THE POTATO IN THE HUMAN DIET
The potato in the human diet

JENNIFER A. WOOLFE
with contributions from Susan V. Poats

Published in collaboration with
INTERNATIONAL POTATO CENTER

CAMBRIDGE UNIVERSITY PRESS
Cambridge
London New York New Rochelle
Melbourne Sydney
Contents

Preface xi
Acknowledgements xiii
Abbreviations and terms xv
Introduction 1
Current and future roles 1
Misconceptions and a remedy 3
An outline of the book 3
References 6

1 Structure of the potato tuber and composition of tuber dry matter 7
Structure of the tuber 7
Dry matter 8
Carbohydrates 10
Nitrogen 12
Lipids 12
Enzymes 13
Organic acids 14
Pigments 14
Vitamins 15
Ash 16
Concluding remarks 16
References 16

2 The nutritional value of the components of the tuber 19
Dry matter 23
Energy and protein 24
Energy value 24
Protein content 30
Dietary fibre 38
Vitamins 40
Factors affecting contents 40
Contribution to the diet 44
vi

Contents

Minerals and trace elements 47
Factors affecting contents 48
Contribution to the diet 48
Summary 51
References 54

3 Protein and other nitrogenous constituents of the tuber 58
 Part 1. Composition of tuber nitrogen 58
 Factors affecting total tuber nitrogen 58
 Constituents 60
 Soluble protein 61
 Non-protein nitrogen 62
 Amino acid composition of the whole tuber 64
 Part 2. Nutritive value of tuber nitrogen 66
 Amino acid analyses and scores 66
 Microbiological assays and animal feeding experiments 68
 Human feeding experiments 71
 Adults 71
 Children 72
 Comments on protein contribution from potatoes 74
 Part 3. Potato protein from processing waste 75
 Reasons for waste production 75
 Protein recovery 76
 Nutritional value 76
 Use in food for humans 77
 References 78

4 Effects of storage, cooking and processing on the nutritive value of potatoes 83
 Part 1. Storage 85
 Storage conditions 85
 Changes in potato nutrients as a result of storage 90
 Carbohydrates 90
 Nitrogenous constituents 90
 Fibre 93
 Vitamins 93
 Minerals 98
 Comments on nutritional changes due to storage 99
 Part 2. Main methods of domestic preparation 100
 Peeling 100
 Nutritional aspects 101
 Distribution of nutrients in the tuber 101
 Boiling unpeeled versus peeled potatoes 103
 Moisture 104
 Carbohydrate 104
 Nitrogenous constituents 106
Contents

Fibre 107
Vitamins 107
Minerals 110
Other domestic methods of potato preparation 110
Nitrogenous constituents 111
Fibre 112
Vitamins 112
Minerals 116
Comments on nutritional changes during domestic cooking 117

Part 3. Processing

Large-scale processing 118
Pre-peeled potatoes 119
Frozen potato products 123
Potato chips (crisps) 128
Dehydrated potato products 131
Canned potatoes 136
Comments on nutritional changes during processing 139
Traditional processing 143
Production of chuño 144
Papa seca 148
Nutritive value of traditionally dried potato products 149

Part 4. Summary

References 152

5 Glycoalkaloids, proteinase inhibitors and lectins

Glycoalkaloids 162
Chemical structure and content in tuber 162
Physiological functions 169
Effect on potato flavour 170
Accumulation 172
Toxicity 177
Control of accumulation 179
Proteinase inhibitors 181
Chemical structure and functions 181
Nutritional significance 183
Lectins 184
Summary 185
References 186

6 Patterns of potato consumption in the tropics

Calculating consumption 191
Food balance sheets 192
Nutrition surveys 194
Consumer surveys and consumer groups 195
Results of consumer surveys in selected countries 199
Indonesia 199
Contents

Rwanda 202
Guatemala 203
Peru 204
How and why potatoes are consumed 206
A typology of potato consumption 208
Consumption role and potato price 209
Other factors influencing potato consumption 211
Prospects 214
Potential for changes in consumption roles 214
Processing 215
Weaning foods 217
The place of potatoes in vegetable production 220
Conclusions 220
References 221
Index 222
‘Oh, it will not bear polish, the ancient potato
Needn’t be nourished by Caesars, will blow anywhere
Hidden by nature, counted-on, stubborn and blind.
You may have noticed the bush it pushes to air,
Comical, delicate, sometimes with second-rate flowers
Awkward and milky and beautiful only to hunger.’

Richard Wilbur, *The beautiful changes and other poems*
(Harcourt, Brace, Jovanovich Inc., 1947)
Preface

The idea for this book arose from the large number of requests to the International Potato Center (Centro Internacional de la Papa) for information on consumption and nutritional aspects of potatoes. There was clearly a need for an up-to-date review, particularly in respect of developing countries. Within its mandate to disseminate information on potatoes, the International Potato Center funded this review of the potato’s nutritional value. The work was part of a larger three-year project on potato consumption and utilization in developing countries carried out by Dr Susan Poats.

Over 700 titles concerning various aspects of the potato as a food were collected, and Chapters 1 to 5 survey this literature. Because there are few data available on potato consumption in developing countries, Chapter 6 presents the results of some case studies in the tropics by Dr Poats.

I hope that the book provides useful information for, and stimulus to, the work of all those concerned with the greater exploitation of the potato as a food contributing significantly to the health and well-being of humankind. It may also be of value to the interested casual reader who simply wishes to learn more about the dietary role of potatoes.

January 1986

J.A.W.
Acknowledgements

My thanks are due primarily to the main contributor to this book, Dr Susan Poats. She inspired the idea of the book, helped to plan much of the initial outline, and was responsible for much of Chapter 5 and many of the photographs, which she took whilst employed by the International Potato Center. She also allowed me to use her findings on potato consumption, which were the fruit of several years work, for Chapter 6.

Mrs Carla Fjeld made helpful comments on the style of the manuscript and provided very useful ideas for Chapter 2. Her inspiring sense of enthusiasm and her encouragement during the final part of preparing the review are greatly appreciated.

I am particularly grateful to Professor Arnold Bender and Dr Glynn Burton for reading the manuscript. Their numerous expert comments, corrections and suggestions have enabled me to improve both its style and content.

Thanks are also due to Ms Kerstin Olsson for reading, and providing useful comments on, that part of Chapter 5 dealing with potato glyco-alkaloids, and to Dr Robert Booth and Mr Peter Keane for reading, and commenting on, Chapter 4.

I acknowledge the tremendous amount of time and assistance which the library staff of the International Potato Center has given to this project. In particular I thank Ms Carmen de Podestá, Ms Cecilia Ferreyra and Mr Feliciano Orellana for their unfailing patience with my requests for documents. I am also grateful to Ms Paulette George and the Post Harvest Institute for Perishables for their assistance with literature searches and provision of some documents unavailable in Peru.

This work was carried out as part of the activities of the Social Science Department of the International Potato Center. I would like to express my gratitude to the head of department, Dr Douglas Horton, for his
xiv Acknowledgements

continual support, interest and enthusiasm throughout the preparation of this publication, and to the secretarial staff for the time and patience they devoted to typing the manuscript.

Thanks are also due to Mrs Sandi Irvine for editing, and to Dr Lilo Schilde and Dr Peter Schmiediche for translation of German documents into English, to Dr Orville Page and Dr José Valle Riestra for reading and commenting on parts of the manuscript, to Ms Jésus Chang and Mr Abel Mondragón for help with choosing and preparing the photographs, and to Ms Linda Peterson and other friends and colleagues at the International Potato Center who have contributed with suggestions and help.
Abbreviations and terms

AIS-N: alcohol-insoluble nitrogen
DM: dry matter
DWB: dry weight basis
FAO: Food and Agriculture Organization
FBS: food balance sheet
FWB: fresh weight basis
LSG: low specific gravity
HSG: high specific gravity
N: nitrogen
NDpCal%: net dietary protein calories percentage
NDpER: net dietary protein energy ratio (0.01 × NDpCal%)
NPN: non-protein nitrogen
PPC: potato protein concentrate
RDA: recommended daily allowance
USRDA: United States recommended daily allowance
WHO: World Health Organization

Biological value (BV): the proportion of absorbed nitrogen which is retained in the body for maintenance and/or growth.
Chemical or protein score: the limiting amino acid in a test protein expressed as a percentage of the same amino acid in a standard (egg or a reference protein)
Essential amino acid index (EAA index): the geometric mean of the ratios of the essential amino acids in a protein to those of a standard (usually egg protein).
Protein efficiency ratio (PER): weight gain per weight of protein eaten (usually measured for rats).