FISHES
CAMBRIDGE MANUALS IN ARCHAEOLOGY

Series editors

Don Brothwell, University of London
Barry Cunliffe, University of Oxford
Stuart Fleming, University of Pennsylvania
Peter Fowler, University of Newcastle upon Tyne

Already published

J. D. Richards and N. S. Ryan, Data processing in archaeology
Simon Hillson, Teeth
Peter G. Dorrell, Photography in archaeology and conservation
Lesley Adkins and Roy Adkins, Archaeological illustration
Marie-Agnès Courty, Paul Goldberg and Richard MacPhail, Soils and micromorphology in archaeology

Cambridge Manuals in Archaeology are reference handbooks designed for an international audience of professional archaeologists and archaeological scientists in universities, museums, research laboratories, field units, and the public service. Each book includes a survey of current archaeological practice alongside essential reference material on contemporary techniques and methodology. Volumes on excavation and field survey and specific aspects of environmental archaeology are in preparation.
FISHES

Alwyne Wheeler
Formerly of Department of Zoology,
British Museum (Natural History)

and

Andrew K. G. Jones
Department of Biology,
University of York

Illustrations by
Rosalind Wheeler

Cambridge University Press
Cambridge New York Port Chester Melbourne Sydney
CONTENTS

<table>
<thead>
<tr>
<th>List of figures</th>
<th>page viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>x</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Introduction 1
2 Fishes and the archaeologist 4
 The importance of fishes to human economy 4
 Evidence of diet, economy and trade 7
 Evidence of environmental conditions 10
 The past distribution of fishes 11
 A blend of biology and archaeology 12
 The diversity of fishes 14
 Jawless fishes 14
 Cartilaginous fishes 16
 Bony fishes 17
3 Aspects of fish ecology 27
 Introduction 27
 Wild fish populations 28
 Faunistic zones 32
4 Methods of recovery 38
 Introduction 38
 Developing a sampling strategy 44
 Points involved in establishing an excavation strategy 44
 The selection of samples for environmental analysis 45
 The mechanics of collecting soil samples 48
 Storage of samples 49
 Practical methods of recovering bones from deposits 49
 Sieving 50
 The modified Sirâf tank 51
 Siting the tank 53
 Water supply 54
 Fitting the mesh and sieve 54
 Recording and labelling 55
Contents

Washing soil samples 55
Removing the flot 56
Removing the residue 56
Emptying the tank, cleaning and maintenance 57
Processing the washed soil samples 57
The most informative remains 58

5 Taphonomy 61
 Introduction 61
 Innate factors influencing bone survival 62
 Environmental factors influencing bone survival 63
 Steps in taphonomy 64
 Catching and selecting fish 64
 Processing fish on land 65
 Cut marks 65
 Consumption of fish 66
 Post-depositional changes 67
 Processing fish: decapitation, filleting 68
 What happens to the bones when fish are eaten? 69
 Implications for archaeology 74
 Animal occupation on sites 76
 Movement of bones by natural forces 78

6 Anatomy of agnathans and cartilaginous fishes 79
 Skeletal remains 79
 Teeth 81
 Dermal structures 83

7 The basic anatomy of bony fishes 87
 The fish skeleton 87
 Head bones 90
 Jaws and other tooth-bearing bones 90
 Toothed bones of the pharyngeal region 91
 Cranial bones 98
 Bones of the gill covers 98
 Bones at the junction of head and trunk 102
 Vertebral column 104
 Fin skeletons 110
 Otoliths 114
 Scales 116
 Aberrant fish bones 120
 Towards a standard nomenclature for fish remains 121

8 Approaches to studying archaeological assemblages 126
 Introduction 126
 Hand-collected material 128
 Sieved assemblages 130
Contents

9 Estimation of fish size
 Introduction
 Selection of the most appropriate bones
 The estimation of size
 Vertebrae as a guide to fish size
 Otoliths as a guide to fish size
 Scales as a guide to fish length
 Extrapolation of length from estimation of age
 Length/weight relationship and yield of flesh

10 Estimation of minimum numbers of individuals
 Introduction
 Single and paired skeletal elements
 Minimum numbers estimated from other remains
 The problem with fish remains for estimation of numbers
 Other objective assessments of numbers

11 Estimation of season of capture
 Introduction
 Seasonal growth
 Factors affecting growth
 Relating data from study of recent fishes to archaeological material
 Assessment of seasonality from ecological information

12 Interpretation of fishing activity
 Introduction
 Faunistic interpretation
 Elaboration of fishing techniques

13 Reference collections
 Introduction
 Preparation of skeletons
 Storage of fish reference collections

14 Future directions for research

References

Index
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The diversity of fishes – Myxiniformes to Amiiformes</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The diversity of fishes – Anguilliformes to Siluriformes</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>The diversity of fishes – Salmoniformes to Perciformes (Percidae)</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>The diversity of fishes – Perciformes (Carangidae) to Tetraodontiformes</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>The flow of energy and materials through several trophic levels in an estuary in Florida</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Medieval fish bone assemblages</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Concentrations of medieval fish remains from Norwich</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>The modified Sīrāf tank</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Diagrammatic view of the modified Sīrāf tank</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>Animal damage to bones</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Effects of mastication on fish bone</td>
<td>75</td>
</tr>
<tr>
<td>6.1</td>
<td>Vertebral centrum of the smooth hound, Mustelus asterias</td>
<td>80</td>
</tr>
<tr>
<td>6.2</td>
<td>Shark teeth, showing tooth succession and variation in shape</td>
<td>82</td>
</tr>
<tr>
<td>6.3</td>
<td>Teeth in skates and rays</td>
<td>83</td>
</tr>
<tr>
<td>6.4</td>
<td>Modified dermal denticles in cartilaginous fishes</td>
<td>84</td>
</tr>
<tr>
<td>7.1</td>
<td>Perch, Perca fluviatilis</td>
<td>88–9</td>
</tr>
<tr>
<td>7.2</td>
<td>Cod, Gadus morhua (head)</td>
<td>92–3</td>
</tr>
<tr>
<td>7.3</td>
<td>Premaxilla and maxilla bones of members of the order Gadiformes</td>
<td>94</td>
</tr>
<tr>
<td>7.4</td>
<td>Dentary and articular bones of members of the order Gadiformes</td>
<td>95</td>
</tr>
<tr>
<td>7.5</td>
<td>Prevomer bones of members of the order Gadiformes</td>
<td>96</td>
</tr>
<tr>
<td>7.6</td>
<td>Pharyngeal bones</td>
<td>97</td>
</tr>
<tr>
<td>7.7</td>
<td>Cod, Gadus morhua (neurocranium)</td>
<td>99</td>
</tr>
<tr>
<td>7.8</td>
<td>Cod, Gadus morhua (outer branchial skeleton)</td>
<td>100</td>
</tr>
<tr>
<td>7.9</td>
<td>Cod, Gadus morhua (gill cover bones)</td>
<td>101</td>
</tr>
<tr>
<td>7.10</td>
<td>Pectoral and pelvic skeleton of a gadoid fish</td>
<td>103</td>
</tr>
<tr>
<td>7.11</td>
<td>Longnose gar, Lepisosteus osseus (vertebra)</td>
<td>104</td>
</tr>
</tbody>
</table>
Figures ix

7.12 Variation in teleostean vertebrae, both between orders and along the vertebral column 105
7.13 Vertebrae in active, powerfully swimming fishes 109
7.14 Tail fins of a shark and a bony fish 111
7.15 Fin spines in bony fishes 113
7.16 Sagittal otolith of whiting, *Merlangius merlangus* 116
7.18 Modified body scales of bony fishes 119
8.1 Record sheet used for fish bones at Environmental Archaeology Unit, University of York 132
9.1 Estimation of original fish length from the length of otoliths in cod, *Gadus morhua* 144
11.1 Length distribution of sagittal otoliths of saithe, *Pollachius virens*, from Cnoc Sligeach, Oronsay 158
13.1 Recommended measurements made on a fish before preparation of the skeleton 179
TABLES

4.1 Establishing an excavation strategy
5.1 Bone survival following consumption of fish by four species of mammal
5.2 Proportional survival of fish bones following ingestion by four species of mammal
5.3 Processes involved in the formation of archaeological fish assemblages
7.1 List of fish bone names
9.1 Correlation between otolith length, and length and weight of whiting, *Merlangius merlangus*
9.2 Length/weight relationship for five European marine food fishes

page 47

71

72

77

122–4

144

148
ACKNOWLEDGEMENTS

No book is the total unaided work of its authors. We both owe a debt to colleagues and friends who have provided advice, criticism, inspiration and learning which together have added to the knowledge which led to the preparation of this book. Both of us owe much to many friends in archaeology and ichthyology who have often (sometimes unwittingly) added to our knowledge of the two disciplines.

We both wish to acknowledge the effort made by our artist Roz Wheeler who has drawn, patiently discussed, and redrawn the illustrations, often in the small gaps of a busy life.

We have both benefited from the advice of Don Brothwell (Series Editor) and Peter Richards of Cambridge University Press, whose experience in archaeology and publishing respectively have always been at our disposal. Both have been remarkably patient in waiting for us to finish the book.

Andrew Jones would like to thank his colleagues at the Environmental Archaeology Unit, University of York, for numerous discussions and for their help in other ways. In particular, he would like to record his indebtedness to Julie Jones for reading the early chapters of the book (and in the past for tolerating so many unpleasant fishy smells).

Alwyne Wheeler wishes to thank Sita Fonseka for typing his share of the text with her usual accuracy and speed. He is also strongly indebted to Cicely Wheeler for providing the milieu in which thought and constructive writing are possible.

Julie Jones created the index; we would both like to thank her for making so important a contribution to the usefulness of the book.

Together we acknowledge the York Archaeological Trust for photographs of the tank in use in fig. 4.3, R. Hunter, Biology Department, University of York for drafting fig. 4.4, and Mads-Peter Heide-Jørgensen of Danbiu ApS, Hellerup, Denmark, for permission to reproduce fig. 9.1 from T. Härkönen's Guide to the otoliths of the bony fishes of the northeast Atlantic (1986). We are also grateful to Johannes Lepiksaar and Alfonso Rojo for helpful comments on bone element terminology.
PREFACE

Fishes have been an important source of food for hominids since at least Upper Pleistocene times. Unlike mammals and birds, their exploitation has mainly been by the capture of free-living individuals, the cultivation of fishes (although an ancient art) having been on only a local scale, chiefly in Asia and Europe, until the middle years of the twentieth century. The capture of free-living animals, often indiscriminately as to kind or size, has resulted in a greater diversity of species being used for food than is the case for other vertebrate groups. As there are more species of fishes than all mammals, birds, reptiles and amphibians worldwide (and generally within local faunas also), the problem of identifying fish remains in archaeological sites is complicated both by the wide range in size of fishes represented and by the number of species involved.

The study of fish remains has much to offer environmental archaeologists, especially those concerned with coastal, riverine and lacustrine sites. Properly handled and analysed, fish bones can provide information on the species exploited, and from a knowledge of the habitats of the fishes, the archaeologist can advance hypotheses concerning the methods used to capture the fish and the level of technology required to sustain such methods. Within limits, fish remains can also be used to establish the numbers and sizes of individuals, their body weight and sometimes seasonality of capture.

This book contains chapters concerned with the anatomy of fishes, in particular the hard structures of relevance to the archaeologist, the preparation of comparative skeletons of specimens and their curation, methods of recovery of fish remains, discussions of taphonomy, and aspects of fish ecology. The second chapter includes a world overview of the families of fishes of potential importance for food. Other topics discussed involve the estimation of size from the hard remains of fishes, the calculation of seasonality of capture from both ecological information and the analysis of fish growth, as well as the interpretation of fishing activity based on the analysis of fish remains.

The main thrust of the book is to give practical information as simply as possible. This is not a manual which puts forward theoretical approaches to fish archaeology using techniques culled from fisheries research. Such techniques are certainly valid in their own discipline but are based on the collection of data from thousands of specimens over a short period of time. Their
Preface

relevance to archaeological fish remains, which are often damaged, have a wide temporal distribution, and are rarely available in statistically significant quantity, is dubious. For this reason such techniques and methods are merely outlined here and their potential use to archaeologists is indicated, but the archaeologist is warned not to expect too much of them. While many of the examples used in this book are from European sites and fishes, the application of the information, especially of methods and techniques, is worldwide.

Above all, we hope that this book will prove useful to environmental archaeologists and will encourage and enable others to discover the fascination we have experienced during our dealings with the remains of ancient fishes.