Financial Enterprise Risk Management

Financial Enterprise Risk Management provides all the tools needed to build and maintain a comprehensive ERM framework. As well as outlining the construction of such frameworks, it discusses the internal and external contexts within which risk management must be carried out. It also covers a range of qualitative and quantitative techniques that can be used to identify, model and measure risks, and describes a range of risk mitigation strategies. Over 100 diagrams are used to help describe the range of approaches available, and risk management issues are further highlighted by various case studies. A number of proprietary, advisory and mandatory risk management frameworks are also discussed, including Solvency II, Basel III and ISO 31000:2009.

This book is an excellent resource for actuarial students studying for examinations, for risk management practitioners and for any academic looking for an up-to-date reference to current techniques.

Paul Sweeting is a Managing Director at JP Morgan Asset Management. Prior to this, he was a Professor of Actuarial Science at the University of Kent and he still holds a chair at the university. Before moving to academia, Paul held a number of roles in pensions, insurance and investment. Most recently he was responsible for developing the longevity reinsurance strategy for Munich Reinsurance, before which he was Director of Research at Fidelity Investments' Retirement Institute.

In his early career, Paul gained extensive experience as a consulting actuary advising on pensions and investment issues for a range of pension schemes and their corporate sponsors. He is affiliated to a number of professional bodies being a Fellow of the Institute of Actuaries, a Fellow of the Royal Statistical Society, a Fellow of the Securities and Investment Institute and a CFA Charterholder. Paul has written extensively on a range of pensions, investment and risk issues and is a regular contributor to the print and broadcast media.
The International Series on Actuarial Science, published by Cambridge University Press in conjunction with the Institute and Faculty of Actuaries, contains textbooks for students taking courses in or related to actuarial science, as well as more advanced works designed for continuing professional development or for describing and synthesizing research. The series is a vehicle for publishing books that reflect changes and developments in the curriculum, that encourage the introduction of courses on actuarial science in universities, and that show how actuarial science can be used in all areas where there is long-term financial risk.

A complete list of books in the series can be found at www.cambridge.org/statistics. Recent titles include the following:

Regression Modeling with Actuarial and Financial Applications
EDWARD W. FREES

Actuarial Mathematics for Life Contingent Risks
DAVID C.M. DICKSON, MARY R. HARDY & HOWARD R. WATERS

Nonlife Actuarial Models
YIU-KUEN TSE

Generalized Linear Models for Insurance Data
PIET DE JONG & GILLIAN Z. HELLER

Market-Valuation Methods in Life and Pension Insurance
THOMAS MØLLER & MOGENS STEFFENSEN

Insurance Risk and Ruin
DAVID C.M. DICKSON
Contents

Preface xi

1 An introduction to enterprise risk management 1
 1.1 Definitions and concepts of risk 1
 1.2 Why manage risk? 3
 1.3 Enterprise risk management frameworks 5
 1.4 Corporate governance 6
 1.5 Models of risk management 8
 1.6 The risk management time horizon 9
 1.7 Further reading 10

2 Types of financial institution 11
 2.1 Introduction 11
 2.2 Banks 11
 2.3 Insurance companies 14
 2.4 Pension schemes 16
 2.5 Foundations and endowments 18
 2.6 Further reading 18

3 Stakeholders 20
 3.1 Introduction 20
 3.2 Principals 20
 3.3 Agents 31
 3.4 Controlling 41
 3.5 Advisory 48
 3.6 Incidental 51
 3.7 Further reading 53
The internal environment

4.1 Introduction 54
4.2 Internal stakeholders 54
4.3 Culture 55
4.4 Structure 57
4.5 Capabilities 60
4.6 Further reading 60

The external environment

5.1 Introduction 61
5.2 External stakeholders 61
5.3 Political environment 62
5.4 Economic environment 62
5.5 Social and cultural environment 64
5.6 Competitive environment 65
5.7 Regulatory environment 66
5.8 Professional environment 85
5.9 Industry environment 88
5.10 Further reading 90

Process overview

6. Process overview 91

Definitions of risk

7.1 Introduction 93
7.2 Market and economic risk 93
7.3 Interest rate risk 94
7.4 Foreign exchange risk 94
7.5 Credit risk 95
7.6 Liquidity risk 96
7.7 Systemic risk 97
7.8 Demographic risk 99
7.9 Non-life insurance risk 101
7.10 Operational risks 102
7.11 Residual risks 110
7.12 Further reading 111

Risk identification

8.1 Introduction 112
8.2 Risk identification tools 112
8.3 Risk identification techniques 115
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Assessment of risk nature</td>
<td>119</td>
</tr>
<tr>
<td>8.5</td>
<td>Risk register</td>
<td>119</td>
</tr>
<tr>
<td>8.6</td>
<td>Further reading</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>Some useful statistics</td>
<td>121</td>
</tr>
<tr>
<td>9.1</td>
<td>Location</td>
<td>121</td>
</tr>
<tr>
<td>9.2</td>
<td>Spread</td>
<td>122</td>
</tr>
<tr>
<td>9.3</td>
<td>Skew</td>
<td>124</td>
</tr>
<tr>
<td>9.4</td>
<td>Kurtosis</td>
<td>125</td>
</tr>
<tr>
<td>9.5</td>
<td>Correlation</td>
<td>126</td>
</tr>
<tr>
<td>9.6</td>
<td>Further reading</td>
<td>132</td>
</tr>
<tr>
<td>10</td>
<td>Statistical distributions</td>
<td>134</td>
</tr>
<tr>
<td>10.1</td>
<td>Univariate discrete distributions</td>
<td>134</td>
</tr>
<tr>
<td>10.2</td>
<td>Univariate continuous distributions</td>
<td>137</td>
</tr>
<tr>
<td>10.3</td>
<td>Multivariate distributions</td>
<td>171</td>
</tr>
<tr>
<td>10.4</td>
<td>Copulas</td>
<td>195</td>
</tr>
<tr>
<td>10.5</td>
<td>Further reading</td>
<td>220</td>
</tr>
<tr>
<td>11</td>
<td>Modelling techniques</td>
<td>221</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>11.2</td>
<td>Fitting data to a distribution</td>
<td>223</td>
</tr>
<tr>
<td>11.3</td>
<td>Fitting data to a model</td>
<td>228</td>
</tr>
<tr>
<td>11.4</td>
<td>Smoothing data</td>
<td>237</td>
</tr>
<tr>
<td>11.5</td>
<td>Using models to classify data</td>
<td>245</td>
</tr>
<tr>
<td>11.6</td>
<td>Uncertainty</td>
<td>259</td>
</tr>
<tr>
<td>11.7</td>
<td>Credibility</td>
<td>262</td>
</tr>
<tr>
<td>11.8</td>
<td>Model validation</td>
<td>270</td>
</tr>
<tr>
<td>11.9</td>
<td>Further reading</td>
<td>271</td>
</tr>
<tr>
<td>12</td>
<td>Extreme value theory</td>
<td>272</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>272</td>
</tr>
<tr>
<td>12.2</td>
<td>The generalised extreme value distribution</td>
<td>272</td>
</tr>
<tr>
<td>12.3</td>
<td>The generalised Pareto distribution</td>
<td>275</td>
</tr>
<tr>
<td>12.4</td>
<td>Further reading</td>
<td>279</td>
</tr>
<tr>
<td>13</td>
<td>Modelling time series</td>
<td>280</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>280</td>
</tr>
<tr>
<td>13.2</td>
<td>Deterministic modelling</td>
<td>280</td>
</tr>
<tr>
<td>13.3</td>
<td>Stochastic modelling</td>
<td>281</td>
</tr>
<tr>
<td>13.4</td>
<td>Time series processes</td>
<td>285</td>
</tr>
</tbody>
</table>
Contents

13.5 Data frequency 305
13.6 Discounting 306
13.7 Further reading 310

14 Quantifying particular risks 311
14.1 Introduction 311
14.2 Market and economic risk 311
14.3 Interest rate risk 325
14.4 Foreign exchange risk 337
14.5 Credit risk 338
14.6 Liquidity risk 360
14.7 Systemic risks 362
14.8 Demographic risk 363
14.9 Non-life insurance risk 372
14.10 Operational risks 379
14.11 Further reading 381

15 Risk assessment 382
15.1 Introduction 382
15.2 Risk appetite 383
15.3 Upside and downside risk 386
15.4 Risk measures 387
15.5 Unquantifiable risks 401
15.6 Return measures 403
15.7 Optimisation 404
15.8 Further reading 411

16 Responses to risk 413
16.1 Introduction 413
16.2 Market and economic risk 416
16.3 Interest rate risk 430
16.4 Foreign exchange risk 434
16.5 Credit risk 435
16.6 Liquidity risk 442
16.7 Systemic risk 442
16.8 Demographic risk 444
16.9 Non-life insurance risk 446
16.10 Operational risks 447
16.11 Further reading 456
Contents

17 Continuous considerations
17.1 Introduction 457
17.2 Documentation 457
17.3 Communication 458
17.4 Audit 460
17.5 Further reading 461

18 Economic capital
18.1 Introduction 462
18.2 Definition of economic capital 462
18.3 Economic capital models 463
18.4 Designing an economic capital model 464
18.5 Running an economic capital model 465
18.6 Calculating economic capital 466
18.7 Economic capital and risk optimisation 467
18.8 Capital allocation 469
18.9 Further reading 471

19 Risk frameworks
19.1 Mandatory risk frameworks 472
19.2 Advisory risk frameworks 483
19.3 Proprietary risk frameworks 499
19.4 Further reading 504

20 Case studies
20.1 Introduction 505
20.2 The 2007–2011 global financial crisis 505
20.3 Barings Bank 511
20.4 Equitable Life 514
20.5 Korean Air 517
20.6 Long Term Capital Management 519
20.7 Bernard Madoff 521
20.8 Robert Maxwell 522
20.9 Space Shuttle Challenger 523
20.10 Conclusion 525
20.11 Further reading 525

References 527
Index 540
Preface

This book began life as a sessional paper presented to the Institute of Actuaries in Manchester and, some months later, to the Faculty of Actuaries in Edinburgh. Its presentation occurred at around the same time that a new subject on enterprise risk management was being developed for the UK actuarial exams. This made it a good time to expand the paper into something more substantial, with detailed information on many of the techniques that were only mentioned in the initial work. It also means that the book has benefited greatly from the work done by the syllabus development working party, led by Andrew Cairns and managed by Lindsay Smitherman.

I found myself writing this book during a time of crisis for financial institutions around the world. Financial models have been blamed for a large part of this crisis, and this criticism is, to an extent, well-founded. It is certainly tempting to place far too much reliance on very complex models, ignoring the fact that they merely represent rather than replicate the real world. Some senior executives have also been guilty of seeing the output of these models but not understanding the underlying approaches and their limitations. Finally, many models have been designed seemingly ignorant of the fact that the data histories needed to provide parameters for these models are simply not available. However, at least as big an issue is that many non-financial risks were allowed to thrive in the years before the crisis.

Many of the techniques described in this book are quantitative, and such risk modelling and management techniques can be very helpful. However, there are a number of ways in which risk can be quantified. Furthermore, these risk measures do not paint a complete picture. It is important to appreciate the limitations of these types of models, the circumstances in which they might fail and the implications of such failure. It is also crucial to understand that just because a risk is unquantifiable, it does not mean that it should be ignored. Some of the most important – and dangerous – risks cannot be modelled; however, they can frequently be identified and often managed.

All risks should be considered together: this holistic approach is fundamental to enterprise risk management. Whilst identifying the extent – or even the existence – of individual risks is important, looking at the bigger picture is vital. Looking at the interaction between risks can highlight concentrations of risk, but also the potential
diversifying or even hedging effect of different risks. It is also important to recognise that risk is not necessarily synonymous with uncertainty. Risk is only bad if the outcome is adverse, and these types of risks can be described as downside risks. Upside risks also occur – these are opportunities – and without them, there would be no point in taking risks at all.