6. ELEMENTS OF SPATIAL STRUCTURE
CAMBRIDGE GEOGRAPHICAL STUDIES

1 Urban Analysis, B. T. Robson
2 The Urban Mosaic, D. W. G. Timms
3 Hillslope Form and Process, M. A. Carson and M. J. Kirkby
4 Freight Flows and Spatial Aspects of the British Economy, Michael Chisholm and Patrick O'Sullivan
5 The Agricultural Systems of the World, D. B. Grigg
Elements of spatial structure
A QUANTITATIVE APPROACH

ANDREW D. CLIFF
Fellow of Christ’s College, Cambridge; University Lecturer in Geography
University of Cambridge

PETER HAGGETT
Professor of Urban and Regional Geography, University of Bristol

J. KEITH ORD
Senior Lecturer in Statistics, University of Warwick

KEITH A. BASSETT
Lecturer in Geography, University of Bristol

RICHARD B. DAVIES
Lecturer in Planning, University of Wales Institute of Science and Technology

CAMBRIDGE UNIVERSITY PRESS
Cambridge
London · New York · Melbourne
Contents

List of figures x List of tables xv Acknowledgements xvii

1 Introduction
 1.1 Orientation .. 1
 1.2 Organisation of the book 2
 1.2.1 Static aspects of regional structure 2
 1.2.2 Dynamic aspects of regional structure 2
 1.2.3 Autocorrelation and forecasting 3
 1.3 Continuing research 3

PART ONE: STATIC ASPECTS OF REGIONAL STRUCTURE

2 Regions as combinatorial structures 7
 2.1 Introduction ... 7
 2.2 The size of the region-building problem 7
 2.3 Finding the ‘best’ regional grouping 17
 2.3.1 A measure of efficiency 17
 2.3.2 Locating max (ω_m) 20
 2.4 An example .. 21
 2.5 Combining alternative region-building strategies: a graphtheoretic approach 23
 2.5.1 An illustration 23
 2.5.2 Evaluation 26
 2.6 Conclusion ... 27

3 Regions as ordered series 29
 3.1 Introduction .. 29
 3.2 Processes of mosaic formation 31
 3.2.1 Alternative approaches 31
 3.2.2 A random regional-decision process 31
Contents

3.3 The Whitworth and Cohen models 32
3.4 Estimation and testing procedures 34
3.5 Regional applications of the Whitworth–Cohen models 37
3.5.1 Three-county mosaic 37
3.5.2 England and Wales 38
3.6 Comparison with other stochastic models 41
3.6.1 Zipf's rank–size model 42
3.6.2 The negative binomial model 47
3.6.3 Random mosaics 47
3.7 Conclusions 48

4 Regions as surfaces 49
4.1 Introduction 49
4.2 Surface generalisation 49
4.2.1 Some alternative approaches 49
4.2.2 Polynomial regression models 51
4.3 The nature of the surface model 51
4.4 Use and problems of the polynomial surface model 54
4.4.1 Applications in regional studies 54
4.4.2 Problems and developments 55
4.4.3 Problems of inter-surface comparison 56
4.5 Comparison of regional structures using the trend surface model 58
4.5.1 Scale and orientation problems 58
4.5.2 Dependence among the coefficients 64
4.6 An alternative 65
4.7 Conclusions 69

PART TWO: DYNAMIC ASPECTS OF REGIONAL STRUCTURE

5 Spatial comparison of time series: a framework 73
5.1 Introduction 73
5.2 Identifying components in time series 74
5.2.1 The analysis of time series by factor analytic methods 74
5.2.2 Autocorrelation, Fourier, and spectral analysis 77
5.3 Approaches involving the separation of specified components 79
5.4 Summary and conclusions 81

6 Spatial comparison of time series: I. Contagious processes 83
6.1 Introduction 83
6.2 Nature of the data 83

vi
Contents

6.2.1 Registrar General’s *Weekly Return* 84
6.2.2 Characteristics of the measles data 84
6.2.3 The space—time framework 84
6.3 Cornwall: periodicity of individual time series 86
6.3.1 Characteristics of the Fourier sample spectrum 86
6.3.2 An illustration 87
6.3.3 Results of analysis for unclipped data \([S(f) \text{ spectra}]\) 89
6.3.4 Comparison of \(S(f)\) spectra with \(S'(f)\) spectra 89
6.4 Devon and Cornwall: time-lag relationships within a region 93
6.5 South-West England: space-lag relationships within a region 96
6.5.1 Measurement of spatial lags 96
6.5.2 Spatial lag-correlation profiles 98
6.5.3 Location of ‘new’ outbreak areas 101
6.6 Conclusions 103

7 Spatial comparison of time series: II. Unemployment in South-West England 107
7.1 The area and the data 107
7.2 Background: unemployment cycles in Britain and the South-West 109
7.2.1 Lapses at particular times 110
7.2.2 Lapses in particular places 112
7.3 The classification of unemployment patterns in South-West England 113
7.3.1 Spectral and cross-spectral analysis 113
7.3.2 The separation and measurement of components by filtering and regression methods 122
7.3.3 A model of cyclical and structural components of regional unemployment 128
7.3.4 A regression model of regional unemployment components 130
7.3.5 An alternative approach to the measurement of structural unemployment 136
7.4 Comments and conclusions 139

PART THREE: AUTOCORRELATION AND FORECASTING

8 Spatial autocorrelation 145
8.1 Introduction 145
8.2 Definition of the problem 146
8.3 Measures of spatial autocorrelation 147

© Cambridge University Press www.cambridge.org
Contents

8.3.1 The choice of weights 148
8.3.2 Measures for nominal data 150
8.3.3 Measures for ordinal and interval-scaled data 151
8.4 Tests of significance 152
8.4.1 Results for the BB and BW statistics 153
8.4.2 Results for I and c 154
8.4.3 Comparison of different measures 154
8.4.4 Analysis of regression residuals 155
8.5 Spatial correlograms 156
8.5.1 Definition of spatial lags 156
8.5.2 The spatial correlogram 158
8.6 The South-West unemployment data 159
8.6.1 Objectives 159
8.6.2 The analysis 161
8.6.3 Summary 163
8.7 The measles data 165
8.7.1 Background and objectives 165
8.7.2 The spatial pattern of outbreaks 167
8.7.3 The time series 173
8.7.4 Summary 180

9 The analysis of regional patterns by nearest-neighbour methods 181
9.1 Introduction 181
9.2 Nearest-neighbour methods applied to binary mosaics 181
9.3 The density function for path lengths 182
9.3.1 First order neighbours: free sampling 183
9.3.2 First order neighbours: non-free sampling 184
9.3.3 Extension to higher-order neighbours 185
9.3.4 Sampling distributions 185
9.4 Power of tests for regular lattices 187
9.5 Analysis of the measles data for Cornwall 188
9.6 Unsolved problems and further research 191

10 Regional forecasting 192
10.1 Introduction 192
10.2 Weighted exponential models 194
10.2.1 Basic form of the model 194
10.2.2 Addition of spatial components 195
10.2.3 Combination of time and space components 196
10.2.4 Empirical tests of the space–time exponential model 196
10.3 Linear models for univariate spatial forecasting 200
10.3.1 The space–time autoregressive model (STAR) 200
Contents

10.3.2 The space–time moving average model (STMA) 201
10.3.3 A general model 202
10.3.4 The exponential smoothing model 203
10.4 Purely spatial models 204
10.5 Models with varying parameters 205
10.5.1 Tests of hypotheses 206
10.5.2 Models for the parameters 207
10.6 Models for separate components 207
10.7 Analysis of unemployment data for South-West England 208
10.7.1 Model identification 209
10.7.2 Model fitting 210
10.7.3 Forecasting performance 213
10.7.4 Conclusions 215

Glossary of notation 219

Appendix I Notifications of measles cases, Cornwall, 1966 (week 40) to 1970 (week 52) 225

Appendix II Monthly unemployment rates per thousand for employment areas in the South-West, 1960–9 239

List of references and author index 249

Subject index 257
Figures

2.1 Alternative aggregations in the four county case under minimum contiguity constraint page 8
2.2 Increase in number of alternative aggregations, A, with increase in number of counties, n 11
2.3 The S/I plane 12
2.4 (A) Values of S and I for totally unconstrained Δ 13
(B) Values of S and I for maximally constrained Δ 13
2.5 Graphs with intermediate forms of Δ 14
2.6 Values of S and I for different values of n for representative structures shown in Figure 2.5 15
2.7 Relationship between ψ, β and ω 20
2.8 (A) County system and county identity numbers 21
(B) System of regions on X_3 for max (ω_m) 21
(C) System of regions on X_3 for min (ω_m) 21
2.9 Values of ψ and β for X_1, X_2, and X_3 in the five county example 22
2.10 Spatial and temporal co-ordinates of twelve centres and minimal spanning trees for various values of λ 24
2.11 (A) Link persistence from $\lambda = 1.00$ (purely spatial strategy) to $\lambda = 0.33$ 26
(B) Link persistence from $\lambda = 0.00$ (purely temporal strategy) to $\lambda = 0.66$ 26
2.12 (A) Mosaic of counties formed by Dirichlet cells about the centres in Figure 2.10(A) 28
(B) Three-region partition (a, b, and c) based on temporal graph [Figure 2.10(C)] 28
(C) Similar partition based on spatial graph [Figure 2.10(F)] 28
(D) Similar partition based on persistent bonds [Figure 2.11] 28
3.1 Rank–size curves for English and Welsh counties (excluding London) on population, area, and rateable value in mid-1968 30
List of figures

3.2 Proportional share sizes for \(n = 2(1)5 \) under the Whitworth model 34
3.3 Examples of each of the four major types of frequency distribution identified in Tables 3.2–3.5 40
4.1 Block diagram of trend surface coefficients 52
4.2 Spatial contribution of each individual term in the cubic trend surface equation 53
4.3 Spatial forms generated by pairs of quadratic terms in trend surface equations 54
4.4 Isarithmic maps of two hypothetical regions to show inversion, dilation and rotation 57
4.5 (A) Array of data for trend surface analysis 59
(B) Alternative orthogonal rotations 59
(C) Profiles of trend surface coefficients with origin at corner \(X \) 59
4.6 Profiles of trend surface coefficients for data shown in Figure 4.5 with origin at centre \(Y \) 61
4.7 Circular trajectory of linear trend surface coefficients with 360° rotation of co-ordinate grid 62
4.8 Effect of varying degree of rotation of the co-ordinate system upon values of the linear trend surface coefficients 63
4.9 (A) Block arrangement of polynomial terms 64
(B) Summary of changes in the positions and signs of the coefficients for orthogonal rotation about a central origin 64
4.10 Isarithmic maps of third-order trend surfaces of low-density housing for fifteen sample metropolitan areas in the United States 66
4.11 Location of fifteen United States metropolitan areas in terms of the relative contribution of linear, quadratic and cubic components to the third-order trend surfaces shown in Figure 4.10 68
4.12 Taxonomic tree for fifteen United States metropolitan areas in terms of their relative locations in Figure 4.11 69
5.1 A schematic, three-dimensional representation of approaches to the factor analysis of a data matrix 75
6.1 Number of GRO areas in the South-West with measles notifications in the 222-week study period 85
6.2 \(S_0(f) \) and \(S_1(f) \) spectra for St Austell RD 88
6.3 Notifications and \(S(f) \) and \(S'(f) \) spectra for Falmouth UD and Stratton RD 90
6.4 Fundamental wavelengths in weeks on the \(S(f) \) spectrum for 19 Cornish GRO’s 91
6.5 Typical cross-correlation functions for three GRO’s 94
6.6 Lead–lag relationships between individual GRO’s in Devon and Cornwall and the South-West reference series 95

© Cambridge University Press www.cambridge.org
List of figures

(A) Relationship based on actual notifications. 95
(B) Relationship based on outbreak/no outbreak criterion 95

6.7 Graph formed by the 27 Cornish GRO areas 96
6.8 Relationship between distance measured as ‘spatial lags’ and the frequency distribution of mileages between the centroids of the Cornish GRO areas 98
6.9 Mean correlation between the time series of all pairs of GRO’s located at each spatial lag 99
6.10 Correlation for each week between all pairs of GRO’s in the South-West at each spatial lag 100
6.11 Alternative definitions of measles epidemic areas for Cornish GRO’s 102
6.12 Changing distribution of measles notifications in GRO areas in South-West England in a four-week sequence (1969 week 52 to 1970 week 3) 104

7.1 Location of the 60 employment exchange areas in the South-West 108
7.2 Percentage unemployment rates for Great Britain, 1923–70; and for Northern Ireland and the South-West, 1954–70 110
7.3 Monthly unemployment rates, 1948–69 for Great Britain, the South-West, Plymouth and Bristol 112
7.4 Representative spectra for unemployment series for Bristol, Plymouth, Dartmouth and Swindon 115
7.5 (A) Percentage of total variance accounted for by the first four wavebands (cyclical components with periods longer than 20 months) 118
(B) Actual variance of cyclical components with periods longer than 20 months 118
(C) Percentage of the total variance accounted for by the seasonal component 119
(D) Percentage of the total variance accounted for by components with periods less than ten months (short run fluctuations) 119

7.6 Location of eight exchange areas in the Bristol region chosen for lag correlation and cross-spectral analysis 120
7.7 Coherences and phase angles for seven unemployment series with respect to Bristol 121
7.8 Percentage of the total variance accounted for by the linear trend component 123
7.9 (A) Spatial variation in the linear trend coefficients 124
(B) Spatial variation in average maximum of the cyclical component, 1960–5 124
(C) Spatial variation in average maximum of the cyclical component, 1966–70 125
(D) Spatial variation in cyclical deterioration 125
List of figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.10</td>
<td>Areas leading the national cycle by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A) six months or more</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>(B) four months or more</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>(C) two months or more, and</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>(D) one month or more</td>
<td>127</td>
</tr>
<tr>
<td>7.11</td>
<td>Spatial variation in cyclical sensitivity</td>
<td>133</td>
</tr>
<tr>
<td>7.12</td>
<td>Spatial variation in structural component, January 1961, as given by equation (7.2)</td>
<td>134</td>
</tr>
<tr>
<td>7.13</td>
<td>Spatial variation in structural component, May 1969, as given by equation (7.2)</td>
<td>135</td>
</tr>
<tr>
<td>7.14</td>
<td>Changes in the structural component in terms of net movement towards zero, 1961–9</td>
<td>135</td>
</tr>
<tr>
<td>7.15</td>
<td>Thirlwall's method for the determination of non-demand deficient unemployment from unemployment and vacancies data</td>
<td>137</td>
</tr>
<tr>
<td>7.16</td>
<td>Classification of employment areas in terms of temporal change in their cyclical ((a_j)) and structural ((d_j)) components</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Pattern of weights for rook's, bishop's and queen's cases</td>
<td>140</td>
</tr>
<tr>
<td>8.2</td>
<td>Lattices used in examples 8.1–8.3</td>
<td>149</td>
</tr>
<tr>
<td>8.3</td>
<td>First, second and third spatial lags for a representative cell in the rook's case</td>
<td>151</td>
</tr>
<tr>
<td>8.4</td>
<td>Locations and exchange identity numbers for 37 employment exchange areas in South-West England</td>
<td>157</td>
</tr>
<tr>
<td>8.5</td>
<td>Locations and identity numbers for the Cornish GRO areas</td>
<td>159</td>
</tr>
<tr>
<td>8.6</td>
<td>Spatial correlograms, weeks 1–50</td>
<td>165</td>
</tr>
<tr>
<td>8.7</td>
<td>Spatial correlograms, weeks 186–204</td>
<td>169</td>
</tr>
<tr>
<td>8.8</td>
<td>Average spatial correlograms, weeks 1–50 and 186–204</td>
<td>170</td>
</tr>
<tr>
<td>8.9</td>
<td>Some group (1) temporal correlograms</td>
<td>171</td>
</tr>
<tr>
<td>8.10</td>
<td>Some group (2) temporal correlograms</td>
<td>175</td>
</tr>
<tr>
<td>10.1</td>
<td>Performance of smoothing model for Truro RD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A) Actual and smoothed pattern of notifications</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>(B) Error in number of notified cases for forecast two weeks ahead</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>(C) Error in two week ahead outbreak/no outbreak forecast</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>(D) Error in eight week ahead outbreak/no outbreak forecast</td>
<td>198</td>
</tr>
<tr>
<td>10.2</td>
<td>Location of pairs of (\lambda) and (\eta) values used in smoothing model</td>
<td>199</td>
</tr>
<tr>
<td>10.3</td>
<td>A four level hierarchy for a regular square lattice</td>
<td>204</td>
</tr>
<tr>
<td>10.4</td>
<td>Autocovariance functions for Gloucester, Weston-super-Mare and Bristol</td>
<td>210</td>
</tr>
<tr>
<td>10.5</td>
<td>Power spectra for Gloucester, Weston-super-Mare and Bristol</td>
<td>211</td>
</tr>
</tbody>
</table>
List of figures

10.6 Cross-covariances between Bristol and Weston-super-Mare, and between Bristol and Gloucester 212
10.7 Cross-spectra between Bristol and Weston-super-Mare, and between Bristol and Gloucester 213
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Alternative aggregations in the region-building problem, $n = 1(1)5$</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Values of ψ_m for alternative aggregations, $n = 1(1)5$</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Data values for the five-county example</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Values for the $n - 1$ link trees mapped in Figure 2.10</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Relative efficiency of alternative linkage strategies</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Range of expected regional shares for Whitworth model</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Testing of Whitworth and Cohen models on data for the administrative divisions of England and Wales: A. Population (mid-1968)</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Testing of Whitworth and Cohen models on data for the administrative divisions of England and Wales: B. Areas (1 April 1968)</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Testing of Whitworth and Cohen models on data for the administrative divisions of England and Wales: C. Rateable values (1968)</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Testing of Whitworth and Cohen models on data for the proposed provinces of England and Wales</td>
<td>43</td>
</tr>
<tr>
<td>3.6</td>
<td>Results of regression analysis of population arrays testing the relative performance of Whitworth and rank−size models</td>
<td>45</td>
</tr>
<tr>
<td>3.7</td>
<td>Contingency table for tests of significance on slope coefficients given in Table 3.6</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>Contingency table for Durbin and Watson d statistics given in Table 3.6</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Calculated trend surface coefficients for sample metropolitan areas in the United States</td>
<td>67</td>
</tr>
<tr>
<td>6.1</td>
<td>Order of spatial lags separating GRO’s in Cornwall</td>
<td>97</td>
</tr>
<tr>
<td>6.2</td>
<td>Pattern of new outbreaks with distance from existing outbreaks</td>
<td>103</td>
</tr>
<tr>
<td>7.1</td>
<td>Average coherences between spectra for the Bristol area</td>
<td>120</td>
</tr>
<tr>
<td>7.2</td>
<td>Average rates of ‘demand-deficient’ and ‘non demand-deficient’ unemployment: selected areas, 1961−9</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>
List of tables

8.1 South-West unemployment data, cartesian co-ordinates of exchanges, and residuals from the trend surfaces 160
8.2 Results of tests for spatial autocorrelation in observed levels of unemployment in the South-West 161
8.3 Trend surface analysis for South-West region unemployment data (January 1967) 162
8.4 Analysis of variance for trend surface study 162
8.5 Results of tests for spatial autocorrelation in South-West unemployment trend surface residuals 164
8.6 Means and standard deviations of z-scores for I, for week groups (1) and (3) 171
8.7 Number of positive and negative standard deviates for I, variable (2), weeks 1–50, at each spatial lag 171
8.8 Observed and expected numbers of urban–urban, rural–rural and urban–rural links at each spatial lag in Cornwall 172
8.9 Number of positive and negative standard deviates for I, variable (2), weeks 186–204, at each spatial lag 173
8.10 Period, (1000/N), (1000/√N), (1/√d), (1/√d) and Pearson’s r for the group (1) GRO’s 178
9.1 Moments of minimum link distances between nearest occupied neighbours in a 100 x 100 regular lattice with 30% occupancies (queen’s case). 186
9.2 Moments of the mean minimum link distances between nearest occupied neighbours in regular lattices with 10% occupancies (queen’s case), based on 800 simulation runs for each lattice size 186
9.3 Estimated power for the join-count and nearest-neighbour test statistics for a 50 x 50 regular lattice with 10% occupancies (based on 200 runs for each case) 189
9.4 Proportion of weeks for which the null hypothesis that GRO areas in Cornwall with measles notifications are randomly distributed through the county is rejected at the 5% level by joint-count and nearest-neighbour test statistics 190
10.1 Forecasting models for South-West unemployment data 214
10.2 Errors in forecasts k = 1, 2, . . . , 6 steps ahead for South-West unemployment data 215
Acknowledgements

It is a pleasure to acknowledge the early interest of the Syndics of Cambridge University Press in this book, and the encouragement we have received from Mr B. H. Farmer of St John’s College.

The material reported in this book was financed in part by a grant from the Social Science Research Council over the period, 1968–72, when all five authors were working at the University of Bristol. Other work completed during the period is published in SSRC Project Report HR-337 (Volumes I to IV inclusive) and in A. D. Cliff and J. K. Ord Spatial Autocorrelation (London: Pion, 1973).

The authors wish to thank the Social Science Research Council for its financial support, and also those research assistants who worked for some period on the project, namely Margaret Cliff (programmer), Linda Campbell, Lindsay Godden, and Mary Norcliffe. They are also indebted to Michael Young and Pamela Lucas (University of Cambridge) and Simon Godden (University of Bristol) for drawing the illustrations. Anne Kempson typed a difficult manuscript with great patience and skill.

In some parts of the book, a few diagrams have been redrawn from papers originally published elsewhere by the authors. We wish to thank the editors of the following journals for permission to reproduce this material: Environment and Planning (Figures 2.1, 2.2, 2.7–2.9, 4.4–4.12); Geografiska Annaler (Figures 2.3, 2.4). The Colston Research Committee gave permission for the redrawing of Figures 7.6 and 7.7 from Regional Forecasting. Finally, we are grateful to the Registrar General for permission to reproduce the data in Appendix I, and to Mr. W. Scott, Regional Controller of the Department of Employment at Bristol for permission to reproduce the data in Appendix II.