Contents

Preface xi

Part I CHEMICAL AIMS IN LIGAND-FIELD STUDIES 1

1 Decline and recovery 3
1.1 The promise 3
1.1.1 Magnetic properties of ions with formal, orbital triplet ground states 7
1.2 Larger bases 10
1.3 The axial-field symmetry 14
1.4 Rhombic symmetry 15
1.5 Low-symmetry fields 17
1.6 Symmetry-based, ligand-field parameters 19
1.7 The point-charge model 21
1.8 A nadir in magnetochemistry 22
1.9 The angular overlap model 24
1.10 The chemical appeal of the AOM 29
1.11 The AOM as a perturbation model 30
1.12 The magnitudes of AOM parameters 31
1.13 Spectroscopy and magnetism together 32

References 35

Part II MAGNETISM 37

2 Electric and magnetic fields 39
2.1 Coulomb’s law, the principle of superposition and electric fields 39
2.2 Flux and divergence 42
2.3 Circulation and curl 50
2.4 The field gradient, potentials and curl-free fields 55
2.5 Some basic phenomena of magnetostatics 58
2.6 Electric charge invariance 60
Contents

2.7 Electric fields measured in different reference frames 62
2.8 The force on a moving charge in an electric field 67
2.9 The magnetic force 69
2.10 The magnetic field 73
2.11 Properties of magnetic fields 74
2.12 Induction 77
2.13 Maxwell’s equations 80

References 81

3 The interaction of magnetic fields and matter 82
3.1 The magnetic vector potential 82
3.2 The Biot–Savart law 84
3.3 Current loops and magnetic dipoles 86
3.4 A current loop in a uniform external magnetic field 92
3.5 A current loop in an inhomogeneous external magnetic field 93
3.6 The phenomenological interaction of magnetic fields and matter 96
3.7 Magnetic moments and electronic angular momenta 97
3.8 Diamagnetism and the Larmor precession 99
3.9 Magnetization 104
3.10 Free and bound currents: the field H 108
3.11 Units, dimensions and nomenclature 110
3.12 The macroscopic mean field inside a magnetized sample 111
3.13 Fictitious magnetic sources and the field H 113
3.14 Definitions of magnetic susceptibility and permeability 118
3.15 A magnetizable sphere in a uniform field 119
3.16 The shape of a magnetizable sample 124
3.17 The local field 125
3.18 Generalized coordinates: the Lagrangian and Hamiltonian functions 126
3.19 The classical dynamics of molecular electrons in external fields 129
3.20 Elements of Langevin’s susceptibility formula 132
3.21 Vanishing classical magnetism 135

References 140

4 The susceptibility tensor 141
4.1 The tensor property 142
4.2 Transformation of the susceptibility tensor 143
4.3 Summary of transformation laws 144
4.4 Tensor rank and the physical relationship between M and H 145
4.5 Principal axes 147
4.6 Crystal symmetry and special forms of the susceptibility tensor 149
4.7 Précis 152
4.8 The representation quadric 153
4.9 The magnitude of the susceptibility and the length of the radius vector 155
Table of Contents

Contents

4.10 The radius-normal property 156
4.11 The magnitude ellipsoid 157
4.12 An heuristic example 158
4.13 Molecular susceptibilities 161
4.14 The calculation of molecular susceptibilities from crystal measurements 168
4.15 Polar and axial vectors 170

References 173

5 Experimental arrangements 174
5.1 The force on a sample in an inhomogeneous field 176
5.2 The Gouy method 176
5.3 The Faraday method 179
5.4 A transverse field Faraday balance 183
5.4.1 Operation and calibration 186
5.4.2 Comments 189
5.5 The couple on an anisotropic crystal in a magnetic field 193
5.6 The critical-torque method 194
5.7 The null-deflection method 198
5.8 Crystal mounting and orientation 198
5.9 Calibration, sensitivity and accuracy 202
5.10 Induction methods 206
5.10.1 Vibrating-sample magnetometers 207
5.10.2 The superconducting, quantum-interference device (SQUID) 209
5.11 Crystal selection and orientation 212
5.12 Well-measurable quantities 214

References 216

6 The measurement of crystal susceptibilities 218
6.1 Uniaxial crystals 218
6.2 Orthorhombic crystals 219
6.3 Triclinic crystals 221
6.3.1 Transverse magnetic field 223
6.3.2 Checks, simplifications and limitations 225
6.3.3 The completed procedure 226
6.3.4 Longitudinal magnetic field 229
6.3.5 An example 230
6.4 Monoclinic crystals 233
6.5 Variation of the monoclinic φ angle with temperature 237

References 249

7 Quantum theory and magnetic susceptibilities 250
7.1 The spinless Schrödinger equation 250
7.2 The Pauli–Schrödinger equation 253
7.3 Pauli spin matrices 255
7.4 A review of spin theory 256
7.4.1 The Klein–Gordon equation 256
7.4.2 The Dirac equation 258
Contents

7.4.3 The emergence of spin 260
7.4.4 Electrons and positrons 262
7.4.5 An electron in an external electromagnetic field 265
7.4.6 The non-relativistic approximation and the spin magnetic moment 269
7.4.7 Relativistic corrections and spin-orbit coupling 270
7.4.8 Spin-orbit coupling matrix elements 273
7.4.9 The Darwin term 276
7.4.10 Many electrons 276
7.5 Time-reversal symmetry and Kramers’ degeneracy 278
7.5.1 Time inversion in classical mechanics 278
7.5.2 The antiunitary quantum operator 279
7.5.3 Complex conjugation 280
7.5.4 The square of the operator 281
7.5.5 The relevance of spin 283
7.5.6 Degeneracy 284
7.5.7 Microreversibility and magnetic fields 285
7.5.8 Some properties of time-conjugate vectors 286
7.6 Susceptibilities 287
7.6.1 Van Vleck’s diagonal susceptibility equation 287
7.6.2 Curie’s law and TIP 292
7.6.3 Diamagnetism 295
7.6.4 A generalized off-diagonal susceptibility equation 297
7.6.5 Saturation 303
7.7 Esr γ values for Kramers’ doublets 305
References 306

Part III LIGAND-FIELD THEORY

References 309
8 Tensor-operator theory 314
8.1 Rotation operators 315
8.2 Rotation matrices 321
8.3 Coupling of two angular momenta 324
8.3.1 Evaluation of Clebsch–Gordan coefficients 327
8.3.2 The 3–j symbol 328
8.4 The Clebsch–Gordan series 331
8.4.1 An important integral 333
8.5 Functions and operators 333
8.5.1 Scalar, vector and tensor operators 335
8.6 Tensor-operator commutators 336
8.7 Compound irreducible tensor operators 339
8.7.1 Scalar operators 341
8.7.2 Product tensors from spherical harmonics 342
8.8 The Wigner–Eckart theorem 345
8.8.1 Proof 345
8.8.2 Discussion 348
8.9 Coupling of three angular momenta 349
8.9.1 Properties of the recoupling coefficients 353
Contents

8.10 Coupling of four angular momenta 355
8.11 Reduced matrix elements of compound irreducible tensor operators 358
8.11.1 Scalar compound operators 360
8.11.2 Single-variable operators acting on coupled states 361
8.12 Decoupled operators 362
8.13 Coefficients of fractional parentage 363
8.14 Reduced matrix elements in many-electron systems 365
8.15 Unit tensor operators 367
8.16 MASTER EQUATIONS 369
8.16.1 The Coulomb interaction: (M.1) 369
8.16.2 The ligand-field potential: (M.2) and (M.3) 370
8.16.3 The magnetic moment operator: (M.4) 372
8.16.4 Spin-orbit coupling: (M.5) 374

References 375

9 The ligand field 376
9.1 Multipole expansions 376
9.2 Inversions of the multipole expansion 379
9.3 Localized potentials: the AOM as a ligand-field model 382
9.4 AOM rotation matrices 385
9.5 The relationship between the cellular and multipole expansions 386
9.6 The relationship within the local frame 388
9.7 The choice of method 389
9.8 The degree of parametrization within the AOM 391
9.9 Non-diagonal local potentials 400
9.10 Empty cells 402

References 402

10 Techniques for parametric models 403
10.1 Aims 403
10.2 Calculation of ligand-field properties 404
10.2.1 SETUP 405
10.2.2 SETUP input 411
10.2.3 RUN 413
10.2.4 Susceptibilities and g values 417
10.3 Comparison with experiment 423
10.3.1 A mapping technique 424
10.3.2 Search tactics 429
10.3.3 Fitting spectra 431
10.4 Alternative parametrization schemes 434
10.5 Alternative bases 436

References 443

11 The nature of ligand-field theory and of the angular overlap model 444
11.1 Introduction 444
11.2 Effective Hamiltonians 448
Contents

11.3 Group product functions 452
11.4 The basis orbitals 456
11.5 A primitive ligand-field parametrization 458
11.6 Parameter renormalization 462
11.7 The orbital reduction factor 468
11.8 The ligand-field formalism 470
11.9 Ligand-field orbitals 475
11.10 AOM parameters 483
11.11 The ligand-field potential 487
11.12 The additivity principle 490
11.13 The static contribution to AOM parameters 500
11.14 The dynamic contribution to AOM parameters 510
11.15 The potential in empty cells 513
11.16 Δ_{eq} and $10Dq$ 517

References 519

Part IV THE SYNTHESIS 521

12 Ligand-field analyses 523
12.1 Pyridine, quinoline and biquinoline complexes 523
12.1.1 Orientation of the principal molecular susceptibilities in $M(\text{py})_2(\text{NCS})_2$; $M = \text{Co(II)}$ and Fe(II) 526
12.1.2 Enlargement of the basis in the analysis of $[\text{Co(quinoline)Br}_3]^-$ 533
12.2 Phosphine complexes 534
12.2.1 Ligand-field parameters as properties of ground states 540
12.3 Seven-coordinate complexes 544
12.4 Further examples of metal-ligand complementarity 550
12.4.1 The magnetism of tetrahedrally coordinated nickel(II) complexes 553
12.5 Imine-type ligands 556
12.6 Ligand fields from lone pairs 560
12.7 Planar molecules – the anomalous energy of the d_{z^2} orbital 563
12.8 Conclusions 566

References 569

Appendix A Molecular geometry in the crystal 573
Appendix B Euler angles and direction cosines 575
Appendix C 3–j and 6–j symbols 577
Appendix D AOM transformations and f electrons 580
Appendix E Real ligand-field potentials 582
Appendix F Frame-independent discrepancy index 586
Index 588