Index

accuracy, 47
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 81
advection, 39
aerobic aquifer conditions, 126
Africa, ix, 1, 2, 8, 12, 19, 21, 22, 24, 25, 27, 28, 29, 32, 33, 36, 37, 81, 85, 86, 120, 121, 122, 127
African monsoon, 25
age dating of groundwater, 106
agricultural intensification and water use, 5
air entrapment, 11
Alamogordo Creek, 6
albedo, 127
Algeria, 32, 33, 36, 120, 121
allocation costs, 121
alluvium storage, 12
alternative salinisation processes, 103
Amu Darya, 122
analysis of residuals, 47
analytical modelling, 107
analytical solutions, 101
analytically based stability criteria, 97
Andhra Pradesh, 3, 63, 67
Angola, 122, 123, 124, 129
apparent parameters, 55
aquicludes, 75
aquifer compressibility, 42
aquifer exploitation problem, 128
aquifer storage and recovery, 3, 106, 107
aquifer thermal energy storage, 112
aquifer vulnerability, 3, 4, 75, 76, 77, 79, 80, 81, 85, 86
aquifer vulnerability mapping, 75
3Ar, 32
Arabian peninsula, ix, 120
Aral Sea, 104, 117, 122
Arizona, 6, 10, 11, 13, 19
arsenic, 22, 23, 35
Asia, 1, 29, 122
Asir, 6
Atlas mountains, 32
Australia, 8, 12, 19, 25, 27, 32, 34, 35, 36, 87, 102, 104, 114, 116, 117, 119, 125, 126, 129
automatic calibration, 47, 55
Azaq oasis, 1, 11
Badon-Ghyben, 89, 114
Baltic, 115, 126
Bangladesh, 120
bare soil evaporation, 13
Bartlett-Lewis rectangular pulse model, 15
dissolution, 103
Bayesian recursive estimation technique, 59
beach-scale problem, 102, 103
bed filtration, 10, 11, 14
bed mobilisation, 11
best linear unbiased estimator, 64
bicarbonate quadrilateral elements, 94
biodiversity, 119, 122, 124
Boolean methods, 52
Botswana, 5, 8, 10, 12, 13, 15, 19, 26, 79, 85, 112, 122, 123, 124, 128, 129, 130
boundary conditions, 40, 44, 49, 54, 55, 82–83, 92, 95, 98, 102, 104, 105, 106, 115, 128
boundary element methods, 43
box problems, 98
Br, 23, 26, 32, 33
Br enrichment, 26
Br/Cl ratio, 23, 26, 32
brackish groundwater, 101
bromide, 26, 36
BTEX, 79
buoyant plume effects, 88
Butana Plain, 32
Ca, 23, 25, 33
calcite, 26, 33, 111, 112, 113, 116
calcrete, 26
calibration, x, 2, 17, 18, 19, 20, 39, 41, 44, 45–46, 47, 48, 55–56, 58, 60, 61, 62, 66, 67, 72, 73, 82, 86, 104, 127
California, 19, 105, 115, 126
capillary rise, 13, 124, 125
capture zones, 82, 83, 85, 129
carbon sequestration processes, 98
carbon-dioxide degassing, 113
cation exchange, 76, 111, 112, 113
causes of variability, 49
Cephalonia, 1
CFEST, 92
Chad, 75
chemical reactions in an intruding seawater wedge, 112
chemically reactive transport modelling, 3
China, ix, x, 2, 3, 29, 30, 75, 79, 86, 87, 119, 120, 122, 125, 126, 129, 130
Chinese Sea, 104
carbonate, 11, 19, 22, 25, 26, 27–28, 29, 30, 34, 35, 36, 37, 94, 127, 129
carbonate mass balance, 29
carbonate profile method, 11, 19
chlorinated hydrocarbons, 126
Chott region, 32, 33, 121
chromium, 22, 23, 34, 35
Cl, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 111
35Cl, 23, 27, 32, 36
Cl mass balance, 23, 29, 30
clogging, 12, 82
CO_2, 26, 28, 34
CO_3, 111
coastal aquifers, 1, 2, 4, 5, 33, 87, 88, 89, 100, 104, 106, 114, 115, 116, 117, 126
coastal wetlands in China, 122
coastline retreat, 104
coefficient of molecular diffusion, 42, 93
common pool problem, 128
complexation reactions between cations and humic acids, 113
compressibility, 93
conceptual model, 39, 44, 46, 47, 48, 60, 68, 113
conceptual model uncertainties, 48
conditional simulation, 2, 50, 51–52
confined aquifers, 42, 66
conjunctive use of surface water and groundwater, 124
connection to decision makers, 128
conservative transport, 40
consistent velocity calculation, 94
continental ice sheet recharge, 106
Continental Intercalaire, 32
convection in infinite, finite and inclined porous layers, 97
convective rainfall, 10, 13, 14, 15
convective velocity, 91
coupled models, 40
coupling of porosity and permeability, 99
critical Rayleigh number, 91, 97, 111
cyprus, 27, 28, 30
D11B, 23, 34
d15N, 23
D18O, 22, 23, 25, 26, 32
d2H, 22, 25, 26, 32
d37Cl, 23, 114
d87Sr, 23, 34
damascus basin, 30
darcy’s law, 39, 42, 104, 117
decision support tools, 40, 60
degassing, 87
density effects in layered aquifers, 109
density stratification, 126
density-dependent flows, 3
density-driven convective flow, 91
density-driven transport in the vadose zone, 87, 88
deuturnium, 22
dcpS, 126
diagenesis processes, 88
Dianchi, 126
diffuse recharge, 29, 32
dimensionless numbers, 90
directional effective permeability, 54
discretisation, 46, 66
dispersion tensor, 42, 93, 94
dispersivity, 39, 47, 49, 92, 94, 95, 97
dissolution of calcite, 111
dissolved oxygen, 22, 28, 33
dnapl flow and transport, 88
dnapl studies, 87
double-diffusive transport, 98
downstream sustainability, 119
drainage system, 32, 81, 124
DRASTIC, 77, 78, 79, 80, 81, 84–85, 86
dual-permeability effects, 41
dune sands, 29, 30
Dupuit assumption, 42
dynamic changes of hydraulic properties, 112
East African Rift Valley, 122
economic model, 121
economic scarcity, 121
economic-political space, 128
effective parameters, 54
Egypt, 75, 85, 104, 114, 117
Eh, 22, 34
Elder natural convection problem, 95
empty quarter, 1
energy source, 93
environmental tracers, 14, 127
ephemeral flows, 16, 19
EPRI method, 79, 85
equilibrium reactions for aqueous species, 99
equilibrium sorption isotherm, 42, 93
equivalent freshwater head, 91
equivalent parameters, 54
equivalent transmissivity, 54–55
error analysis, 2, 47, 48
estuarine seawater intrusion, 101
Eulerian–Lagrangian localised adjoint method, 44
eutrophication, 126
evaporation, 1, 3, 4, 5, 11, 12, 13, 14, 16, 19, 23, 24, 26, 72, 75, 87, 96, 106, 124, 125, 126, 128
expansion coefficient, 91
expansion of irrigated areas, 120
exponential semivariogram, 51
F, 26, 32, 33
facies simulation, 2, 52, 53
Famine Early Warning, 127
FAST-C, 92
Fe, 23, 33
Fe2+, 23, 33, 34
Feflow, 61, 91, 92, 101, 107, 108, 114
FEMWATER, 92, 101, 115
finger formation, 97
fingering processes, 99, 109
fingers, 90, 91, 95, 96, 100, 110, 117
finite difference methods, 42, 43
finite element methods, 42, 43, 66
finite volume methods, 42, 43
first-order solute production rate, 42, 93
first-order sorbate production rate, 42, 93
fishing, 124
flow and transport modelling in fractured rock aquifers, 100
flow in regional basins, 41
flow phenomenon, 41
flow through salt formations, 87, 88
fluid density, 41, 42, 87, 89, 91, 92, 93, 95, 112, 117
fluid density gradients, 89
fluid thermal conductivity, 93
fluid viscosity, 41, 93
fluorite, 32, 33
focused recharge, 32
forced convection, 91
fossil water, 120
Fowler’s Gap, 12
fracture patterns, 67
fractured rock flow, 3
fractured rock flow and transport modelling, 109
Fraser’s Gap, 13
free aquifers, 42
free convection, 91
fresh–saline water interfaces, 87, 88
fresh–saltwater mixing zones, 111
freshwater head, 91
Galderin finite element method, 94
gas–liquid phase chemistry, 98
Gaussian threshold method, 52
Gaza Strip, 81
generalised linear models, 15
generalised likelihood uncertainty estimation, 59
genetic models, 40
genetic algorithm, 57, 60
geological models, 53
gerodynamic reaction simulator, 112
geographical information system (GIS), 76, 78
INDEX

geological processes, 41
geology, 48
groophysical methods, 126
geostatistics, x, 49, 60, 62, 63, 64, 65, 66, 74
geochemical gradient, 90
geochemical systems, 88
Germany, 79, 114, 115
Ghyben–Herzberg approximation, 101
GLA method, 77, 79, 81
global meteoric water line, 24
global optimisation, 57
GRACE, 127
granite outcrops, 67
Great Artesian Basin, 32, 36
Greek islands, 1
groundwater depletion by agriculture, 120
groundwater exploration and development, 35
groundwater flow, 39, 40, 115, 116
groundwater protection, 75
groundwater quality, 21, 35
groundwater recharge, ix, 2, 5, 12, 13, 14, 16, 17, 18, 19, 20, 26, 32, 34, 35, 36, 37, 75, 127, 130
groundwater resources assessment, 35
groundwater vulnerability, 75
Guassian semivariogram, 51
Gulf of Guinea, 25, 33
Gulf of Quine, 25, 33
gypsum, 33, 34
3H, 23, 27, 29
halite, 26, 32, 33, 34
hand-dug wells, 5, 28, 30, 31, 67
handling spatial variability, 48
HAPEX-Sahel, 8, 11, 19
hard-rock aquifer, 67
Hawaii, 78, 102, 114, 117
hazardous waste disposal, 109
HCO₃, 111
Henry circulation, 90
Henry seawater intrusion problem, 95
Hesse, 11
heterogeneity, 3, 11, 12, 41, 51, 53, 54, 56, 63, 66, 82, 83, 98, 104, 107, 116, 117
hierarchical system, 76
high-level radioactive waste disposal, 88
Holocene, 21, 24, 32, 33, 36, 105
Holocene sea-level rise, 105
HST3D, 61, 92, 115
human activity impact, 81, 85
hydraulic head, 42
hydraulic properties, 11, 12, 48, 98, 112, 113
hydrochemistry, 2, 39, 47, 101, 117
HYDROCOIN, 47, 61, 95, 115
HYDROCOIN salt-dome problem, 95
hydroecological applications, 98
HydroGeoSphere model, 92, 111, 117
hydrological data, 5, 6
hydrological modelling, 4, 14
hydrological processes, 5
hydrostatic test, 95
hypersaline brines, 3, 87
I, 23, 32, 33
identification criteria, 47
implicit finite difference method, 94
indexing, 76
India, ix, 3, 63, 67, 120, 126
indicator simulation methods, 53
Indonesia, 104
indurated sediments, 32
INFL2.0, 16
infiltration, 1, 2, 5, 10, 11, 12, 13, 14, 16–17, 18, 19, 23, 77, 79, 82, 115, 124, 126
infiltration capacity, 10
infiltration of leachates from waste disposal sites, 88
infiltration opportunity time, 11
infiltrometer experiments, 11
instability, 47, 90, 91, 95, 97, 99, 114, 115, 117
integrated modelling, 15
intelligent scheduling of pumping, 121
intensive agriculture, 81
inter-annual variability of rainfall, 10
interpreted parameters, 55
Inter-Tropical Convergence Zone (ITCZ), 24
INTRANCOIN, 47
intrinsic vulnerability, 76, 77
Iran, 1, 5, 15, 19, 81, 85, 122, 130
Irbid, 81, 86
iron, 23, 35
irrigation, 1, 3, 19, 23, 72, 76, 88, 101, 103, 104, 119, 120, 121, 122, 123–124, 125, 126, 128, 129
irrigation efficiency, 125
irrigation return flow, 72, 101
irrigation salinity, 103
isochrone, 82
isotope fractionation, 27
isotopic analyses, 11
isotopic and geochemical methods, ix, 2, 3, 11
isotopic enrichment, 27
isotopic evolution of rainfall, 25
isotopic tracers, 32
Israel, 14, 37, 86, 114, 126
Jacoby, 55, 61
Jacobian matrix, 57, 58
Jakarta, 104
Jebal Hajar, 16
Jordan, 1, 11, 12, 17, 19, 30, 81, 84–85, 86
K, 23, 33, 111
K/Cl ratio, 33
Kaidu River, 125
Kalahlari, 36, 122
karst, 42, 77, 79, 81, 85
karst systems, 42, 77
Kenya, 24, 36
kinematic viscosity, 91
KINEROS, 16
KINEROS2, 10
kinetic reactions, 99
Kongque River, 125
Korla, 125
81Kr, 32
kriging, 2, 3, 30, 51, 52, 60, 63–64, 67, 71, 72, 73, 74
Lake Bostan, 126
Lake Chad, 21, 36, 104
Lake Corangamite, 104
land subsidence, 1
land use data, 76
last glacial maximum, 24, 36
least squares calibration, 56
Libya, 24, 25, 33, 36, 75, 120, 121
likelihood function, 56
limestone, 80, 81
local sustainability, 119
 longitudinal dispersion coefficient, 94
 longitudinal dispersivity, 94
 Lop Nor, 125
 low-permeability lenses, 99
 low-permeability rock formations, 109
 macropore, 26
 Maheshwaram watershed, 3, 63, 67, 70
 Mali, 24, 36
 Managed Aquifer Recharge (MAR), 2
 marine aerosols, 25, 37
 marine facies, 33
 Markov chain method, 53
 mass conservation, 41, 43, 65
 mathematical model, 39
 matrix methods, 79
 matrix systems, 76
 maximum likelihood, 56, 57, 59, 60
 maximum likelihood Bayesian averaging method, 59
 maximum likelihood calibration, 56
 maximum permeability direction, 94
 Mediterranean, ix, 86, 126
 method of characteristics, 44
 METROPOL, 92, 115
 Mg, 23, 25, 33, 111
 Mg/Ca ratio, 25, 33
 microbial pathogens, 84
 micro-organisms, 76, 122
 Middle East, 1, 2, 6, 21, 27
 mineral precipitation, 113
 mineral saturation, 26
 mineralisation, 23, 25, 26, 28, 32
 minimum permeability direction, 94
 minor aquifers, 75
 MITSU3D, 92
 mixed convection ratio, 90
 mixed convective system, 91
 Mn, 33, 115
 Mo, 23
 MOCODENSE, 92
 model identification, 47
 model parameters, 44, 47, 48, 55, 56, 58, 60, 62
 model selection, 2, 47, 48, 57, 60
 model structure identification, 44
 modelling procedure, 44
 modelling variable density flow phenomena, 92
 MODFLOW, 17, 42, 69, 71, 103, 105, 116
 MODHMS, 92, 103, 115
 modified method of characteristics, 44
 molecular diffusivity, 91
 molybdenum, 22, 23, 35
 Monte Carlo method, 59
 mountain-front recharge, 14
 MTBE, 126
 multiphase flow, 39
 multiple point geostatistical methods, 53
 multiple species transport, 103
 multi-start local optimisation method, 44
 multivariate rainfall model, 17
 Murray river, 104
 Murramuridge, 125
 Muscat, 6, 20
 Na, 25, 33, 111
 Na/Ca ratio, 25, 33
 Namibia, 122
 NAMMUS, 92
 natural (baseline) water quality, 21
 net infiltration, 13
 neutron probe, 11, 12
 Nevada, 13, 19, 74
 New England, 104, 105, 116
 New Jersey, 35, 61, 104
 New Mexico, 6
 New South Wales, 8, 19
 NEWSAM, 71
 Niger, 8, 36
 Niger river, 24
 Nigeria, 24, 26, 28, 36, 104
 Nile, 21, 36, 104, 114, 117
 nitrate, 22, 23, 26, 28–29, 34, 35, 36, 76, 77, 79, 81, 84, 85, 86, 126
 nitrogen transformations, 26
 NO3, 23, 34
 NO3-N, 28
 NO3-N/Cl ratio, 28
 noble gas data, 24
 noble gas isotopic ratios, 29
 non-aquifers, 75
 non-local property, 55
 non-sustainable practice, 119
 Normalised Difference Vegetation Index, 127
 North America, x, 86, 126
 North China, 120
 North Sea, 104, 115, 116
 northwest Sahara aquifer, 120
 Nubian Sandstone, 75
 nuclear magnetic resonance (NMR) techniques, 97
 nugget, 51, 70
 numerical errors, 47, 58, 100
 numerical grid convergence, 96
 numerical modelling of ASR, 107
 numerical tracer simulations, 103
 offshore palaeowaters, 106
 Ogallala aquifer, 120
 Okavango delta, 3, 112, 114, 119, 122, 123, 124, 128, 129, 130
 Okavango Delta Management Plan, 124
 Oman, 1, 2, 5, 6, 10, 11, 14, 16, 19, 20, 81, 85
 onshore saline groundwater, 105
 optimisation algorithms, 57
 ordinary kriging, 50
 ore formation, 99, 112
 organic pollutants, 76, 84, 126
 origins of groundwater, 21
 overland flow, 10, 12, 13, 14
 overpumping of aquifers, 120
 oxygen-18, 22
 palaeo-groundwater, 105
 palaeo-lakes, 21
 palaeohydrogeology, 88
 palaeohydrology, 2, 24, 36
 palaeowater, 2, 21, 22, 23, 25, 28, 32, 35
 Paluxy aquifer, 80
 parameter assessment, 47, 48
 parameter identification, 62, 63
 parameter uncertainties, 48
 parameter variability, 44, 71
 parametric methods, 76
 particle tracking, 82
 pathogenic organisms, 84
 Pearl Harbour aquifer, 102
 permeability, 48
 permeability tensor, 41, 93
 persistent organic pollutants, 126
 PEST, 57, 58, 104, 114
 pesticides, 79, 126
 pH, 22, 28, 34
 phosphorous, 126
 phosphorous removal, 126
 PHREEQC-2, 112
 PHT3D, 92, 112
solid-matrix thermal conductivity, 93
solubility of CO₂, 28
solubility of oxygen, 33
solute source, 93, 110
solute transport, 39, 40, 41, 60, 61, 67, 87, 89, 90, 91, 92, 93, 94, 97, 98, 99, 101, 112, 114, 115, 117
sorption coefficient, 42, 93
source protection, 75, 81
South America, 1, 104
southern Africa, 8
Southwestern USA, 1
Spain, 79, 126
spatial discretisation schemes, 43
spatial variability of aquifer properties, 49
spatial–temporal rainfall model, 13
specific heat capacity, 93
specific pressure storativity, 93
specific vulnerability, 76, 79, 86
specific yield, 42, 65, 66, 71, 72
spherical semivariogram, 51
Sr, 23, 33
stable isotopes, 22, 25, 27, 29, 35, 36, 85, 126
statistical homogeneity, 50
stochastic rainfall models, 14
stochastic variable, 3
stress uncertainties, 48
submarine groundwater discharge, 101, 102, 103, 115
subterranean groundwater discharge, 87, 88
Sudan, 2, 32, 75
surface contamination, 84
surface energy balance, 127, 129, 130
Surface Energy Balance Algorithm for Land (SEBAL), 127
surface water-groundwater interactions, 2, 5
Suriname, 104, 114
Surt basin, 24, 25, 33
sustainability, ix, 19, 76, 119, 125, 126, 127, 128, 129
sustainable water management, 119
sustainable yields, 5, 18
SUTRA (Saturated–Unsaturated TRANsport), 92, 93, 94, 95, 97, 101, 117
SUTRA governing equations
SUTRA model, 93
SWIFT, 92, 116
Switzerland, 77, 119, 126
Syr Darya, 122
Taihu, 126
Tair river, 122, 125
TEM, 126
tensorial transmissivities, 55
Texas, 80, 85, 116, 117
Thames, 126
Thesis, 55
theory of regionalised variables, 3, 63, 73
thermohaline convection, 89, 99, 116
thermohaline studies, 89
Thiem, 55
threat to ecosystems, 122
two-dimensional groundwater equation, 42
INDEX

transmission losses, 2, 5, 10–11, 12, 13, 16, 17, 19, 20
transmissivity, 21, 39, 42, 44, 49, 50, 54, 55, 65, 66, 68, 74, 83, 85
transport equation, 42, 43, 61, 95
transverse dispersion coefficient, 94
transverse dispersivity, 94
tritium, 19, 26, 27, 28, 39, 35, 36, 98
tritium profiles, 27
Tunisia, 50, 33, 36, 81, 85, 120, 121, 130
two-dimensional groundwater equation, 42
UCODE, 57, 58
Uganda, 74, 84
UK, ix, xi, 14–15, 77, 79, 81
unbiased groundwater modeling, 63
unbiased condition, 64
uncertainty, x, 2, 4, 8, 12, 19, 20, 41, 46, 48, 51, 58, 59, 60, 61, 62, 63, 74, 75, 82, 83, 104, 128, 129
uncertainty propagation, 2, 58, 74
uncertainty quantification, 63
unit hydrograph analysis, 10
United Arab Emirates, 81, 116
universal kriging, 51
universality condition, 64
unsaturated zone, 26
unsaturated zone chemistry, 2
unsaturated zone profiles, 14, 27, 29, 35
unsaturated zone studies, 87, 88
upscaling, 53
upscaling tools, 3
upstream weighting, 95
upstream-downstream relations, 122
urban water supply, 5
USA, 2, 7, 14, 19, 26, 29, 62, 85, 104, 114, 116
vapour diffusion, 13
VapourT, 92
VARDEN, 92
variable density flow in ASR, 107
variable density flow phenomena, 87, 88, 92, 98, 99
variable density flow physics, 89
variable density groundwater flow, 87, 88, 89, 91, 98, 99, 105, 113
variable density numerical codes, 95
variable density processes in aquifer storage and recovery, 100
variable density single-phase saturated-unsaturated flow, 92
variable density version of Darcy’s law, 91
variable viscosity, 99
variogram, 51, 52, 54, 63, 64, 65, 69, 71, 72, 73, 74
vegetation growth, 10, 127
verification of variable density flow in fractured rock, 110
visible and near infrared radiometer, 81
vulnerability methods, 80, 81
wadi alluvium hydraulic properties, 11
Wadi Ghat, 10–11
Wadi Ghulal, 16, 20
Wadi Hawad, 32
Wadi Litt, 7
Wadi Tabalah, 13, 16
Wadi Yibaa, 6, 7 10
Wheaton Gulch, 6, 10, 12, 13, 15, 19
wastewater collection systems, 76
wastewater treatment, 126
water balance model, 17, 18
water bodies of large residence time, 126
water saturation, 41, 93
water scarcity, 1, 122
water–rock interactions, 28, 101
well capture zone, 3
INDEX

well catchment, 82
well head protection area, 82
Western United States, 120
wetlands, 1, 122, 123, 124, 129
when can density effects be ignored?, 108
winter rainfall, 13
Xinjiang, China, 122

Yangi basin, 3, 119, 125, 126, 128
Yellow river, 122
Yemen, 1, 7, 11, 20
Yucca Mountain, 13, 14, 16, 19, 74
zero-flux plane, 26, 27
zero-order solute production rate, 42
zero-order sorbate production rate, 42
zoning, 76