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Introduction

This chapter briefly sketches the historical beginnings of modeling and simulation (M&S).
Although claiming the beginning of anything is simply a matter of convenience, we will
start with the stunning invention of calculus. We then discuss how the steadily increas-
ing performance and decreasing costs of computing have been another critical driver in
advancing M&S. Contributors to the credibility of M&S are discussed, and the preliminary
concepts of verification and validation are mentioned. We close the chapter with an outline
of the book and suggest how the book might be used by students and professionals.

1.1 Historical and modern role of modeling and simulation
1.1.1 Historical role of modeling and simulation

For centuries, the primary method for designing an engineered system has been to improve
the successful design of an existing system incrementally. During and after the system was
built, it would be gradually tested in a number of ways. The first tests would usually be done
during the building process in order to begin to understand the characteristics and responses
of the new system. This new system was commonly a change in the old system’s geometrical
character, materials, fastening techniques, or assembly techniques, or a combination of all
of these changes. If the system was intended to be used in some new environment such as a
longer bridge span, a taller structure, or propelled at higher speeds, the system was always
tested first in environments where the experience base already existed. Often, during the
building and testing process, design or assembly weaknesses and flaws were discovered and
modifications to the system were made. Sometimes a catastrophic failure of a monumental
project would occur and the process would start over: occasionally after attending the
funeral of the previous chief designer and his apprentices (DeCamp, 1995). In ancient
times, chief designers understood the consequences of a major design failure; they had skin
in the game.

After the invention of calculus by Newton and Leibniz around 1700, the mathematical
modeling of physics slowly began to have an impact on concepts for the understanding of
nature and the design of engineered systems. The second key ingredient to have an impact
on mathematical physics was the invention of logarithms by John Napier about 1594 (Kirby
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etal., 1956). A mathematical model is of little practical use until it is exercised, which today
is referred to as obtaining a simulation result. Until the existence and use of logarithms, it
was not practical to conduct simulations on a routine basis. Then, not long after the invention
of logarithms, the slide rule was invented by William Oughtred. This device provided a
mechanical method for adding and subtracting logarithms and enabling rapid multiplication
and division of numbers. The slide rule and mechanical calculators revolutionized not only
simulation, but also such fields as surveying, navigation, and astronomy. Even though by
today’s standards the combination of mathematical theory and computing machines would
be called “Before Computers,” it provided the opportunity for the beginning of massive
changes in science, engineering, and technology.

Starting with the Industrial Revolution, roughly around 1800 in England, the impact
of modeling and simulation on engineering and design began to grow rapidly. However,
during the Industrial Revolution, M&S was always an adjunct to experimentation and
testing of engineered systems, always playing a minor support role. The primary reason
for this was that computations were typically done by hand on a slide rule or mechanical
calculator. By the early 1960s, programmable digital computers began to appear in a wide
number of industrial, academic, and governmental organizations. During this time period,
the number of arithmetic calculations commonly done for a simulation grew from hundreds
or thousands to millions of calculations. It would be reasonable to identify the 1960s as the
beginning of widespread scientific computing. In this book, we restrict the term scientific
computing to the numerical solution of models given by partial differential equations
(PDESs) or integro-differential equations. During the 1960s, computer power reached the
level where scientific computing began to have a significant effect on the design and
decision making of engineered systems, particularly aerospace and military systems. It
is appropriate to view scientific computing as a field within the broader topic of M&S,
which today includes systems that would have, for example, fundamental involvement with
human behavior, such as economic and investment modeling, and individual and social
modeling.

There were a few important exceptions, such as nuclear weapons design in the US, where
scientific computing began to significantly influence designs in the 1940s and 1950s. The
initial impetus for building much faster computers was the Cold War between the US and
the Soviet Union. (See Edwards, 1997 for a perspective of the early history of electronic
computing and their influence.) M&S activities were primarily modeling activities in the
sense that models were simplified until it was realistic to obtain simulation results in an
acceptable time period so as to have an impact on the design of a system or research activity.
Relative to today’s standards, these were extremely simplified models because there was
relatively minimal computing power. This in no way denigrates the M&S conducted during
the 1940s or the century before. Indeed, one could convincingly argue that the M&S
conducted before the 1960s was more creative and insightful than present day scientific
computing because the modeler had to sort carefully through what was physically and
mathematically important to decide what could be ignored. This took great understanding,
skill, and experience regarding the physics involved in the system of interest.
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1.1 Historical and modern role of modeling and simulation 3

One of the most stunning scientific computing articles to appear during the 1960s was
“Computer Experiments in Fluid Dynamics” by Harlow and Fromm (1965). This article,
probably more than any other, planted the seed that scientific computing should be thought
of as the third pillar of science, along with theory and experiment. During the 1970s and
80s, many traditionalists strongly resisted this suggestion, but that resistance faded as the
power of scientific computing became dominant in advancing science and engineering. It
is now widely accepted that scientific computing does indeed provide the third pillar of
science and engineering and that it has its own unique strengths and weaknesses.

From a historical perspective, it should be recognized that we are only beginning to
build this third pillar. One could argue that the pillar of experiment and measurement has
been built, tested, and continually refined since the beginning of the Italian Renaissance
in the 1400s. One could also argue that this pillar has much earlier historical roots with
the Mesopotamian, Egyptian, Babylonian, and Indus Valley civilizations. The pillar of
theory, i.e., theoretical physics, has been built, tested, and refined since the late 1700s.
Understanding the strengths and weaknesses of each of these pillars has not come without
major controversies. For example, the importance of uncertainty estimation in experimental
measurements, particularly the importance of using different measurement techniques, is
well understood and documented. History has shown, even in modern times, the bitter and
sometimes destructive debates that occur when there is a paradigm shift, e.g., the shift
from Newtonian mechanics to relativistic mechanics. In a century or so, when present day
human egos and organizational and national agendas have faded, science and engineering
will admit that the pillar of scientific computing is just now beginning to be constructed. By
this we mean that the weaknesses and failings of all the elements contributing to scientific
computing are beginning to be better understood. More importantly, the weaknesses and
failings are often simply ignored in the quest for publicity and grabbing media headlines.
However, we must learn to balance this youthful enthusiasm and naiveté with the centuries
of experience and errors encountered during the building of the pillars of experiment and
theory.

1.1.2 Changing role of scientific computing in engineering

1.1.2.1 Changing role of scientific computing in design, performance and
safety of engineering systems
The capability and impact of scientific computing has increased at an astounding pace. For
example, scientific simulations that were published in research journals in the 1990s are
now given as homework problems in graduate courses. In a similar vein, what was at the
competitive leading edge in scientific computing applied to engineering system design in
the 1990s is now common design practice in industry. The impact of scientific computing
has also increased with regard to helping designers and project managers improve their
decision making, as well as in the assessment of the safety and reliability of manufactured
products and public works projects. During most of this scientific computing revolution,
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system design and development were based primarily on testing and experience in the
operating environment of the system, while scientific computing was commonly a secondary
contributor in both preliminary and final design. For example, if there was some type of
system failure, malfunction, or manufacturing issue that could not be solved quickly by
testing, scientific computing was frequently called on for assistance and insight. Another
common mode for the use of scientific computing was to reduce the number of design-then-
test-then-redesign iterations that were needed for a product to perform better than competing
products or to meet reliability or safety requirements. Specialized mathematical models for
components or features of components were commonly constructed to better understand
specific performance issues, flaws, or sensitivities of the components. For example, models
were made to study the effect of joint stiffness and damping on structural response modes.
Similarly, specialized mathematical models were built so that certain impractical, expensive,
or restricted tests could be eliminated. Some examples were tests of high-speed entry of a
space probe into the atmosphere of another planet or the structural failure of a full-scale
containment vessel of a nuclear power plant.

As scientific computing steadily moves from a supporting role to a leading role in
engineering system design and evaluation, new terminology has been introduced. Termi-
nology such as virtual prototyping and virtual testing is now being used in engineering
development to describe scientific computing used in the evaluation and “testing” of new
components and subsystems, and even entire systems. As is common in the marketing
of anything new, there is a modicum of truth to this terminology. For relatively simple
components, manufacturing processes, or low-consequence systems, such as many con-
sumer products, virtual prototyping can greatly reduce the time to market of new products.
However, for complex, high-performance systems, such as gas turbine engines, commer-
cial and military aircraft, and rocket engines, these systems continue to go through a
long and careful development process based on testing, modification, and retesting. For
these complex systems it would be fair to say that scientific computing plays a supporting
role.

The trend toward using scientific computing more substantially in engineering systems
is driven by increased competition in many markets, particularly aircraft, automobiles,
propulsion systems, military systems, and systems for the exploration for oil and gas
deposits. The need to decrease the time and cost of bringing products to market is intense.
For example, scientific computing is relied on to reduce the high cost and time required
to test components, subsystems, and complete systems. In addition, scientific computing
is used in the highly industrialized nations of the world, e.g., the US, European Union,
and Japan, to improve automated manufacturing processes. The industrialized nations
increasingly rely on scientific computing to improve their competitiveness against nations
that have much lower labor costs.

The safety aspects of products or systems also represent an important, sometimes dom-
inant, element of both scientific computing and testing. The potential legal and liability
costs of hardware failures can be staggering to a company, the environment, or the public.
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1.1 Historical and modern role of modeling and simulation 5

This is especially true in the litigious culture of the US. The engineering systems of interest
are both existing or proposed systems that operate, for example, at design conditions, off-
design conditions, misuse conditions, and failure-mode conditions in accident scenarios.
In addition, after the terrorist attacks on September 11, 2001, scientific computing is now
being used to analyze and improve the safety of a wide range of civil systems that may
need to function in hostile environments.

Scientific computing is used in assessing the reliability, robustness, and safety systems
in two rather different situations. The first situation, which is by far the most common, is
to supplement test-based engineering; for example, to supplement crash worthiness testing
of automobiles to meet federal safety regulations. In fact, crash worthiness has become
so important to some customers that automobile manufactures now use this feature in
marketing their products. The second situation is to depend almost entirely on scientific
computing for reliability, robustness, and safety assessment of high-consequence systems
that cannot be tested in fully representative environments and scenarios; for example, failure
of a large-scale dam due to an earthquake, explosive failure of the containment building
of a nuclear power plant, underground storage of nuclear waste, and a nuclear weapon
in a transportation accident. These types of high-consequence system analyses attempt to
predict events that very rarely, if ever, occur subject to the design and intent of the system.
That is, scientific computing is used to assess the reliability, robustness, and safety of
systems where little or no direct experimental data exists.

For these types of situation, the burden of credibility and confidence that is required of
scientific computing is dramatically higher than when scientific computing supplements
test-based engineering. However, at this relatively early stage in the development of scien-
tific computing, the methodologies and techniques for attaining this high level of credibility
are not well developed, nor well implemented in engineering and risk assessment practice.
Major improvements need to be made in the transparency, understandability, and maturity
of all of the elements of scientific computing so that risk-informed decision making can be
improved. Stated differently, decision makers and stakeholders need to be informed of the
limitations, weaknesses, and uncertainties of M&S, as well as the strengths. The needed
improvements are not just technical, but also cultural.

1.1.2.2 Interaction of scientific computing and experimental investigations

Interactions of scientific computing and experimental investigations have traditionally been
very much one-way; from experiments to scientific computing. For example, experimental
measurements were made and then mathematical models of physics were formulated,
or experimental measurements were used to assess the accuracy of a simulation result.
Given the limited capabilities of scientific computing until recently, this was an appropriate
relationship. With the dramatic improvements in computing capabilities, however, the
relationship between scientific computing and experiment is in the midst of change, although
the changes have been slow and sometimes painful. When viewed from a historical as well
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6 Introduction

as human perspective, the slow rate of change is perhaps understandable. Building the third
pillar of science and engineering is viewed by some with vested interests in the established
pillars of theory and experiment as a competitor, or sometimes a threat for resources and
prestige. Sometimes the building of the scientific computing pillar is simply ignored by
those who believe in the validity and preeminence of the established pillars. This view
could be summarized as “Stay out of my way and don’t expect me to change the way that
I have been conducting my research activities.” This attitude seriously undermines and
retards the growth of scientific computing and its positive impact on science, engineering,
and technology.

The fields of computational fluid dynamics (CFD) and computational solid mechanics
(CSM) have pioneered many of the theoretical, practical, and methodological developments
in scientific computing. The relationship between experiment and scientific computing in
each of these fields, however, has been quite different. In CSM, there has been a long term
and consistent tradition of a constructive and symbiotic relationship. Because of the nature
of the physics modeled, CSM is fundamentally and critically dependent on experimental
results for the construction of the physics models being used. To give a simple example,
suppose one is interested in predicting the linear elastic modes of a built-up structure,
e.g., a structure that is constructed from a number of individual beams that are fastened
together by bolts. A mathematical model is formulated for the elastic beams in the structure
and the joints between the beams are simply modeled as torsional springs and dampers.
The stiffness and damping of the joints are treated as calibrated model parameters, along
with the fluid dynamic and internal damping of the structure. The physical structure is
built and then tested by excitation of many of the modes of the structure. Using the
results of the experimental measurements, the stiffness and damping parameters in the
mathematical model are optimized (calibrated) so that the results of the model best match
the measurements of the experiment. It is seen in this example that the computational model
could not be completed, in a practical way, without the experimental testing.

The relationship between experiment and CFD has not always been as collegial. Very
early in the development of CFD, an article was published entitled “Computers vs. Wind
Tunnels” (Chapman et al., 1975). This article by influential leaders in CFD set a very
negative and competitive tone early on in the relationship. One could certainly argue that
the authors of this article simply gave voice to the brash claims of some CFD practitioners
in the 1970s and 80s, such as “Wind tunnels will be used to store the output from CFD
simulations.” These attitudes often set a competitive and frequently adversarial relationship
between experimentalists and CFD practitioners, which has led to a lack of cooperation
between the two groups. Where cooperation has occurred, it seems as often as not to have
been due to small research teams forming voluntarily or in industrial settings where engi-
neering project needs were paramount. There were several early researchers and technology
leaders who properly recognized that such competition does not best serve the interests
of either CFD practitioners or experimentalists (Bradley, 1988; Marvin, 1988; Neumann,
1990; Mehta, 1991; Dwoyer, 1992; Oberkampf and Aeschliman, 1992; Ashill, 1993; Lynch
et al., 1993; Cosner, 1994; Oberkampf, 1994).
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1.1 Historical and modern role of modeling and simulation 7

As will be discussed at length in this book, the most efficient and rapid progress in
scientific computing and experiment is obtained through a synergistic and cooperative
environment. Although this may seem obvious to proponents in this viewpoint, there have
been, and will remain, human and organizational attitudes that will work against this type of
environment. There will also be practical issues that will hinder progress in both simulation
and experiment. Here, we mention two examples of practical difficulties: one related to
simulation and one related to experiment.

It is a commonly held view among scientific computing practitioners that comparison of
computational results and experimental results, commonly referred to as the validation step,
can be accomplished through comparison to existing data. These data are normally docu-
mented in corporate or institute reports, conference papers, and archival journal articles.
Our experience, and that of many others, has shown that this approach is commonly less
quantitative and precise than desired. Almost invariably, critical details are missing from
published data, particularly for journal articles where discussion is limited in the interest of
reducing article length. When important details, such as precise boundary conditions and
initial conditions, are missing, the scientific computing practitioner commonly uses this
lack of knowledge as freedom to adjust unknown quantities to obtain the best agreement
with experimental data. That is, the comparison of computational results with experimental
data begins to take on the character of a calibration of a model, as opposed to the evalua-
tion of the predictive accuracy of the model. Many scientific computing practitioners will
argue that this is unavoidable. We disagree. Although this calibration mentality is prevalent,
an alternative methodology can be used which directly addresses the uncertainties in the
simulation.

An important practical difficulty for experimentalists, particularly in the US, is that, with
the rapid increase in the visibility and importance of simulation, many funding sources for
experimental activities have evaporated. In addition, the attitude of many funding sources,
both governmental and industrial, is that simulation will provide all of the important
breakthroughs in research and technology, not experimental activities. This attitude over
the last two decades has produced a decrease in the number of experimental research
projects, including funding for graduate students, and a dramatic decrease in the number
of experimental facilities. Also, with restricted funding for experimental activities, there is
less research into the development of new experimental diagnostic techniques. We believe
this has had an unintended detrimental effect on the growth of simulation. That is, with less
high-quality experimental data available for validation activities, the ability to critically
assess our computational results will decrease, or worse, we will have a false sense of
confidence in our simulations. For example, major efforts are being initiated in multi-scale
and multi-physics modeling. This type of modeling commonly bridges at least two spatial
scales. Spatial scales are usually divided into the macro-scale (e.g., meter scale), the
meso-scale (e.g., millimeter scale), the micro-scale (e.g., the micrometer scale), and the
nano-scale (e.g., nanometer scale). The question that arises in mathematical model building
or validation is: what new diagnostic techniques must be developed to obtain experimental
data at multiple scales, particularly the micro- and nano-scales?
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1.1.3 Changing role of scientific computing in various fields of science

Beginning around the 1960s, scientific computing has had an ever-increasing impact on
a wide number of fields in science. The first that should be mentioned is computational
physics. Although there is significant overlap between computational physics and compu-
tational engineering, there are certain areas of physics that are now dominated by simu-
lation. Some examples are nuclear physics, solid state physics, quantum mechanics, high
energy/particle physics, condensed matter physics, and astrophysics.

A second major area where simulation has become a major factor is environmental
science. Some of the environmental areas where simulation is having a dominant impact
are atmospheric science, ecology, oceanography, hydrology, and environmental assessment.
Atmospheric science has received worldwide attention with the debate over global warming.
Environmental assessment, particularly when it deals with long-term, underground storage
of nuclear waste, has also achieved very high visibility. The predictions in fields such
as global warming and underground storage of nuclear waste are extremely challenging
because large uncertainties are present, and because the prediction time scales are on the
order of tens of centuries. The accuracy of these predictions cannot be confirmed or falsified
for many generations. Because of the widespread, potentially catastrophic effects studied
in environmental science, the credibility of computational results is being scrutinized far
more closely than in the past. Computational results can affect public policy, the well-
being of entire industries, and the determination of legal liability in the event of loss of
life or environmental damage. With this major level of impact of computational results,
the credibility and uncertainty quantification in these areas must be greatly improved and
standardized. If this is not done, hubris and the political and personal agendas of the
participants will take precedence.

1.2 Credibility of scientific computing
1.2.1 Computer speed and maturity of scientific computing

The speed of computers over the last 50 years has consistently increased at a rate that
can only be described as stunning. Figure 1.1 shows the increase in computing speed of
the fastest computer in the world, the 500th fastest computer, and the sum of computing
speed of the 500 fastest computers in the world as of November 2008. As can be seen, the
speed of the fastest computer has consistently increased by roughly a factor of 10 every
four years. Over the last few decades, many predicted that this rate of increase could not be
maintained because of physics and technology constraints. However, the computer industry
has creatively and consistently found ways around these hurdles and the steady increase in
computing speed has been the real engine behind the increasing impact of computational
simulation in science and engineering.

Measuring computer speed on the highest performance computers is done with a very
carefully crafted set of rules, benchmark calculations, and performance measurements.
Many people, particularly non-technically trained individuals, feel that computer speed
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Figure 1.1 Computing speed of the 500 fastest computers in the world (Top500, 2008). See color
plate section.

is directly related to maturity and impact of scientific computing. There is a relationship
between computer speed and maturity and impact, but it is far from direct. Maturity of
scientific computing clearly relates to issues such as credibility, trust, and reliability of the
computational results. Impact of scientific computing relies directly on its trustworthiness,
in addition to many other issues that depend on how the computational results are used.
In industry, for example, some of the key perspectives are how scientific computing can
reduce costs of product development, its ability to bring new products to market more
quickly and improve profitability or market share, and the usability of results to improve
decision making. In government, impact might be measured more in terms of how scientific
computing improves risk assessment and the understanding of possible alternatives and
unintended consequences. In academia, impact is measured in terms of new understanding
and knowledge created from computational results.

In 1986, the US National Aeronautics and Space Administration (NASA) requested
and funded a study conducted by the National Research Council to study the maturity
and potential impact of CFD (NaRC, 1986). This study, chaired by Richard Bradley,
was one of the first to examine broadly the field of CFD from a business and economic
competitiveness perspective. They sent questionnaires to a wide range of individuals in
industry and government to evaluate the maturity of CFD. Although they specifically
examined CFD, we believe their high-level analysis is equally applicable to any field in
scientific computing. In this study, the committee identified five stages of maturity of
predictive capability. These stages, along with their descriptive characteristics, are:

* Stage 1: Developing enabling technology — scientific papers published, know-how developed.

® Stage 2: Demonstration and confidence building — limited pioneering applications, subject to
surprise.

¢ Stage 3: Putting it all together — major commitment made, gradual evolution of capability.
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* Stage 4: Learning to use effectively — changes the engineering process, value exceeds expectations,
skilled user groups exist.

* Stage 5: Mature capability — dependable capability, cost effective for design applications, most
analyses done without supporting experimental comparisons.

Using these descriptors for the various stages, the individuals ranked the maturity according
to a matrix of elements. The matrix was formed on one side by increasing levels of
complexity of the modeling approach to CFD, and on the other by increasing levels of
complexity of engineering systems that would be of interest. A score of 0 meant that
scientific papers have not been published and know-how has not been developed for that
particular element in the matrix. A score of 5 meant that a mature capability existed — most
analyses done without supporting experimental comparisons. What they found was, rather
surprisingly, that depending on the model complexity and on the system complexity, the
scores ranged from O to 5 over the matrix.

One would imagine that if the survey were conducted today, 20 years after the original
survey, the maturity levels would be higher for essentially all of the elements in the matrix.
However, there would still be a very wide range of scores in the matrix. Our point is
that even within a well-developed field of scientific computing, such as CFD, the range of
maturity varies greatly, depending on the modeling approach and the application of interest.
Claims of high maturity in CFD for complex systems, whether from commercial software
companies or any other organization, are, we believe, unfounded. Companies and agencies
that sell programs primarily based on colorful graphics and flashy video animations have
no skin in the game. We also claim that this is the case in essentially all fields of scientific
computing.

1.2.2 Perspectives on credibility of scientific computing

People tend to think that their perspective on what is required for credibility or believability
of an event or situation is similar to most other individuals. Broader experience, however,
shows that this view is fundamentally mistaken. With regard to the present topic of scientific
computing, there exists a wide range of perspectives regarding what is required for various
individuals to say, “I believe this simulation is credible and I am comfortable making the
needed decision.” In human nature, a key factor in decision making is the heavier weighting
on downside risk as opposed to upside gain (Tversky and Kahneman, 1992; Kahneman
and Tversky, 2000); that is, a person’s loss, pain, or embarrassment from a decision is
weighed much more heavily than the expected gain. For example, when a decision must
be made based on the results from a simulation, the individual’s perspective is weighted
more heavily toward “What are the personal consequences of a poor decision because of a
deficient or misleading simulation?” as opposed to “What are the personal gains that may
result from a successful simulation?” If there is little downside risk, however, individuals
and organizations can more easily convince themselves of the strengths of a simulation
than its weaknesses. When an analyst is conducting the simulation, they will normally
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