Integration of Passive RF Front End Components in SoCs

Examining the most important key developments in highly integrated wireless RF front ends, this book describes and evaluates both active and passive solutions for on-chip high-Q filtering, and explores M-phase filters in depth.

An accessible step-by-step approach is used to introduce everything an RF designer needs to know about these filters, including their various forms, principles of operation, and their performance against implementation-related imperfections. Real-world examples are described in depth, and detailed mathematical analyses demonstrate the practical quantification of pertinent circuit parameters.

Hooman Darabi is a Senior Technical Director and Fellow of Broadcom Corporation, California, and an Adjunct Professor at the University of California, Irvine. He is an IEEE Solid State Circuits Society distinguished lecturer.

Ahmad Mirzaei is a Senior Principal Scientist within the Mobile and Wireless division of Broadcom Corporation, California. His research interests involve analog and RF IC design for wireless communications.

Cambridge University Press 978-0-521-11126-3 - Integration of Passive RF Front End Components in SoCs Hooman Darabi and Ahmad Mirzaei Frontmatter More information

Integration of Passive RF Front End Components in SoCs

HOOMAN DARABI

Broadcom Corporation

AHMAD MIRZAEI Broadcom Corporation

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521111263

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and Bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-11126-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Notation		page viii
	Pref	face	xi
1	Intro	oduction to Highly Integrated and Tunable RF Receiver Front Ends	1
	1.1	Introduction	1
	1.2	Front-end integration challenges and system requirements	3
	1.3	2G receiver SAW elimination	6
		1.3.1 Mixer-first receivers	6
		1.3.2 Active blocker cancellation	7
		1.3.3 <i>N</i> -phase filtering	9
		1.3.4 SAW-less receivers with linear LNA	14
	1.4	3G receiver SAW elimination	15
	1.5	Summary and conclusions	17
2	Activ	ve Blocker-Cancellation Techniques in Receivers	18
	2.1	Introduction	18
	2.2	Concept of receiver translational loop	19
	2.3	Nonideal effects	21
		2.3.1 LNA noise figure degradation	22
		2.3.2 Gain mismatch	22
		2.3.3 Phase mismatch	23
		2.3.4 Impact of quadrature phase and gain errors in the	
		feedforward path	25
		2.3.5 Linearity requirements of the feedforward path	25
		2.3.6 RX-LO feedthrough	26
		2.3.7 LO phase noise	26
	2.4	Circuit implementations	28
		2.4.1 Low noise amplifier	28
		2.4.2 Mixers of the feedforward path	30
	2.5	Measurement results	32
	2.6	Feedback blocker-cancellation techniques	36
	2.7	Summary and conclusions	36

vi	Conte	nts	
3	Imped	dance Transformation: Introduction to the Simplest On-Chip SAW Filter	38
	3.1	Introduction	38
	3.2	Impedance transformation by a 50% passive mixer	39
	3.3	Application as on-chip SAW filter	41
	3.4	Impact of harmonics on the sharpness of the proposed filter	46
	3.5	Differential implementation	54
	3.6	Summary and conclusions	54
4	Four-	Phase High- <i>Q</i> Bandpass Filters	56
	4.1	Introduction	56
	4.2	Impedance transformation by a four-phase filter	56
	4.3	Differential implementation of four-phase high- Q bandpass filter	61
	4.4	Application as an on-chip SAW filter	63
	4.5	Impact of harmonics on the sharpness of the proposed filter	64
	4.6	Four-phase high-Q bandpass filter with a complex baseband	
		impedance	71
	4.7	Four-phase high- Q bandpass filter with quadrature RF inputs	76
	4.8	Harmonic upconversion and downconversion	83
	4.9 4.10	Summary and conclusions	83 88
5	<i>M</i> -Ph	ase High- <i>Q</i> Bandpass Filters	90
	5.1	Introduction	90
	5.2	Impedance transformation by <i>M</i> -phase filters	90
	5.3	Differential implementation of M -phase high- Q filter	95
	5.4	Application as an on-chip SAW filter	96
	5.5	Impact of harmonics on the sharpness of the <i>M</i> -phase bandpass filter	98
	5.6	M-phase high- Q filter with complex baseband impedances	105
	5.7	M-phase high- Q bandpass filter with quadrature RF inputs	109
	5.8	M-phase high- Q bandpass filter with N -phase complex bandpass filters	113
	5.9	Harmonic upconversion	115
	5.10	Summary and conclusions	115
6	Desig	n of a Superheterodyne Receiver Using <i>M</i> -Phase Filters	117
	6.1	Introduction	117
	6.2	Proposed superheterodyne receiver architecture	119
		6.2.1 Conventional M -phase high- Q bandpass filter	121
		6.2.2 <i>M</i> -phase bandpass filter with complex impedance	124
		6.2.3 Realization of complex impedance with switches and capacitors	126
	6.3	Design and implementation of the receiver chain	127
		6.3.1 Four/16-phase high- Q bandpass filter centered at	105
		$J_{\rm RF} = J_{\rm LO} + J_{\rm IF}$	127
		0.3.2 Front-end circuits	130

		Contents	vii
	6.4	Measurement results	134
	6.5	Summary and conclusions	138
7	Impact of Imperfections on the Performance of <i>M</i> -phase Filters		
	7.1	Introduction	140
	7.2	Mathematical background	140
	7.3	LO phase noise	145
	7.4	Second-order nonlinearity in the switches of the bandpass filter	154
	7.5	Quadrature error in the original 50% duty-cycle clock phases	157
	7.6	Harmonic downconversion	158
	7.7	Thermal noise of switches	159
	7.8	Parasitic capacitors of switches	161
	7.9	Switch charge injection	161
	7.10	Mismatches	161
	7.11	Summary and conclusions	162
8	M-phase Filtering and Duality		
	8.1	Introduction	164
	8.2	Dual of an electrical circuit	164
		8.2.1 Dual of a switch	167
	8.3	Dual of <i>M</i> -phase filter	168
		8.3.1 Differential implementation of <i>M</i> -phase filter and its dual	171
	8.4	Dual of M -phase high- Q filter with complex baseband impedances	172
	8.5	Summary and conclusions	174
	Appe	ndix A	176
	Refer	ences	178
	Index		185

Notation

2G	second-generation mobile telephone technology
2.5G	second-generation mobile telephone technology
3G	third-generation mobile technology
3GPP	third-generation partnership project
ADC	analog-to-digital converter
AGC	automatic gain control
AND	logic gate for AND operation
BB	baseband
BPF	bandpass filter
CMOS	complementary metal oxide semiconductor
DAC	digital-to-analog converter
DC	0 Hz frequency
DFF	delay/data flip-flop
DSP	digital signal processor
EDGE	enhanced data for GSM evolution
FDD	frequency division duplex
FTBPF	frequency-translated bandpass filter
GHz	gigahertz
GPRS	general packet radio service
GPS	global positioning system
GSM	global system for mobile communications
HSPA	high-speed packet access
Hz	hertz
IC	integrated circuit
IF	intermediate frequency
IIP2	second-order intercept point
IIP3	third-order intercept point
IM2	second-order intermodulation
IM3	third-order intermodulation
KCL	Kirchhoff's current law
kHz	kilohertz
KVL	Kirchhoff's voltage law
LC	inductor, capacitor
LNA	low noise amplifier

Notation ix

LO	local oscillator
LOFT	local oscillator feedthrough
LPCC	leadless plastic chip carrier
LPF	low-pass filter
LTE	long-term evolution (3GPP)
LTI	linear time-invariant
LTV	linear time-variant
MHz	megahertz
MOS	metal oxide semiconductor
MX	mixer
NF	noise figure
pac	AC simulation after pss in SpectreRF
PAR	peak-to-average ratio
PCS	personal communication service
PLL	phase-locked loop
PSD	power spectral density
pss	periodic steady state in SpectreRF
Q	quality factor
QOSC	quadrature oscillator
RC	resistor, capacitor
RF	radio frequency
RFIC	radio frequency integrated circuit
RLC	resistor, inductor, capacitor
RLCM	resistor, inductor, capacitor, mutual inductance
RSSI	received signal strength indication
RX	receiver
SAW	surface acoustic wave
SC	switched capacitor
SDR	software-defined radio
SNR	signal-to-noise ratio
SoC	system on chip
TDD	time division duplex
TIA	transimpedance amplifier
TX	transmitter
VCO	voltage-controlled oscillator
WCDMA	wideband code division multiple access
WLAN	wireless local area network
WPAN	wireless personal area network

Cambridge University Press 978-0-521-11126-3 - Integration of Passive RF Front End Components in SoCs Hooman Darabi and Ahmad Mirzaei Frontmatter More information

Preface

Designing less expensive RF wireless transceivers that can operate effectively and efficiently in the crowded wireless spectrum is a major challenge that must be met by today's designers. To reduce silicon costs, the chip dies must be as small as possible. To reduce the cost and size of batteries in mobile wireless devices, the amount of power consumed by the chip must be as little as possible. External components such as filters and their matching components, which are bulky and expensive, must be integrated on the chip to the greatest extent possible.

To address the issue of operating effectively in a crowded wireless spectrum, cognitive radios have been introduced. Cognitive radios are smart devices that can search for any available spectrum (even ones that are outside of what is specified by the standard) and take advantage of that free spectrum. Additionally, over the last decade, researchers have been exploring the possibility of using a universal radio that can be programmed and reconfigured through software to operate on any band, channel bandwidth, and modulation scheme. Such a universal radio is called a software-defined radio (SDR).

For a wireless device to support SDR, it must be capable of broadband operation, which raises a few unique challenges. The receiver of such a broadband device is open to any in-band or out-of-band interferences and must be able to tolerate them while maintaining good sensitivity. To overcome this challenge, narrowband receivers traditionally use an external sharp filter, typically a surface acoustic wave (SAW) filter, to attenuate the outof-band blockers. This external SAW filter and its matching components, however, add to the cost and form factor, especially for multiband applications such as LTE, which can support up to 10 bands. Basically, one SAW filter plus its matching components is needed for every single receive band of operation. In a SAW-less receiver, however, these external components are eliminated and replaced with some sort of on-chip filtering. Due to the poor quality factor of on-chip inductors, these external devices cannot be implemented with on-chip passive networks. Also, on-chip active filters with high quality factors generally suffer from poor noise and linearity performance, and their center frequencies drastically drift over process, voltage, and temperature variations. Therefore, to integrate these filters, the designers must devise highly linear and low-noise filtering solutions with center frequencies that can be controlled conveniently. This book discusses techniques that can be used to design and implement SAW-less broadband receivers with sharp onchip filters, the center frequencies of which are precisely controlled by a clock frequency.

The book consists of eight chapters. Chapter 1 gives a brief overview of several circuit design techniques proposed to enable highly programmable and tunable front-end filters

xii Preface

integrated with the rest of the CMOS RF IC. In this chapter, the system-level requirements of the radio front ends are discussed. The main focus is on cellular applications, which are the most challenging realization of an SDR or a cognitive radio.

Chapter 2 discusses active blocker-cancellation techniques and shows how these techniques enable SAW-less receivers.

Chapters 3 through 5 introduce new on-chip filters (M-phase filters) that outperform all other types of filters in terms of linearity, noise, and power consumption. The remainder of the book is dedicated to learning and understanding these M-phase filters with all possible formats. The operation of these M-phase filters is founded on the impedance transformation property of passive mixers.

Chapter 6 describes a highly integrated superheterodyne CMOS receiver that uses M-phase filters to deal with blockers. Chapter 7 addresses the robustness of the M-phase filters against various imperfections. Chapter 8 describes how the dual of the conventional M-phase filter can offer sharp filtering for low-impedance nodes.

We are deeply grateful to Richard Carter and Raphael Alden for proofreading and editing the book and for their fruitful comments. Many useful technical discussions with Mohyee Mikhemar and David Murphy are greatly appreciated. We would also like to thank Julie Lancashire and Elizabeth Horne of Cambridge University Press for their support.