Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun’s variability, the surrounding heliosphere, and the environment and climate of the planets. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever increasing rate. The Sun, a magnetically variable star and, for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences.

This volume, the first in a series of three heliophysics texts, integrates these diverse topics the first time as a coherent intellectual discipline, providing a core resource for courses and seminars at the advanced undergraduate and graduate level. It emphasizes the physical processes that couple the realm of the Sun to that of our planet and provides insights into the interaction of the solar wind and radiation with the Earth’s magnetic field, atmosphere, and climate system. In addition to its utility as a textbook, it also constitutes a foundational reference for researchers in the fields of heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science, and climate science. Additional online resources, including lecture presentations and other teaching materials, can be accessed at www.cambridge.org/9780521110617.

Carolus J. Schrijver is an astrophysicist studying the causes and effects of magnetic activity of the Sun, and of stars like the Sun, and the coupling of the Sun’s magnetic field into the surrounding heliosphere. He obtained his doctorate in physics and astronomy at the University of Utrecht in The Netherlands in 1986 and has since worked for the University of Colorado, the US National Solar Observatory, the European Space Agency, and the Royal Academy of Sciences of the Netherlands. Dr Schrijver is currently principal physicist at Lockheed Martin’s Advanced Technology Center, where his work focuses primarily on magnetic field in the solar atmosphere. He is an editor or editorial board member of several journals including Solar Physics, Astronomical Notices, and Living Reviews in Solar Physics, and has co-edited three other books.

George L. Siscoe received his Ph.D. in physics from the Massachusetts Institute of Technology (MIT) in 1964. He has since held positions at the California Institute of Technology, MIT, and the University of California, Los Angeles – where he was Professor and Chair of the Department of Atmospheric Sciences. He is currently a Research Professor the Astronomy Department at Boston University. Professor Siscoe has been a member and chair of numerous international committees and panels and is on the editorial board of Journal of Atmospheric and Solar Terrestrial Physics. He is a Fellow of the American
HELIOPHYSICS: PLASMA PHYSICS OF THE LOCAL COSMOS

Edited by

CAROLUS J. SCHRIJVER
Lockheed Martin Advanced Technology Center

GEORGE L. SISCOE
Boston University
Contents

Prologue

Carolus J. Schrijver and George L. Siscoe

1.1 A voyage through the local cosmos
1.2 Magnetic field: a unifying force within heliophysics
1.3 The three-volume series
1.4 Additional resources
1.5 Editors’ note

Introduction to heliophysics

Thomas J. Bogdan

2.1 Preamble
2.2 What is heliophysics?
2.3 The language of heliophysics
2.4 The creation and annihilation of magnetic field
2.5 Magnetic coupling
2.6 Spontaneous formation of discontinuities
2.7 Explosive energy conversion
2.8 Generation of penetrating radiation
2.9 Concluding thoughts

Creation and destruction of magnetic field

Matthias Rempel

3.1 Introduction – magnetic fields in the universe
3.2 Magnetohydrodynamics
3.3 The dynamo problem
3.4 Mean-field theory
3.5 Limitations of mean-field approximation, 3D simulations
Magnetic field topology 77
Dana W. Longcope

1. Magnetic field lines 78
2. Regions of different topology 91
3. Magnetic helicity 99

Magnetic reconnection 113
Terry G. Forbes

1. Preamble 113
2. Basic concepts 113
3. Reconnection in two dimensions 122
4. Reconnection in three dimensions 131
5. Topics for future research 137

Structures of the magnetic field 139
Mark B. Moldwin, George L. Siscoe, and Carolus J. Schrijver

1. Preamble 139
2. Current sheets in cosmic plasmas 140
3. Magnetic flux tubes 145
4. Definition of a flux tube 146
5. Definition of a flux rope 149
6. Flux ropes at other planets 156
7. Magnetic cells 159
8. Summary 161

Turbulence in space plasmas 163
Charles W. Smith

1. Preamble 163
2. Introduction 164
3. What observations characterize the solar wind? 167
4. The Navier–Stokes equation and hydrodynamic turbulence 172
5. Magnetohydrodynamic fluid turbulence 176
6. The spectrum of interplanetary turbulence 180
7. Non-Gaussianity in turbulent space plasmas 190
8. Turbulence in the solar corona and solar wind acceleration 191
9. Interstellar turbulence 193
10. Conclusion 194

The solar atmosphere 195
Viggo H. Hansteen

1. Introduction 195
2. The photosphere 200
3. The high-\(\beta\) chromosphere 204
Contents

8.5 Forward modeling of the outer solar atmosphere 216
8.6 The way forward 222

Stellar winds and magnetic fields 225
Viggo H. Hansteen
9.1 A pocket history 226
9.2 The Parker spiral 228
9.3 Some solar wind properties 230
9.4 A pocket history, continued 231
9.5 An interlude with Alfvén waves 233
9.6 The coronal helium abundance and the proton flux 236
9.7 The energy budget of the solar wind 238
9.8 A simple experiment 240
9.9 Solar wind models that include the chromosphere 243
9.10 Discussion and conclusions 248

Fundamentals of planetary magnetospheres 256
Vytenis M. Vasyliūnas
10.1 Introduction 256
10.2 Definitions and classifications 257
10.3 Interaction of solar wind with a planetary magnetic field 258
10.4 Plasma flow and magnetosphere–ionosphere interaction 265
10.5 Plasma sources and transport processes 277
10.6 Scaling relations for magnetospheres 285

Solar-wind–magnetosphere coupling: an MHD perspective 295
Frank R. Toffoletto and George L. Siscoe
11.1 Introduction 295
11.2 Global MHD models 296
11.3 The solar wind at Earth 300
11.4 Magnetosheath modeling 302
11.5 Forces on the magnetosphere 310
11.6 Magnetospheric convection 317
11.7 Energy flow in the magnetosphere 320
11.8 Summary 322

On the ionosphere and chromosphere 324
Tim J. Fuller-Rowell and Carolus J. Schrijver
12.1 Introduction 324
12.2 Forces and flows in the neutral atmosphere 325
12.3 Neutral-gas mixing, fractionation, and global circulation 330
12.4 Energy input and dissipation 333
12.5 Ionization fraction 336
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7 Outstanding issues and science questions</td>
<td>349</td>
</tr>
<tr>
<td>12.8 Comparing the Sun’s chromosphere and Earth’s ionosphere</td>
<td>351</td>
</tr>
<tr>
<td>13 Comparative planetary environments</td>
<td>360</td>
</tr>
<tr>
<td>Frances Bagenal</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>360</td>
</tr>
<tr>
<td>13.2 Jupiter</td>
<td>375</td>
</tr>
<tr>
<td>13.3 Saturn</td>
<td>384</td>
</tr>
<tr>
<td>13.4 Uranus and Neptune</td>
<td>388</td>
</tr>
<tr>
<td>13.5 Mercury and Ganymede</td>
<td>390</td>
</tr>
<tr>
<td>13.6 Objects without dynamos</td>
<td>391</td>
</tr>
<tr>
<td>13.7 Outstanding questions</td>
<td>398</td>
</tr>
<tr>
<td>Appendix I: Authors and editors</td>
<td>399</td>
</tr>
<tr>
<td>List of illustrations</td>
<td>401</td>
</tr>
<tr>
<td>List of tables</td>
<td>406</td>
</tr>
<tr>
<td>References</td>
<td>407</td>
</tr>
<tr>
<td>Index</td>
<td>428</td>
</tr>
</tbody>
</table>

The plates are to be found between pages 406 and 407.
Over the past few centuries, our awareness of the coupling between the Sun’s variability and the Earth’s environment, and perhaps even its climate, has been advancing at an ever increasing rate. The Sun is a magnetically variable star and, planets with intrinsic magnetic fields, planets with atmospheres, or planets Earth with both, there are profound consequences and impacts. Today, the successful increase in knowledge of the workings of the Sun’s magnetic activity, the recognition of the many physical processes that couple the realm of the Sun our galaxy, and the insights into the interaction of the solar wind and radiation with the Earth’s magnetic field, atmosphere and climate system have tended to differentiate and insularize the solar heliospheric and geo-space sub-disciplines of the physics of the local cosmos. In 2001, the NASA Living With a Star (LWS) program was initiated to reverse that trend.

The recognition that there are many connections within the Sun–Earth systems approach has led to the development of an integrated strategic mission plan and a comprehensive research program encompassing all branches of solar, heliospheric, and space physics and aeronomy. In doing so, we have developed an interdisciplinary community to address this program. This has raised awareness and appreciation of the research priorities and challenges among LWS scientists and has led to observational and modeling capabilities that span traditional discipline boundaries. The successful initial integration of the LWS sub-disciplines, under the newly coined term “heliophysics”, needed to be expanded into the early education of scientists. This series of books is intended to do just that: aiming at the advanced undergraduate and starting graduate-level students, our aim is to teach heliophysics as a single intellectual discipline. Heliophysics is important both as a discipline that will deepen our understanding of how the Sun drives space weather and climate at Earth and other planets and also as a discipline that studies universal astrophysical processes with unrivaled resolution and insight possibilities. The goal
Preface

of this series is to provide seed materials for the development of new researchers and new scientific discovery.

Richard Fisher, Director of NASA's Heliophysics Division
Madhulika Guhathakurta, NASA/LWS program scientist

Heliophysics

helio-, prefix, on the Sun and environs; from the Greek helios.
physics, n., the science of matter and energy and their interactions.

Heliophysics is the

- comprehensive new term for the science of the Sun–solar-system connection.
- exploration, discovery, and understanding of our space environment.
- system science that unites all the linked phenomena in the region of the cosmos influenced by a star like our Sun.

Heliophysics concentrates on the Sun and its effects on Earth, the other planets of the solar system, and the changing conditions in space. Heliophysics studies the magnetosphere, ionosphere, thermosphere, mesosphere, and upper atmosphere of the Earth and other planets. Heliophysics combines the science of the Sun, corona, heliosphere and geospace. Heliophysics encompasses cosmic rays and particle acceleration, space weather and radiation, dust and magnetic reconnection, solar activity and stellar cycles, aeronomy and space plasmas, magnetic fields and global change, and the interactions of the solar system with our galaxy.