	Control plane operation	171
8.5.2	Failure notification	172
8.6 Core node implementation 173
8.7 Performance analysis 175
8.8 Concluding remarks 176

References 177

9 Customizable in-network services 179
Tilman Wolf

9.1 Background 179
9.1.1 Internet architecture 179
9.1.2 Next-generation Internet 180
9.1.3 Data path programmability 180
9.1.4 Technical challenges 181
9.1.5 In-network processing solutions 181
9.2 Network services 182
9.2.1 Concepts 182
9.2.2 System architecture 184
9.3 End-system interface and service specification 186
9.3.1 Service pipeline 186
9.3.2 Service composition 187
9.4 Routing and service placement 188
9.4.1 Problem statement 188
9.4.2 Centralized routing and placement 189
9.4.3 Distributed routing and placement 190
9.5 Runtime resource management 191
9.5.1 Workload and system model 191
9.5.2 Resource management problem 192
9.5.3 Task duplication 192
9.5.4 Task mapping 193
9.6 Summary 194

References 194

10 Architectural support for continuing Internet evolution and innovation 197
Rudra Dutta and Ilia Baldine

10.1 Toward a new Internet architecture 197
10.2 The problems with the current architecture 199
10.3 SILO architecture: design for change 201
10.4 Prior related work 206
10.5 Prototype and case studies 207
10.6 Future work: SDO, stability, virtualization, silo-plexes 208
 10.6.1 Virtualization 208
 10.6.2 SDO: “software defined optics” 211
 10.6.3 Other open problems 212
10.7 Case study 213
Acknowledgements 214
References 214

Part III Protocols and practice 217

11 Separating routing policy from mechanism in the network layer 219
James Griffioen, Kenneth L. Calvert, Onur Ascigil, and Song Yuan

11.1 Introduction 219
11.2 PoMo design goals 220
11.3 Architecture overview 222
 11.3.1 PFRI network structure and addressing 222
 11.3.2 PFRI forwarding 223
 11.3.3 PFRI routing policies 225
 11.3.4 PFRI packet header mechanisms 226
11.4 Scaling the PFRI architecture 227
11.5 Discussion 230
11.6 Experimental evaluation 232
11.7 Other clean-slate approaches 234
Acknowledgements 235
References 235

12 Multi-path BGP: motivations and solutions 238
Francisco Valera, Iljitsch van Beijnum, Alberto García-Martínez, Marcelo Bagnulo

12.1 Introduction 238
12.2 Trilogy project 239
 12.2.1 Objectives 239
 12.2.2 Trilogy technologies 240
12.3 Multi-path routing 241
 12.3.1 Higher network capacity 242
 12.3.2 Scalable traffic engineering capabilities 242
 12.3.3 Improved response to path changes 242
 12.3.4 Enhanced security 243
 12.3.5 Improved market transparency 243
12.4 Multi-path BGP 244
 12.4.1 Intra-domain multi-path routing 244
 12.4.2 Inter-domain multi-path routing 245
12.4.3 Motivations for other solutions 247
12.4.4 mBGP and MpASS 248
12.5 Conclusions and future work 253

References 254

13 Explicit congestion control: charging, fairness, and admission management 257
Frank Kelly and Gaurav Raina

13.1 Fairness 258
13.1.1 Why proportional fairness? 260
13.2 Proportionally fair rate control protocol 260
13.2.1 Sufficient conditions for local stability 263
13.2.2 Illustrative simulation 264
13.2.3 Two forms of feedback? 264
13.2.4 Tatonnement processes 265
13.3 Admission management 265
13.3.1 Step-change algorithm 266
13.3.2 Robustness of the step-change algorithm 267
13.3.3 Guidelines for network management 268
13.3.4 Illustrating the utilization–robustness tradeoff 269
13.3.5 Buffer sizing and the step-change algorithm 270
13.4 Concluding remarks 272

References 273

14 KanseiGenie: software infrastructure for resource management and programmability of wireless sensor network fabrics 275
Mukundan Sridharan, Wenjie Zeng, William Leal, Xi Ju, Rajiv Ramnath, Hongwei Zhang, and Anish Arora

14.1 Introduction 275
14.2 Features of sensing fabrics 278
14.2.1 Generic services 278
14.2.2 Domain-specific services 283
14.3 KanseiGenie architecture 284
14.3.1 The fabric model 284
14.3.2 KanseiGenie architecture 285
14.3.3 GENI extension to KanseiGenie 287
14.3.4 Implementation of KanseiGenie 288
14.3.5 KanseiGenie federation 290
14.4 KanseiGenie customization and usage 292
14.4.1 How to customize KanseiGenie 292
14.4.2 Vertical APIs and their role in customization 293
14.4.3 KanseiGenie usage step-by-step runthrough 294
14.5 Evolving research issues in next-generation networks

14.5.1 Resource specifications for sensor fabrics

14.5.2 Resource discovery

14.5.3 Resource allocation

14.5.4 Data as resource

14.5.5 Network virtualization

14.6 Conclusion

References

Part IV Theory and models

15 Theories for buffering and scheduling in Internet switches

Damon Wischik

15.1 Introduction

15.2 Buffer sizing and end-to-end congestion control

15.3 Queueing theory for switches with scheduling

15.4 A proposed packet-level architecture

References

16 Stochastic network utility maximization and wireless scheduling

Yung Yi and Mung Chiang

16.1 Introduction

16.2 LAD (Layering As optimization Decomposition)

16.3 Stochastic NUM (Network Utility Maximization)

16.4 Wireless scheduling

References
16.4.3 Performance–complexity tradeoff 346
16.4.4 Future research directions 350

References 351

17 Network coding in bi-directed and peer-to-peer networks 359
Zongpeng Li, Hong Xu, and Baochun Li

17.1 Network coding background 359
17.2 Network coding in bi-directed networks 361
 17.2.1 Single multicast in undirected networks 361
 17.2.2 The linear programming perspective 365
 17.2.3 Single multicast in Internet-like bi-directed networks 366
 17.2.4 Towards tighter bounds 367
 17.2.5 Multiple communication sessions 367
 17.2.6 The source independence property of multicast 368
17.3 Network coding in peer-to-peer networks 369
 17.3.1 Peer-assisted content distribution with network coding 369
 17.3.2 Peer-assisted media streaming with network coding 371
17.4 Conclusions 374

References 375

18 Network economics: neutrality, competition, and service differentiation 378
John Musacchio, Galina Schwartz, and Jean Walrand

18.1 Neutrality 380
 18.1.1 Model 381
 18.1.2 The analysis of one- and two-sided pricing 384
 18.1.3 User welfare and social welfare 386
 18.1.4 Comparison 386
 18.1.5 Conclusions 389
18.2 Competition 390
 18.2.1 Model 392
 18.2.2 Circuit analogy 393
18.3 Service differentiation 398
Acknowledgement 400

References 400
About the editors 403
Index 405