Cambridge University Press

978-0-521-10771-6 - The Theory of Nuclear Magnetic Relaxation in Liquids
James McConnell

Excerpt

More information

1

Phenomenological theory of
relaxation

1.1 Nuclear magnetic relaxation

In order to establish a microscopic theory of nuclear magnetic relaxation
we first study the behaviour of an atomic nucleus in the presence of a
constant magnetic field H,, in a fixed direction, which we take to be the
positive z-direction. If the spin vector of the nucleus is the operator I, the
nuclear angular momentum operator m is expressed in terms of I by
(McConnell, 1960; Schiff, 1968)

m="Hl, (1.1)

where h is the Planck constant divided by 2z. The measured values of I are
the eigenvalues of I_, and these eigenvalues are numbers:

—1,—-I+1,—-1+2,...,1-1,1, (1.2)

where I is a positive integer or half-odd integer. We call I the spin of the
nucleus. Moreover the measured value of the total angular momentum
operator (mZ+m?+m?)"/? is {I(I+1)}!/*h.

A nucleus with spin angular momentum m has a permanent spin
magnetic moment g, given by

p=ym, (1.3)

where y is the gyromagnetic ratio of the nucleus. This is positive, if g and m
are parallel, and it is negative if they are antiparallel. A similar
phenomenon occurs in the case of the electron and for it the gyromagnetic
ratio is almost exactly the Bohr magneton eh/(2m.c), where e is the
electronic charge, m, the mass of the electron and ¢ the velocity light in
vacuo. If m_ is replaced by the mass m, of the proton, we have the nuclear
magneton Py

eh

B

= . 1.4
2myc (14

The nuclear magnetic moment is often expressed by

r=gpl, (1.5)
where g is a dimensionless quantity called the nuclear g factor. For the
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2 Phenomenological theory of relaxation

proton g is 2.7927 and for the neutron it is —1.913, the negative sign
indicating that the magnetic moment is in the direction opposite to that of
the spin angular momentum. The values of physical quantities will often be
taken from Royal Society (1975). The magnetic moment of the proton is
14106 x 10-26 )T 1,
For all nuclei the absolute value of g lies between 0.1 and 6
-approximately (Pople, Schneider & Bernstein, 1959). Since m, = 1836m,, it
follows from (1.4) and (1.5) that the ratio of a nuclear magnetic moment to
the electron magnetic moment is of order 10 ~~10~#. From (1.1), (1.3) and
(1.5) we see that

p=yhl=gp\l, (1.6)
so that the magnetic moments of different nuclei are specified by the values
of their spins and their g factors.

According to classical electrodynamics a nucleus with magnetic moment
punder the influence of a magnetic field of intensity H experiences a torque
uxH (McConnell, 1980b, p.2) and therefore its angular momentum m

satisfies
dm
= H
dt p#x
Hence, from (1.3),
du
L agis H). 1.7
ar (e x H) (1.7)

The Hamiltonian # for the interaction of the nucleus with the field is given
by (Jeans, 1933, p. 377)

H = _(.uxHx+HyHy+#sz)‘
On employing the quantum mechanical equations of motion

dm,
dt

=%(mex—mx]f),

etc., and the commutation relations
mym_—m.m,=ihm,,

etc. (McConnell, 1960), it is easily seen that (1.7) is valid also in quantum
theory.
Suppose that the magnetic field is in the z-direction and that its intensity
has the constant value H,. Then (1.7) yields
dp,

du du,
F{z’yﬂyHOs d_ty= _y.uxH()a F'ut‘=0 (18)
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Nuclear magnetic relaxation 3
Hence
d’u, 2 d*u
dtz = ~y2H0ux’ d_tZX: _'yzH(z):uy
and by suitably choosing time zero we may express the solution of (1.8) as
Uy =L, COS Wl, Hy= —H, sinwgl, Ko=) (1.9)
where
wo=7H, (1.10)

and p,, u are constants. Equations (1.9) show that the dipole axis of the
nucleus precesses about H, with angular velocity —w,. We call the motion

of the dipole Larmor precession, w, the Larmor angular frequency and v,
defined by

yH,

Yo
the Larmor frequency.
The energy of the nucleus in the presence of H,is — u,Hy, and according
to (1.2), (1.6) and (1.10) the energy levels are
Thwg, (I — Dhog, . .., — (I — Dhwgy, —Thw,. (1.12)
In principle these energy levels could be disturbed by the fields of
neighbouring nuclei. When we are interested only in liquids that are in
steady state thermal motion, the fields of the other nuclei will average out
and we may therefore accept (1.12) as providing the energy levels, if H, is
sufficiently strong. The energy difference between consecutive levels is
+ hw,. Hence in order to raise the nuclear spins from one level to the next
highest level we should irradiate the nuclei with electromagnetic waves of
frequency |vo| given by (1.11). Such a process is called nuclear magnetic
resonance absorption, and it gives rise to a sharp spectral line. In general the
study of magnetic resonance is concerned with observing transitions
caused by the field whose frequency corresponds to the Larmor precession
of the magnetic nuclei around a constant field. This frequency lies in the
radiofrequency (rf) range.
Since we are dealing with steady state motion, the populations of nuclei
in the various levels obey the Boltzmann distribution law

exp] —E,,/kT]
Zm’ exp[ - Em’/kT]
In the present case the values of the energies E,,- are given by (1.12) and let
us therefore put

(1.13)

E, = —m'yhH,, (1.14)
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4 Phenomenological theory of relaxation

where m’ assumes the values (1.2). We now consider the case of identical
nuclei, their number per unit volume being N. By symmetry the resultant
magnetization is in the z-direction. We obtain the magnetization M per
unit volume by averaging the magnetic moment yhm’ over the energy states
and multiplying by N. Hence, we deduce from (1.13) and (1.14) that

Y = s yhm' exp[yhm'Ho/kT]
S = _yexp[yhm’ H o /kT]

To estimate the magnitude of the exponent we put m’ equal to unity, take
H, equal to 1T and the nucleus to be a proton so that (Pople et al., 1959,
Appendix A) yH,=2nx4258x107s™!, put #=1.055x10"3*Js and
k=1.381x 1072*JK !, thus obtaining for room temperature (300 K)

M=N (1.15)

yhm'Hy  yhH,

=6.813x 10~° .
= o =6813%107, (1.16)

which is very much less than unity. On expanding the exponentials in (1.15)
we obtain approximately

hm'H
Nyhy! - '(1 P o
y Zm— Im + kT
M= .

ZI'——1<1+yhmlH0>

kT

Employing the results
I

I
Y 1=21+1, Y m'=0,
= m'=—1

m=-

1
I

m =31+ 1)1+ 1)
=1

we find that
Ny*h2I(I + 1
M_Lg H

WT o (1.17)

The multiplier of H , is the static nuclear susceptibility, which we write y,, so
that
_ Ny2R2I(I+1)

= 1.18
Xo KT ( )

The susceptibility is a macroscopic quantity which is expressed in terms

‘of microscopic quantities by (1.18). Since, from (1.6)

=y (1 + ),

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/9780521107716
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-10771-6 - The Theory of Nuclear Magnetic Relaxation in Liquids
James McConnell

Excerpt

More information

Nuclear magnetic relaxation 5
(1.18) is equivalent to
Nu?
= . 1.19
Xo 3T ( )

This is Curie’s law (Curie, 1895), which was established theoretically by
Langevin (1905). We see from (1.19) that the susceptibility is positive and
therefore, by definition, the collection of nuclei is paramagnetic. It is
moreover temperature dependent. The decrease in y, resulting from the
increase in temperature is due to the increased randomization of the
orientations of the dipoles. We also note that, on account of the ?-factorin
(1.19), the nuclear susceptibilities are of order 10~ to 10~ that of the
electron paramagnetic susceptibility.

When there is no external field, E,, vanishes by (1.14). Then the energy
levels have equal populations for steady state motion. When the external
field H, is effective, (1.13) shows that, when a steady state has been
attained, the populations of the various energy levels are different. This
means that the application of the external field produces changes in the spin
orientations, and this in turn produces an increase —(M-H,) of energy per
unit volume in the spin system. By (1.17) this quantity is negative and the
surplus energy must be dispersed throughout the environment composed
of the molecules which constitute the thermal motion. This environment is
called the lattice; this term is not confined to atoms in a crystal lattice but is
applied also to a liquid or a gaseous medium.

We shall now consider some effects of the mutual interactions of identical
nuclear spins on each other. If there is no external magnetic field, the
ensemble of spins will be in thermal equilibrium, there will be no
preferential direction for the spins, and hence M will be zero. If a constant
field Hy, in a fixed direction is applied, this will produce for each spin with
magnetic moment g an interaction energy —(u-H,). When thermal
equilibrium is attained, the spins will have a Boltzmann distribution
deduced from (1.13) by putting E,, = —(u-H,) and summing over the
spins. Thus the spins will be preferentially in states where (u+H,,) has large
values, and consequently M will be in the direction of H,,.

If the field is changed to another fixed value Hy, in the same direction, the
system is disturbed, the orientations of the dipoles will change and the new
magnetization M’ per unit volume will have a component M| in the
direction of Hy and a component M’ in a transverse direction. When the
system reaches a new steady state of equilibrium, the components will
satisfy

Mi=M', M| =0,
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6 Phenomenological theory of relaxation
where
M’ =yoHp

and y, is given by (1.18). The approach to such a state is called nuclear
magnetic relaxation. The approach of M| to its equilibrium value is called
longitudinal relaxation and the approach of M, to zero is called transverse
relaxation.

In the nuclear magnetic relaxation processes that we shall investigate a
system of particles having spins and magnetic moments is made to interact
with a strong constant field in the z-direction and also with a weak time
dependent perturbing field, the interaction Hamiltonian involving the
particle spins. If M, is the value of M, when equilibrium has been reached,
it is frequently found that M_ obeys an equation

dM M.—M,
=T . 1.20
dt T, (1.20)

The longitudinal relaxation is caused by the interaction of the spins with
the lattice and is therefore often called spin-lattice relaxation. T, is the spin—
lattice relaxation time or longitudinal relaxation time. Equation (1.20)
shows that M_— M, tends to zero with e ~"/"1,

While the motion is settling down to its steady state, the individual
magnetic particles precess about the z-axis. This precessional motion is
influenced by the internal field arising from interactions with spins of
neighbouring particles. This internal field does not contribute to the total
energy of the system. However, it has the effect that the particles do not all
precess with the same angular velocity, and so the transverse components
M,, M, tend to zero. If there exists an equation

dM M

T= T 1.21

dr T, (121)

and we are dealing with isotropic media, there will also be an equation
dM M

Y= 2 (1.22)
dt T,

T, is called the spin—spin relaxation time or transverse relaxation time.
Similarly transverse relaxation is called spin—spin relaxation. For solids it it
usually found that T; > T,, whereas for liquids T; =~ T,. The quantities
T, T;! are called relaxation rates.

1.2 The Bloch equations

We consider the time variations of the components of M, the magnetization
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The Bloch equations 7

per unit volume resulting from a constant magnetic field H in a fixed
direction. From (1.7) we deduce that

dM,
dt =y(MyH:_MzHy)ﬂ

Wy 1, - M), (123)

M,

TZV(MxHy_Mny)s

provided that the interactions of the spins between themselves and with
their environment are neglected. Bloch (1946) made two assumptions:

(a) In order to include the influence of the neglected interactions we
combine (1.20)—(1.22) with (1.23).
(b) H,, H,, H, need not be constants.

He thus proposed the Bloch equations:

dM, M,
dr _})(Msz_MzHy)+ T2 -0’
dm, M
—yM_.H,—M H)+-—-=0, 1.24
dt ’y( z X X Z)+ T2 ( )
dM M.—M,
I _yWMH,-MH)+———=0.
a TWMH,-MH)+ T,

These equations are phenomenological but are nevertheless very useful for
the study of nuclear induction.
Bloch considered the case of
H.=H, coswt, H,=—H, sinwt, H.=H, (1.25)
corresponding to a constant rotating rf field H, perpendicular to a constant
field H, and rotating about it in a clockwise direction. He supposed that
both H, and H, are positive and that H, € H,. On substituting (1.25) into
(1.24) we have

dM, . M,
dt _y(MyH0+MzH1 Slnwt)—+—?2-=0,
dM M
Y —y(M_H,coswt—M Ho)+—=2=0,  (1.26)
dt T,
dM M,-M
dtz +y(M_H, sin wt+ M H, cos a)t)+zT°=0,
1

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521107716
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-10771-6 - The Theory of Nuclear Magnetic Relaxation in Liquids
James McConnell

Excerpt

More information

8 Phenomenological theory of relaxation

To discuss (1.26) we transform to a new cartesian coordinate system shown
in Fig. 1.1 such that the z'-axis coincides with z-axis, the x'-axis is in the
direction of H; and consequently the y’-axis makes the angle wt with the y-
axis. We denote by u and v the components of M in the x'- and y'-
directions, respectively, so that

M, =ucoswt+vsin wt, M, = —usin wt +vcos wt, (127)
u=M, coswt—M, sin wt, v=M, sinwt+M,coswt. '
On substitution from (1.27) into (1.26) we deduce that
du u
a—((uo—w)lH—};:O,
v @ (0o —oh—yH M.+ =0 (1.28)
—_— — U — —_— = .
dt 0 yH z TZ ’
dM M.—M,
iy yH, v+ —— 00,
ar +yi, v+ T,
where yH,, is written w, according to (1.10). If in (1.24) we make the

substitutions
M, —u, M >, M.—M,

w
H —H,, H,—0, H,—Hj;——,
Y
Fig. 1.1 The coordinate system with x’-axis in the direction of the

constant rotating rf field H, . The positive third axis is perpendicular to
the plane of the paper and upwards.

y y'

wt X
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The Bloch equations 9

we obtain (1.28). Thus the Bloch equations hold in the rotating frame for
the effective field H, given by

He=H1i+<HO—%>k, (1.29)

where i, j, k are unit vectors in the directions of 0x’, 0y’, 0z'.

The spin-lattice relaxation time in the rotating frame T} , is defined as the
time of decay of the component of magnetization in the direction of H..
According to (1.29) this direction makes with 0z’ an angle 6 such that

yH,
Wy — w

tan 0=

The spin-spin relaxation time in the rotating frame is denoted by T,,. An
expression for T, in the case of weak collisions was derived by Jones
(1966).
The steady state solutions of (1.28) are found by putting the time

derivatives equal to zero, so that we have

u=(wo—wpT,,

v=—(wg—ouT,+yH,M_.T,,

M,=My,—yH,T,v.

It is easily found that

u vH, (0o —)T3
M, 1+(wo—w)*Ti+y?H?T, T,

v yH, T,
M, 1+(wo—w)?T2+y2H?T,T,
M, 1+ (wo—w)*T3
M, 1+(@o—0) T3+’ HiT,T,
It follows from (1.27) that
M, yH,T,{(w,—o)T,cos wt +sin wt}
M, 1+ (wo—w)’T3+y*HIT, T,

(1.30)

>

M, yH,T,{—(w,— )T, sin ot +cos wt} (1.31)

y

M,  l+(wo—w)*T2+y2HIT,T,

We use these results to examine the case of a constant external field H, in
the z-direction and a periodic rf field 2H, cos wt in the x-direction. This
system may be replaced by the H, and H, fields defined in (1.25) together
with an H, field rotating with angular velocity —w. Then, since we are
employing a linear theory, we obtain from (1.31)
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10 Phenomenological theory of relaxation

M, (0o — )T, cos wt +sin wt (wg+w)T, cos wt —sin wt
—=yH,T, _N2T2 4 L2[2 272, . 2[2 ’
M, 1+ (@o—w)*T5+y°H{T\ T, 1+(@e+w)Ty;+y*H{T\T,

(1.32)

Let us now consider resonance effects due to a weak periodic field
2H, coswt. Since the Larmor precession of the spins is clockwise,
resonance can arise only from the component of 2H, cos wt which results
from the rotation in the clockwise direction. Hence we neglect the second
term in the braces of (1.32), and M, is obtained from the first equation of
(1.31). Introducing from (1.10), (1.17) and (1.18)

yH,=wy, Mo=yoH,, (1.33)
where y, is the static nuclear susceptibility, we have

_ %00oH  Ta{(wo — )T, cos wt +sin ot}

M,= 1.34
¥ 1+ (0o — )’ T3 +y*HIT, T, ( )
Then writing
M, =2H, cos wt y'(w)+2H, sin wt y"(w) (1.35)
we see from (1.34) and (1.35) that
1 2
WoWolwo—w)T3
! = 9 136
) = o0 —w) T2+ 2 HeT, T, (136)
1
oo T2
"(w)= . 1.37
O = om0 T2 4202, T, (137)
If we put
x(w)=y (@) +iy" (@), (1.38)

where we call y(w) the complex magnetic susceptibility, then (1.35) may be
expressed as

M, =Re(2H y(w)e ™),
where Re denotes (real part of).

We return to the rotating system of Fig. 1.1 in order to derive an
expression for the time rate of absorption of energy per unit volume.
Employing the expression ux H; for the torque exerted on a magnetic
moment u by H, we see from (1.27) that H; produces on the nuclear spin
system a torque of moment —vH, per unit volume about the positive z-
axis. If ¢ = —wt, the angle through which the x'- and y’-axes have turned
about the z-axis, the work done per unit volume by H, is —vH ¢. Since we
are concerned with steady motion, dv/dt vanishes and the rate of work
done is vH ,; in other words, the power absorbed by the system is vH, .
From (1.30), (1.33) and (1.37) the power absorption b(w) is given by
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