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Introduction: basics of QCD perturbation theory

Quantum chromodynamics (QCD) is the theory of strong interactions. This is an exciting
physical theory, whose Lagrangian deals with quark and gluon fields and their interactions.
At the same time, quarks and gluons do not exist as free particles in nature but combine
into bound states (hadrons) instead. This phenomenon, known as quark confinement, is one
of the most profound puzzles of QCD. Another amazing feature of QCD is the property of
asymptotic freedom: quarks and gluons tend to interact more weakly over short distances
and more strongly over longer distances.

This book is dedicated to another QCD mystery: the behavior of quarks and gluons in
high energy collisions. Quantum chromodynamics is omnipresent in high energy collisions
of all kinds of known particles. There are vast amounts of high energy scattering data
on strong interactions, which have been collected at accelerators around the world. While
these data are incredibly diverse they often exhibit intriguingly universal scaling properties,
which unify much of the data while puzzling both experimentalists and theorists alike. Such
universality appears to imply that the underlying QCD dynamics is the same for a broad
range of high energy scattering phenomena.

The main goal of this book is to provide a consistent theoretical description of high
energy QCD interactions. We will show that the QCD dynamics in high energy collisions
is very sophisticated and often nonlinear. At the same time much solid theoretical progress
has been made on the subject over the years. We will present the results of this progress by
introducing a universal approach to a broad range of high energy scattering phenomena.

We begin by presenting a brief summary of the tools needed to perform perturbative
QCD calculations. Since much of the material in this chapter is covered in standard field
theory and particle physics textbooks, we will not derive many results, simply summarizing
them and referring the reader to the appropriate literature for detailed derivations.

1.1 The QCD Lagrangian

Quantum chromodynamics is an SU(3) Yang–Mills gauge theory (Yang and Mills 1954)
describing the interactions of quarks and gluons. The QCD Lagrangian density is

LQCD =
∑

flavors f

q̄
f
i (x)
[
iγ μDμ − mf

]
ij
q

f
j (x) − 1

4 Fa
μνF

aμν (1.1)
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2 Introduction: basics of QCD perturbation theory

where q
f
i (x) and q̄

f
i (x) are the quark and antiquark spin-1/2 Dirac fields of color i, flavor

f , and mass mf , with q̄ = q†γ 0. A field Aa
μ(x) describes the gluon, which has spin equal

to 1, zero mass, and color index a in the adjoint representation of the SU(3) gauge group.
Summation over repeated color and Lorentz indices is assumed, with i, j = 1, 2, 3 and
a = 1, . . . , 8. The covariant derivative Dμ is defined by

Dμ = ∂μ − igAμ = ∂μ − igtaAa
μ. (1.2)

The ta are the generators of SU(3) in the fundamental representation (ta = λa/2, where the
λa are the Gell-Mann matrices). The non-Abelian gluon field strength tensor Fa

μν is defined
by

Fμν = taF a
μν = i

g

[
Dμ,Dν

]
(1.3)

or, equivalently, by

Fa
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν, (1.4)

where f abc are the structure constants of the color group SU(3).
We work in natural units, with h̄ = c = 1. Our four-vectors are xμ = (t, �x), the partial

derivatives are denoted ∂μ = ∂/∂xμ, and the metric in t, x, y, z coordinates is gμν =
diag(+1,−1,−1,−1).

The Lagrangian of Eq. (1.1) was proposed by Fritzsch, Gell-Mann, and Leutwyler
(1973), Gross and Wilczek (1973, 1974), and Weinberg (1973). The form of the QCD
Lagrangian is based on two assumptions confirmed by experimental observations: all
hadrons consist of quarks and quarks cannot be observed as free particles. The first obser-
vation leads to a new quantum number for quarks: color. Indeed, without this quantum
number we cannot build the wave functions for baryons. For example the �− hyperon has
spin 3/2 and consists of three s-quarks. This means that the spin and flavor parts of its
wave function are symmetric with respect to interchange of the identical valence s-quarks.
Owing to the Pauli exclusion principle the full wave function of the three identical quarks
has to be antisymmetric. If spin and flavor were the only quantum numbers, it would appear
that the spatial wave function of the three s-quarks would have to be antisymmetric. How-
ever, this would contradict the fact that �− is a stable particle and is, therefore, a ground
state of the three s-quark system. The spatial wave function of a ground state has to be
symmetric. To resolve this conundrum we need to introduce a new quantum number that
should have at least three different values to make the three strange quarks different in the
�− hyperon. This quantum number is the quark color.

We then need to determine which particle is responsible for interactions between the
quarks forming quark bound states, the hadrons. The interactions between the quarks in
mesons and baryons have to be attractive, which indicates that they should depend on
quark color: if one introduced interactions between quarks using some global (not gauged)
non-Abelian color symmetry then one would not be able to obtain attractive interactions
between the quark and the antiquark in a meson and between a pair of quarks in a baryon
simultaneously, at least not in the lowest nontrivial order in the interaction. One therefore
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1.2 A review of Feynman rules for QCD 3

concludes that the non-Abelian color symmetry has to be gauged by introducing a non-
Abelian vector boson responsible for quark interactions. Moreover, as we will see below,
the high energy scattering data confirms this conclusion as it demonstrates that the particle
responsible for quark interactions has spin equal to 1.

The second experimental observation needed for the construction of the QCD
Lagrangian, that quarks are never seen as free particles, means that the forces between
quarks should be stronger at longer distances to prevent quarks from leaving a hadron.
For point-like particles our best chance of getting such forces is by assuming that quark
interactions are mediated by a massless particle. For such a particle the lowest-order quark–
antiquark interaction potential decreases at long distances roughly as to 1/r , where r is the
distance between the quarks. (Indeed in a full QCD calculation this behavior changes to
∼ r , that of a confining potential.) Massive particles would give an exponentially decreas-
ing potential, which would have a shorter range than the potential in the massless case.
We therefore conclude that the particle responsible for quark interactions is a non-Abelian
massless vector boson, a gluon.

However, particle interactions may generate a mass even for a particle that is massless at
the Lagrangian level. To protect the zero mass of the gluon from higher-order corrections we
have to assume the existence of gauge symmetry in our Lagrangian. Namely, the Lagrangian
should be invariant with respect to

q(x) → S(x) q(x), (1.5a)

q̄(x) → q̄(x) S−1(x), (1.5b)

Aμ(x) → S(x)Aμ(x)S−1(x) − i

g

[
∂μS(x)

]
S−1(x), (1.5c)

where we have defined a unitary 3 × 3 matrix

S(x) = eiαa (x) ta , (1.6)

where the αa(x) are arbitrary real-valued functions; summation over repeated color indices
a is again implied. The form of the Yang–Mills Lagrangian (1.1) can be derived directly
from the gauge symmetry in Eqs. (1.5) (see e.g. Peskin and Schroeder (1995)).

1.2 A review of Feynman rules for QCD

To derive the Feynman rules from the Lagrangian (1.1) we need to define the functional
integral (the QCD partition function)

ZQCD =
∫

DADq Dq̄ exp

{
i

∫
d4x LQCD (A, q, q̄)

}
. (1.7)

One can see that this integral is divergent since its integrand has the same value for an infinite
set of fields related to each other by all possible gauge transformations (1.5). However, the
values of physical observables are given by the expectation values of operators. For an
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4 Introduction: basics of QCD perturbation theory

arbitrary gauge-invariant operator O we have the vacuum expectation value

〈O〉 ≡
∫ DADq Dq̄ O exp

{
i
∫

d4xLQCD

}∫ DADq Dq̄ exp
{
i
∫

d4x LQCD

} (1.8)

The divergences caused by integrations over gauge directions in the numerator and in
the denominator of Eq. (1.8) cancel each other. Faddeev and Popov (1967) suggested a
procedure allowing one to see such cancellations in the most economic way by multiplying
the definition (1.7) with the functional integral identity1

1 =
∫

Dα δ(α) =
∫

Dα δ(G(Aα)) det

(
δG(Aα)

δ α

)
, (1.9)

where the integral runs over all gauge transformations labeled by αa (see Eq. (1.6)), Aα

is a gauge field related to the original one by the gauge transformation defined by αa , and
G(A) = 0 is the gauge-fixing condition. (For instance, G(A) = ∂μAμ in a covariant gauge.)
Let us restrict ourselves to gauges in which the functional determinant det[δG(Aα) /δα] is
independent of αa for a given Aα . Using Eq. (1.9) the expectation values of the operators
can be written as

〈O〉 =
(∫ Dα

) ∫ DADq Dq̄ O δ(G(A)) det
(

δG(Aα)
δ α

)
exp
{
i
∫

d4x LQCD

}
(∫ Dα

) ∫ DADq Dq̄ δ (G(A)) det
(

δG(Aα)
δ α

)
exp
{
i
∫

d4x LQCD

} , (1.10)

where we have relabeled the integration variable Aα as A everywhere except in the deter-
minants, in which one should put αa = 0 after differentiation thus turning Aα into A. The
infinities in the numerator and the denominator of Eq. (1.10) are clearly identifiable as
being due to the integration over αa . As nothing else in the integrands of Eq. (1.10) depends
on α we can simply cancel the Dα integrations, writing

〈O〉 =
∫ DADq Dq̄ O δ(G(A)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

}
∫ DADq Dq̄ δ(G(A)) det

(
δG(Aα )

δ α

)
exp
{
i
∫

d4x LQCD

} . (1.11)

To obtain the Feynman rules we have to put all the A-dependence in the integrands in
Eq. (1.11) into the exponents. We start with the delta functions and first note that making
the replacement in Eq. (1.11)

δ(G(A)) → δ(G(A) − r(x)) , (1.12)

where r(x) is some arbitrary function of xμ, would not change the values of the functional
integrals in the numerator and the denominator and would therefore leave 〈O〉 unchanged.
Indeed different choices of r(x) correspond to different choices of the gauge defined
by the G(A) = r(x) gauge condition. Thus the replacement (1.12) simply modifies the
function defining the gauge condition: G(A) → G(A) − r(x). Since our initial gauge-
defining function G(A) is arbitrary, and as neither of the integrals in the numerator and the
denominator of Eq. (1.11) depends on G(A), we conclude that nothing in the numerator

1 In discussing the Faddeev–Popov method we will follow closely the presentations in Peskin and Schroeder (1995) and
in Sterman (1993).
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1.2 A review of Feynman rules for QCD 5

or the denominator of Eq. (1.11) changes if we perform the replacement (1.12). Moreover,
the resulting expression,

〈O〉 =
∫ DADq Dq̄ O δ(G(A) − r(x)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

}
∫ DADq Dq̄ δ(G(A) − r(x)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

} , (1.13)

is independent of r(x) for the same reasons. We can integrate the numerator and the
denominator separately over r(x) by multiplying them with

1 = N (ξ )
∫

Dr exp

{
−i

∫
d4x

r2(x)

2ξ

}
, (1.14)

where N (ξ ) is a normalization function defined by Eq. (1.14) and ξ is an arbitrary number.
Multiplying both the numerator and the denominator of Eq. (1.13) by Eq. (1.14), canceling
N (ξ ), and performing the r-integrals with the help of the delta functions, we obtain

〈O〉 =
∫ DADq Dq̄ O det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x
(
LQCD − 1

2ξ
[G(a)]2

)}
∫ DADq Dq̄ det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x
(
LQCD − 1

2ξ
[G(a)]2

)} . (1.15)

Finally, in order to remove the determinants of Eq. (1.15) into the exponents one intro-
duces the (unphysical) Faddeev–Popov ghost field ca(x), whose values are complex Grass-
mann numbers (Faddeev and Popov 1967, Feynman 1963, DeWitt 1967). The ghost field is
a Lorentz scalar in the adjoint representation of SU(3). With the help of the Faddeev–Popov
ghost field we write

det

(
δG (Aα)

δ α

)
=
∫

DcDc∗ exp

{
−i

∫
d4x c∗ δG (Aα)

δ α
c

}
(1.16)

with c∗ the complex conjugate of the c field. Using Eq. (1.16) in Eq. (1.15) we obtain

〈O〉 =
∫ DADq Dq̄ DcDc∗ O exp

{
i
∫

d4x L(A, q, q̄, c, c∗)
}∫ DADq Dq̄ DcDc∗ exp

{
i
∫

d4x L(A, q, q̄, c, c∗)
} , (1.17)

where we have defined an effective Lagrangian

L(A, q, q̄, c, c∗) ≡ LQCD − 1

2ξ
[G(A)]2 − c∗ δG(Aα)

δ α
c. (1.18)

Now we are ready to derive the Feynman rules for QCD.
In this book we will employ two main gauge choices. One is the Lorenz gauge, defined

by the gauge condition

∂μAa μ = 0. (1.19)

Inserting G(A) = ∂μAa μ into Eq. (1.18), after some straightforward algebra (see e.g. Peskin
and Schroeder (1995)) we end up with

L = LQCD − 1

2ξ

(
∂μAa

μ

)2 + (∂μca ∗)(δac ∂μ + gf abcAb
μ

)
cc. (1.20)
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6 Introduction: basics of QCD perturbation theory

Using Eq. (1.20) we can derive the Feynman rules for QCD by substituting the Lagrangian
(1.20) into Eq. (1.7) in place of LQCD .

The other gauge choice that we will be using frequently throughout the book is the light
cone gauge, defined by

η · Aa = ημAa
μ = 0, (1.21)

with ημ a constant four-vector that is light-like, so that η2 = ημ ημ = 0. One can show that,
in the light cone gauge, det[δG (Aα)/δ α] does not depend on Aμ when we take the limit
ξ → 0. From Eq. (1.18) one can see that in this case the ghost field would not couple to
the gluon field and so can be integrated out in the functional integrals of Eq. (1.17). Hence
there is no ghost field in the light cone gauge. The effective Lagrangian (1.18) in the light
cone gauge becomes

L = LQCD − 1

2 ξ

(
ημAa

μ

)2
(1.22)

(with an implied ξ → 0 limit).
Below we list the Feynman rules for QCD, in the Lorenz and light cone gauges, which

follow from the Lagrangians in Eqs. (1.20) and (1.22). We use the standard notation for
a product of two four-vectors u · v = uμv

μ and for the square of a single four-vector
vμv

μ = v2. The Dirac gamma matrices in the standard Dirac representation, which we will
use here, are defined by

γ 0 =
(

1 0
0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
, (1.23)

where 1 is a unit 2 × 2 matrix, i = 1, 2, 3, and σ i are the Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0
0 −1

)
. (1.24)

As usual, we will write v/ = γ μvμ. Arrows on the quark and ghost propagators (see below)
indicate the flow of the particle number and, in the cases of the quark propagator and the
ghost–gluon vertex, they also indicate the momentum flow. As ghost fields do not exist in the
light cone gauge, the Feynman rules for ghosts listed below apply only in the Lorenz gauge.

1.2.1 QCD Feynman rules

Quark propagator: ij p = i(p/ + mf )

p2 − m2
f + iε

δij , (1.25)

Ghost propagator: ab k = i

k2 + iε
δab, (1.26)

Gluon propagator:
ab k

μν
= −iDμν(k)

k2 + iε
δab, (1.27)
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1.3 Rules of light cone perturbation theory 7

where in the Lorenz gauge (∂ · Aa = 0)

Dμν(k) = gμν − (1 − ξ )
kμkν

k2
; (1.28)

the choice ξ = 0 is referred to as the Landau gauge and the choice ξ = 1 is called the
Feynman gauge. In the light cone gauge η · Aa = 0 with ξ → 0 one has

Dμν(k) = gμν − ημkν + ηνkμ

η · k
. (1.29)

Quark–gluon vertex:

i

j aμ
= igγ μ (ta)ji , (1.30)

Ghost–gluon vertex
(Lorenz gauge only):

c

b aμ

p

p + k

= g(p + k)μf abc (1.31)

Three-gluon vertex
(all momenta flow
into the vertex):

c

b
a
μ ν

ρ

k1

k2
k3

= −gf abc [(k1 − k3)νgμρ

+ (k2 − k1)ρgμν + (k3 − k2)μgνρ]
(1.32)

Four-gluon vertex:

a

b

c
d

μ
ν

ρ

σ

=
−ig2

[
f abe f cde (gμρ gνσ − gμσ gνρ)
+ f ace f bde (gμν gρσ − gμσ gνρ)
+ f ade f bce (gμν gρσ − gμρ gνσ )

]
(1.33)

The Feynman rules that are standard for all field theories, such as the conservation of
four-momentum in the vertices and the inclusion of a factor −1 for each fermion loop or
of proper symmetry factors, apply to QCD as well and will not be explicitly spelled out
here.

1.3 Rules of light cone perturbation theory

Many calculations in this book will not be performed using the Feynman rules. Instead we
will use light cone perturbation theory (LCPT), following the rules introduced by Lepage
and Brodsky (1980) (see Brodsky and Lepage (1989) and Brodsky, Pauli, and Pinsky (1998)
for a detailed derivation of the LCPT rules). We begin by introducing the light cone notation.
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8 Introduction: basics of QCD perturbation theory

For any four-vector vμ we define

v+ = v0 + v3, v− = v0 − v3. (1.34)

With this notation we see immediately that

v2 = v+v− − �v 2
⊥, (1.35)

where we have defined a vector of transverse components �v⊥ = (v1, v2). A product of two
four-vectors vμ and uμ in light cone notation is

u · v = 1

2
u+v− + 1

2
u−v+ − �u⊥ · �v⊥. (1.36)

The metric has nonzero components g+− = g−+ = 1/2, g11 = g22 = −1. This gives

v− = v0 + v3

2
= v+

2
, v+ = v0 − v3

2
= v−

2
. (1.37)

Note also that ∂+ = (1/2) ∂− and ∂− = (1/2) ∂+.
Light cone perturbation theory is similar to time-ordered perturbation theory, except that

the light cone x+-direction plays the role of time. (For a good presentation of time-ordered
perturbation theory see Sterman (1993).) Our discussion of LCPT here will closely follow
Lepage and Brodsky (1980) and Brodsky and Lepage (1989). We will work in the particular
light cone gauge

A+ = 0, (1.38)

which can be obtained from Eq. (1.21) by choosing ημ = (0, 2, �0⊥), in the (+,−,⊥)
notation. Of the remaining A− and Ai

⊥ components of the gluon field (i = 1, 2), only
the transverse components Ai

⊥ are independent. The component A− can be expressed in
terms of the Ai

⊥ using the equations of motion for the QCD Lagrangian (1.1). The quark
field, which we will denote by q(x), dropping the flavor label, is separated into two spinor
components q+ and q− defined by

q±(x) = �± q(x), (1.39)

where the projection operators �± are given by

�± = 1

2
γ 0 γ ± (1.40)

and the Dirac matrix γ ± = γ 0 ± γ 3. Note that, just like any other projection operators,
�± obey the following relations: �+ �− = 0, �2

± = �±, and �+ + �− = 1. The two
projections q+ and q− are not independent and can also be related using the constraint part
of the equations of motion. The dependent field operators A− and q− are expressed in terms
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1.3 Rules of light cone perturbation theory 9

of Ai
⊥ and q+ as (see Lepage and Brodsky (1980))2

A− = − 2

∂+ ∂⊥ j · A
j
⊥ + 2g

(∂+)2

{[
i∂+A

j
⊥, A

j
⊥
]

+ 2q
†
+taq+ta

}
, (1.41)

q− = 1

i∂+ γ 0
(
−i γ

j
⊥D⊥ j + m

)
q+ (1.42)

where j = 1, 2. Next one defines free gluon and quark fields Ãμ and q̃ by

Ãμ = (0, Ã−, �A⊥), (1.43)

in the (+,−,⊥) notation, with

Ã− ≡ − 2

∂+ ∂⊥ j · A
j
⊥ (1.44)

and

q̃ ≡ q+ + 1

i∂+ γ 0
(
−iγ

j
⊥∂⊥ j + m

)
q+. (1.45)

The light cone Hamiltonian H is defined as the minus component of the four-momentum
vector, P −. It can be written as the sum of free and interaction terms:

H = P − = H0 + Hint , (1.46)

where (Lepage and Brodsky 1980, Brodsky and Lepage 1989, Brodsky, Pauli, and Pinsky
1998)

H0 = 1

2

∫
dx− d2x⊥

(
¯̃q γ + m2 − ∇2

⊥
i∂+ q̃ − Ãa

μ ∇2
⊥Ã

a μ

)
(1.47)

is the free part of the Hamiltonian, while the interaction part is given by

Hint =
∫

dx−d2x⊥

[
−2g tr

(
i∂μÃν[Ãμ, Ãν]

)− g2

2
tr
(
[Ãμ, Ãν][Ãμ, Ãν]

)
− g ¯̃qγ μAμq̃ + g2 tr

(
[i∂+Ãμ, Ãμ]

1

(i∂+)2
[i∂+ Ãν, Ãν]

)

+ g2 ¯̃qγ μAμγ + 1

2i∂+ γ νAνq̃ − g2¯̃qγ +
(

1

(i∂+)2
[i∂+Ãμ, Ãμ]

)
q̃

+ g2

2
q̄γ +taq

1

(i∂+)2
q̄γ +taq

]
. (1.48)

Quantizing the theory by expanding Ai
⊥ and q+ in terms of creation and annihilation

operators while treating the x+ light cone direction as time, one can construct light cone
time-ordered perturbation theory with the help of the light cone Hamiltonian H . The rules
of LCPT for the calculation of scattering amplitudes are given in the following subsection
(Lepage and Brodsky 1980, Brodsky and Lepage 1989, Zhang and Harindranath 1993,
Brodsky, Pauli, and Pinsky 1998).

2 Our notation in Eqs. (1.1), (1.2), and (1.4), and therefore throughout the book, can be obtained from that of Lepage
and Brodsky (1980) and Brodsky and Lepage (1989) by making the replacement g → −g.
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10 Introduction: basics of QCD perturbation theory

1.3.1 QCD LCPT rules

1. Draw all diagrams for a given process at the desired order in the coupling constant,
including all possible orderings of the interaction vertices in the light cone time x+. Assign
a four-momentum kμ to each line such that it is on mass shell, so that k2 = m2 with m

the mass of the particle. Each vertex conserves only the k+ and �k⊥ components of the
four-momentum. Hence for each line the four-momentum has components as follows:

kμ =
(

k+,
�k2
⊥ + m2

k+ , �k2
⊥

)
. (1.49)

2. With quarks associate on-mass-shell spinors in the Lepage and Brodsky (1980)
convention:

uσ (p) = 1√
p+
(
p+ + mγ 0 + γ 0 �γ⊥ · �p⊥

)
χ (σ ), (1.50)

vσ (p) = 1√
p+
(
p+ − mγ 0 + γ 0 �γ⊥ · �p⊥

)
χ (−σ ), (1.51)

with

χ (+1) = 1√
2

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , χ (−1) = 1√

2

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠ . (1.52)

Gluon lines come with a polarization vector ε
μ
λ (k). In the A+ = 0 gauge this vector is

given by

ε
μ
λ (k) =

(
0,

2 �ε λ
⊥ · �k⊥
k+ , �ε λ

⊥

)
(1.53)

with transverse polarization vector

�ε λ
⊥ = − 1√

2
(λ, i) , (1.54)

where λ = ±1. Equation (1.53) follows from requiring that ε+
λ = 0 and ελ(k) · k = 0.

3. For each intermediate state there is a factor equal to the light cone energy denominator

1∑
inc

k− − ∑
interm

k− + i ε
(1.55)

where the sums run respectively over all incoming particles present in the initial state in
the diagram (“inc”) and over all the particles in the intermediate state at hand (“interm”).
According to rule 1 above, for each particle we have k− = (�k2

⊥ + m2)/k+. Since the k−

momentum component is not conserved at the vertices the intermediate states are not on
the “energy shell” and the light cone denominator in (1.55) is nonzero. Note that the light
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