THE DARK MATTER PROBLEM

A Historical Perspective

Most astronomers and physicists now believe that the matter content of the Universe is dominated by dark matter: hypothetical particles which interact with normal matter primarily through the force of gravity. Though invisible to current direct detection methods, dark matter can explain a variety of astronomical observations. This book describes how this theory has developed over the past 75 years, and why it is now a central feature of extragalactic astronomy and cosmology.

Current attempts to directly detect dark matter locally are discussed, together with the implications for particle physics. The author comments on the sociology of these developments, demonstrating how and why scientists work and interact. Modified Newtonian Dynamics (MOND), the leading alternative to this theory, is also presented.

This fascinating overview will interest cosmologists, astronomers, and particle physicists. Mathematics is kept to a minimum, so the book can be understood by non-specialists.

ROBERT H. SANDERS is Professor Emeritus at the Kapteyn Astronomical Institute, Groningen, the Netherlands. He has worked in the field of dark matter for many years.

THE DARK MATTER PROBLEM

A Historical Perspective

ROBERT H. SANDERS Kapteyn Astronomical Institute, Groningen

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521113014

© R. Sanders 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2010 First paperback edition 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Sanders, Robert H.

The dark matter problem : a historical perspective / Robert H. Sanders.

p. cm. Includes bibliographical references and index.

ISBN 978-0-521-11301-4

1. Dark matter (Astronomy)–History. I. Title. QB791.3.S25 2010 523.1'126–dc22 2010004532

ISBN 978-0-521-11301-4 Hardback ISBN 978-1-107-67718-0 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-11301-4 — The Dark Matter Problem Robert H. Sanders Frontmatter <u>More Information</u>

Contents

	Acknowledgements		<i>page</i> vii	
1	Intro	Introduction		
2	Early history of the dark matter hypothesis		11	
	2.1	Prehistory	11	
	2.2	Zwicky and the modern concept of dark matter	12	
	2.3	Dark matter on galaxy scales	15	
	2.4	Radio astronomy: a new tool for galactic astronomy	20	
	2.5	Finzi sums it up	23	
3	The stability of disk galaxies: the dark-halo solution			
	3.1	Building disk galaxies: too hot to be real	26	
	3.2	Dark halos to the rescue	30	
	3.3	Larger implications	34	
4	Direct evidence: extended rotation curves of spiral galaxies		38	
	4.1	Radio telescopes: single-dish and interferometers	38	
	4.2	Early results of single-dish neutral hydrogen observations	44	
	4.3	Early observations of spiral galaxies with radio		
		interferometers	48	
	4.4	Flat rotation curves: perception approaches reality	51	
5	The maximum-disk: light traces mass			
	5.1	Reaction follows revolution	57	
	5.2	The anomaly exists beyond the visible disk	62	
	5.3	Low-surface-brightness galaxies and sub-maximal disks	65	
	5.4	Reflections on observations of rotation curves	67	
6	Cosmology and the birth of astroparticle physics		69	
	6.1	A brief history of modern cosmological models	69	
	6.2	Structure formation: dark matter again to the rescue	72	
	6.3	Some like it hot, most like it cold, all like it in the pot 10 billion	l	
		years old	76	

© in this web service Cambridge University Press & Assessment

vi		Contents	
	6.4	What is the matter?	80
	6.5	A new paradigm: standard CDM	84
7	Clust	ters revisited: missing mass found	87
	7.1	The reality of the cluster discrepancy	87
	7.2	Hot gas in clusters of galaxies	88
	7.3	Gravitational lensing: a new method for probing cluster	
		mass distribution	93
	7.4	The Bullet	98
8	CDM confronts galaxy rotation curves		101
	8.1	What do rotation curves require of dark matter?	101
	8.2	Global scaling relations	105
	8.3	Structure formation in a CDM universe	106
	8.4	The mass distribution in CDM dark halos	109
	8.5	Substructure in CDM halos	113
	8.6	The Tully–Fisher law	115
	8.7	Can CDM be falsified by galaxy phenomenology?	117
9	The 1	new cosmology: introducing dark energy	119
	9.1	The accelerated expansion of the Universe	119
	9.2	COBE finds the primordial fluctuations	124
	9.3	What do we see in the CMB?	125
	9.4	Boomerang to WMAP: the age of precision cosmology	127
	9.5	Reflections	130
10	An a	Iternative to dark matter: modified Newtonian dynamics	132
	10.1	Naive modifications of Newtonian attraction	132
	10.2	MOND	133
	10.3	MOND and hot galaxies	138
	10.4	MOND and rotation curves	140
	10.5	The problem of clusters	143
	10.6	Relativistic MOND: TeVeS	144
	10.7	Summing up: MOND vs. dark matter	147
11	Seeir	ng dark matter: the theory and practice of detection	150
	11.1	Non-gravitational detection of dark matter	150
	11.2	The practice of direct detection	152
	11.3	Indirect detection of dark matter	159
	11.4	Light on dark matter: the story so far	165
12	Refle	ections: a personal point of view	166
	Appe	ndix Astronomy made simple	173
	References		195
	Index		202

Acknowledgements

The task of describing the historical development of the dark matter problem would have been much more difficult without the assistance of a number of colleagues and old friends. In the first place I thank Mort Roberts for numerous conversations and emails on the events surrounding the early observations of spiral-galaxy rotation curves. The insights of such a major participant in these developments have been a treasure house, although I hasten to add that the conclusions drawn here from these insights (particularly concerning matters of priority) have been entirely my own.

Throughout the years I have benefited from uncountable conversations with my Groningen colleagues, Renzo Sancisi and Tjeerd van Albada, on the interpretation of the observations of rotation curves. I deeply value this contact, and their numerous useful suggestions contributed both to the content and presentation of this book. I have also benefited enormously from collaborations with generations of Groningen students: Kor Begeman, Adrick Broeils, Marc Verheijen, Edo Noordermeer, and Rob Swaters. We have spent many hours together looking at and discussing rotation curves of galaxies ranging from faint dwarfs (barely a smudge on the photographic plate) to those of giant luminous spiral systems. Altogether, in their objective and critical way, they have formed my view of the phenomenology.

There is nothing like a discussion with a critical but well-meaning colleague and friend to clarify ideas and sharpen arguments. In this regard I am very grateful to Jacqueline van Gorkom for chats about the sociology of rotation-curve observers and the philosophy of science. I also thank Rien van de Weygaert and Saleem Zaroubi for attempting to fill in the many gaps in my knowledge of cosmology and structure formation, particularly with respect to the historical developments in this field.

Moti Milgrom and Stacy McGaugh have commented on several of the chapters here, and, as always, their remarks are perceptive and helpful. For me it

viii

Acknowledgements

has been a special privilege to have known and worked with Moti, Stacy and Jacob Bekenstein during the past quarter-century; they are creative and bold scientists.

I would like to thank Vince Higgs and his colleagues at Cambridge University Press for their constant help and many useful suggestions.

Further I am very grateful to Stefano Casertano, Jacob Bekenstein, and especially the French translator, Benoit Clenet, for pointing out embarrassingly many omissions, ambiguities and errors in the first printing of this book.

Finally, I thank my wife, Christine, for her patience and for coming to terms with our different dreams of retirement.