Duplicity Theory of Vision

The duplicity theory of vision concerns the comparisons (both differences and similarities) and interaction between the cone and rod systems in the visual pathways, with the assumption that the cone system is active during daylight vision and the rod system functions in low light (night vision). Research on this aspect of vision dates back to the seventeenth century and the work of Newton, and is still ongoing today. This book describes the origin and development of this fundamental theory within vision research – whilst also examining the Young-Helmholtz trichromatic colour theory, and the opponent colour theory of Hering – and presents evidence and ideas in the light of modern conceptions of the theory. Written for academic researchers and graduate students, the book reviews knowledge of the tradition of duplicity theory, inspiring questions related to anatomy, comparative biology, molecular biology, photochemistry, physiology, genetics, phylogenetics and psychophysics.

Bjørn and Ulf Stabell have worked in close collaboration on vision research at the Institute of Psychology, University of Oslo, since 1964. For 45 years their research has focussed on questions related to the duplicity theory of vision, publishing over 70 papers. Since 1986, the Stabells have been recipients of State Scholarships of Norway. During the first years of their studies they used a Hecht and Schlaer adaptometer (the 1938 version), being inspired by the papers of P. Saugstad and A. Saugstad [1959] and I. Lie [1963]. In 1970 a copy of W. D. Wright’s colorimeter at Imperial College of Science, London, became available at the institute [built by B. Hisdal]. Now W. D. Wright’s and J. D. Moreland’s well-known papers became the main focus of their interest. These authors had developed ingenious methods for investigating colour vision in the extrafoveal retina. By using the new Wright colorimeter and by modifying their methods somewhat, it was possible to obtain accurate data on sensitivity and colour vision functions from all regions of the retina, even from its most peripheral parts.
Duplicity
Theory of Vision
From Newton to the Present

Edited by

BJØRN STABELL AND ULF STABELL
To Kirsten and Kari
Contents

Acknowledgements
page xiii

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Roots of the duplicity theory of vision: Ancient Greeks</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Further development of the duplicity theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Part I The development of the basic ideas of the duplicity theory from Newton to G. E. Müller</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>The Newton tradition</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1 Newton's universal colour theory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2 An alternative to Newton's theories of light and colour</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.3 Phototransduction in the retina and signal transmission to the brain: Newton's speculations</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.4 Newton's gravitation principle applied to colour mixture data</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.5 Conclusions</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.6 Young's colour theory: three instead of seven primaries</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.7 Maxwell: triplicity of colour vision proved</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.8 Helmholtz: the Young-Helmholtz colour theory</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>The Schultze tradition</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.1 The duplicity theory of Max Schultze</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2 Evidence in favour of the theory</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.3 One or several types of cone?</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3.4 Phototransduction is photochemical in nature: Boll and Kühne</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3.5 Boll: discovery of rhodopsin as a visual photopigment</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3.6 Kühne: several photochemical substances in the retina</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3.7 Phototransduction of rhodopsin</td>
<td>29</td>
</tr>
</tbody>
</table>
viii CONTENTS

3.8 Parinaud and König: early reformulations of the duplicity theory 29
3.9 The duplicity theory of Parinaud 30
3.10 König: rhodopsin is the mediator of night vision – a conclusive proof 32
3.11 The duplicity theory of König 32
3.12 The duplicity theory of von Kries 34
3.13 An attempt to unify the theories of Schultze and Young-Helmholtz 38

4 The Goethe tradition: the phenomenological approach 41
4.1 Phenomenological analysis may reveal underlying material processes 41
4.2 The colour theory of J. W. von Goethe 42
4.3 Goethe’s contribution 44
4.4 The colour theory of Ewald Hering 45
4.5 Experiments in support of Hering’s colour theory 49
4.6 Contributions of Hering 50

5 The colour theories of Armin Tschermak and George Elias Müller 52
5.1 The colour theory of Tschermak 52
5.2 The duplicity theory of G. E. Müller 53
5.3 Evaluation of G. E. Müller’s colour theory 59

Part II The development of the duplicity theory from 1930–1966 61

6 The duplicity theory of Polyak 62
6.1 Trichromacy of colour vision explained by three types of bipolar cell 63
6.2 Midget ganglion cells as synthesizers 65
6.3 The specific fibre-energy doctrine questioned 65
6.4 Applications of Polyak’s colour theory 66
6.5 Common pathways of rods and cones 67
6.6 Explanations of acuity and sensitivity differences between rods and cones 69
6.7 The functional potentials of the synaptic arrangement 70
7 Investigations of H. K. Hartline and S. W. Kuffler
7.1 The electrical responses to light stimuli in single optic nerve fibres
7.2 The electrical responses in single optic nerve fibres of *Limulus*
7.3 The electrical responses in single optic nerve fibres of the frog
7.4 Receptive field organization of rods and cones: Kuffler’s investigation

8 The duplicity theory of R. Granit
8.1 Supporting evidence for the duplicity theory from the ERG technique
8.2 The dominator-modulator theory
8.3 Schultze’s duplicity theory challenged

9 Contributions of E. N. Willmer, P. Saugstad & A. Saugstad, and I. Lie
9.1 The duplicity theory of Willmer
9.2 Saugstad and Saugstad: evaluation of Schultze’s duplicity theory
9.3 Ivar Lie: interactions between rod and cone functions at mesopic intensity

10 Status of the duplicity theory in the mid 1960s and its further development
10.1 Elaboration and revision of the two most basic assumptions of Schultze’s duplicity theory

Part III Chromatic rod vision: a historical account

11 Night vision may appear bluish
12 Mechanisms of chromatic rod vision in scotopic illumination
12.1 All principle hues may be observed in scotopic vision 113
12.2 Scotopic contrast colours are triggered by rod signals 114
12.3 Scotopic contrast colours depend on selective chromatic adaptation of cones 115
12.4 Scotopic hues explained 116
12.5 Modifications of Hering’s opponent colour theory 118

13 Rod-cone interactions in mesopic vision 120
13.1 Rod-cone interactions under mesopic conditions in a chromatically neutral state of adaptation 120
13.2 Rod-cone interactions under mesopic conditions in a chromatic state of adaptation 122

14 Further exploration of chromatic rod vision 124
14.1 Contribution of J. J. McCann and J. L. Benton 124
14.2 Contribution of P. W. Trezona 126
14.3 Contribution of C. F. Stromeyer III 127
14.4 Contribution of S. Buck and co-workers 128
14.5 Contribution of J. L. Nerger and co-workers 129

Part IV Theories of sensitivity regulation of the rod and cone systems: a historical account 131

15 Introduction 132

16 Early photochemical explanations 133

17 Contribution of S. Hecht 135
17.1 Hecht’s photochemical theory 135
17.2 Supporting evidence obtained from invertebrates 136
17.3 Supporting evidence obtained from psychophysical experiments 137

18 Contribution of G. Wald: photochemical sensitivity regulation mechanisms of rods and cones 140
18.1 Molecular basis of bleaching and regeneration of photopigments in rods and cones 140
18.2 Serious challenges to the photochemical theory 144
18.3 The neural factor refuted 144

19 Relationship between amount of rhodopsin and sensitivity during dark adaptation 147
19.1 Results of Tansley 147
19.2 Results of Granit 147
19.3 Granit’s explanation 148
19.4 Wald’s explanation: compartment theory 149
19.5 A logarithmic relationship between sensitivity and amount of bleached photopigment 152
19.6 Contribution of J. E. Dowling 153
19.7 Contribution of W. A. H. Rushton: relationship between sensitivity and amount of bleached rhodopsin in humans 154

20 Post-receptor sensitivity regulation mechanisms 157
20.1 Psychophysical evidence 157
20.2 Anatomical and electrophysiological evidence 158

21 Rushton’s AGC model 160
21.1 Each receptor type has a separate and independent adaptation pool 160
21.2 Are light and dark adaptation really equivalent? 162
21.3 A decisive experiment 163
21.4 The adaptation mechanisms explored by the after-flash technique 164
21.5 Limitations of Rushton’s photochemical theory 166

22 Contribution of H. B. Barlow 169
22.1 Dark and light adaptation based on similar mechanisms 169
22.2 Both noise and neural mechanisms involved 169
22.3 Evidence in support of the noise theory 170
22.4 Opposing evidence 171
22.5 Sensitivity difference between rods and cones explained 172

23 Rushton and Barlow compared 174
xii CONTENTS

24 The Dowling-Rushton equation refuted 175
 24.1 Contribution of T.D. Lamb 175
 24.2 The search for a new formula 177
 24.3 Differences between rod and cone dark adaptation 179
 24.4 Light and dark adaptation are not equivalent 180
 24.5 Allosteric regulation of dark adaptation 181
 24.6 A search for the allosteric adaptation mechanisms 182

25 Several mechanisms involved in sensitivity regulation 186

26 Sensitivity regulation due to rod-cone interaction 190

27 Modern conceptions of sensitivity regulation 192

Part V Factors that triggered the paradigm shifts in the development of the duplicity theory 195

28 Summary of K.R. Popper's and T.S. Kuhn's models of scientific development 199

29 The development of the duplicity theory as a test of Popper's and Kuhn's models 203

References 207
Index 221
Acknowledgements

We gratefully acknowledge the expert guidance during the whole publication process by the editors and publication staff of Cambridge University Press: Martin Griffiths [Commissioning Editor, Neuroscience & Animal Behaviour], Stacey Meade [Publishing Assistant], Alison C. Evans [Assistant Editor, Life Sciences], and Jonathan Ratcliffe [Production Editor]. Furthermore, we want to thank Judith Shaw [freelance copy-editor for Cambridge University Press], who presented many relevant queries, offered valuable advice and constructive criticism, and copy-edited the typescript of the book. Lastly, we want to thank Kirsten E. Stabell for her help in solving many intricate linguistic problems and for excellent and faithful secretarial assistance during the publication process.