At Olduvai Gorge in northern Tanzania natural erosion exposed a deep series of superimposed geological beds containing rich artefact and fossil assemblages spanning the last 1.8 million years. The site is famous as a result of excavations conducted there since 1951 under the direction of Mary Leakey and her husband, the late Louis Leakey.

The first definitive report on these excavations was published in 1965, followed by three further volumes over the next twenty-four years. Volume 5, written largely by Mary Leakey herself, is the last of these reports, and records the archaeological finds in the upper part of the Olduvai sequence from excavations carried out from the end of 1968 until 1971. The period covered here is from about 1.2 to 0.4 million years ago, and the finds include artefacts and faunal remains excavated from sites in Beds III, IV and the Masek Beds. The volume follows on from the archaeological record in Beds I and II published in 1971 in Volume 3 of the series.

In addition to the chapters by Mary Leakey, Richard Hay has written a brief summary of the geology as a background to the archaeology, Derek Roe provides a metrical analysis of the handaxes and cleavers, Paul Callow describes the technology and raw materials, and Peter Jones details experimental work on the manufacture and use of tools, in particular those associated with butchering and skinning. Celia Nyamweru's appendix describes the mapping out of the JK Pits archaeological site at Olduvai. An overview by Derek Roe sums up the entire volume and draws the contributions together, interpreting and expanding upon their conclusions.
OLDUVAI GORGE

VOLUME 5
Frontispiece: Olduvai Gorge, view across the Main Gorge
OLDUVAI GORGE

VOLUME 5

EXCAVATIONS IN BEDS III, IV

M. D. LEAKEY WITH D. A. ROE

WITH CONTRIBUTIONS BY
P. CALLOW, R. L. HAY, P. R. JONES,
CELIA K. NYAMWERU AND D. A. ROE

CAMBRIDGE UNIVERSITY PRESS
CONTENTS

List of figures viii
List of tables x
List of plates xi
Introductory Note xiii
Acknowledgements xv
List of abbreviations xvi

Introduction M. D. LEAKEY 1

1 Geology and dating of Beds III, IV and the Masek Beds R. L. HAY University of Illinois at Urbana-Champaign 8
2 Bed III. Site JK (Juma’s Korongo) M. D. LEAKEY 15
3 The base of Bed IV. WK Hippo Cliff, PDK Trench IV, WK Lower Channel M. D. LEAKEY 36
4 Lower Bed IV. HEB East, HEB and HEB West, WK Intermediate Channel M. D. LEAKEY 45
5 Upper Bed IV. WK Upper Channel, WK East A and C, PDK Trenches I–III, HEB West Level I M. D. LEAKEY 75
6 The Masek Beds and sites in uncertain stratigraphic positions M. D. LEAKEY 116
7 The fauna M. D. LEAKEY 130
8 A metrical analysis of selected sets of handaxes and cleavers from Olduvai Gorge D. A. ROE Donald Baden-Powell Quaternary Research Centre, University of Oxford 146
9 The Olduvai bifaces: technology and raw materials P. CALLOW University of Cambridge 235
10 Results of experimental work in relation to the stone industries of Olduvai Gorge P. R. JONES 254
11 Summary and overview D. A. ROE 299
Appendix A. Modified bones from Beds III and IV M. D. LEAKEY 311
Appendix B. Mapping of an archaeological site at Olduvai Gorge CELIA K. NYAMWERU St Lawrence University, New York 315

References 321
Index 323
FIGURES

Figures 2.3, 4.8, 5.3 and 5.18 are available for download from www.cambridge.org/9780521105200

Int. 1 Sketch map showing the sites excavated in Beds III, IV and the Masek Beds page 2

Int. 2 Diagrammatic section of Beds III, IV, and the Masek, Ndutu and Naisiusiu Beds to show the stratigraphic positions of the excavated sites and hominid remains 3

1.1 Map showing major geologic and topographic features in the area surrounding Olduvai Gorge 9

1.2 Palaeogeography of Bed III with inferred drainage pattern 11

1.3 Palaeogeography of Bed IV with inferred drainage pattern 11

1.4 Palaeogeography of the Masek Beds with inferred drainage pattern 13

2.1 Section from west to east along the main drainage channel in Beds III and IV from TK to JK 16

2.2 JK: the surface with pits and the surrounding area in the JK Gully 26

2.3 JK: contoured plan of pits and furrows 37

3.1 WK Hippo Cliff: plan showing positions of the hippo bones and associated finds 46

4.1 HEB East: section along the south face of the trench 66

4.2 HEB East: plan of finds above the channel (Spit 1) 67

4.3 HEB East: plan of finds in the upper part of the channel (Spit 2) 67

4.4 HEB East: plan of finds in the middle part of the channel (Spit 3) 68

4.5 HEB East: plan of finds in the lower part of the channel (Spit 4) 69

4.6 HEB East: graph to show proportionate occurrences of artefacts, faunal remains and cobbles at different levels in the channel 70

4.7 HEB and HEB West: plan of excavations and channels in Level 4 73

4.8 HEB and HEB West: section along the south face of the excavations 65

4.9 HEB West: plan of finds associated with the sand lens 76

5.1 Bed IV: section along the south side of the gorge showing sites PDK Trenches I–III, PDK Trench IV, WK East, the hippo butchery site and WK 76

5.2 WK: stratigraphic section showing positions of the three channels with artefacts 77

5.3 WK: plan of finds in the channels and on the eroded surface associated with the channel 83

5.4 WK: pitted anvils and hammerstones 83

5.5 WK East A: sections along north and east faces of Trench I and the Trial Trench 88

5.6 WK East A: plan of finds in the upper part of the channel filling (Spits 1 to 3) 88

5.7 WK East A: plan of finds in Spits 4 and 5 89

5.8 WK East A: plan of finds in the upper part of Spits 6 90

5.9 WK East A: plan of finds in Spits 6b (the middle part of Spits 6) 91

5.10 WK East A: plan of finds in the lower part of Spits 6 (Spit 6c) 92

5.11 WK East A: plan of finds in basal part of channel fill (Spits 6d and 7) 93

5.12 WK East A: graph to show proportionate occurrences of artefacts, faunal remains and cobbles in the channel 94

5.13 WK East A: sundry small tools 95

5.14 WK East A: punches 97

5.15 WK East A: pitted anvils and hammerstones 98

5.16 WK East C: section along the east face of the excavation 103

5.17 WK East C: graph to show proportionate occurrences of artefacts, faunal remains and cobbles in the channel 104

5.18 PDK Trenches I–III: plan of finds in the channel 117

6.1 FLK Masek Beds: section along the west face of the excavations 117

6.2 FLK Masek Beds: plan of finds in the lower part of the channel 117

6.3 FLK Masek Beds: superimposed outlines of five handaxes showing similarity in size and form 118

6.4 Scrapers from FLK Masek Beds 119

6.5 HK: section along north face of trench showing stratigraphic position of artefacts 124

6.6 TK Fish Gully: section to show the relationships of artefacts in situ to those in disturbed context 127

8.1 Measurements taken from the bifaces 152

8.2 (a) Framework for the handaxe-shape diagrams. (b) Array of plan-forms on the handaxe-shape diagrams 155

8.3 Framework for the cleaver-shape diagrams 156

8.4 Array of plan-forms on the cleaver-shape diagrams 157

8.5 Cleaver butt-shape symbols 157

8.6 Handaxe-shape diagrams: HK 205

8.7 Handaxe-shape diagram: TK FG 206

8.8 Handaxe-shape diagram: FLK Masek 207

8.9 Handaxe-shape diagram: PDK Trenches I–III 208
LIST OF FIGURES

8.10 Handaxe-shape diagram: WK East A 209
8.11 Handaxe-shape diagram: WK East C 210
8.12 Handaxe-shape diagram: WK 211
8.13 Handaxe-shape diagram: HEB West Level 2a 212
8.14 Handaxe-shape diagram: HEB West Level 2b 213
8.15 Handaxe-shape diagram: HEB West Level 3 214
8.16 Handaxe-shape diagram: HEB East 215
8.17 Handaxe-shape diagram: PDK Trench IV 216
8.18 Handaxe-shape diagram: BK 217
8.19 Handaxe-shape diagram: TK Upper Level 218
8.20 Handaxe-shape diagram: TK Lower Level 219
8.21 Handaxe-shape diagram: SHK 220
8.22 Handaxe-shape diagram: EF–HR 221
8.23 Handaxe-shape diagram: MLK 222
8.24 Cleaver-shape diagram: HK 223
8.25 Cleaver-shape diagram: FLK Masek 224
8.26 Cleaver-shape diagram: WK 225
8.27 Cleaver-shape diagram: HEB West Level 2a 226
8.28 Cleaver-shape diagram: HEB West Level 2b 227
8.29 Cleaver-shape diagram: HEB West Level 3 228
8.30 Cleaver-shape diagram: HEB East 229
8.31 Cleaver-shape diagram: PDK Trench IV 230
8.32 Cleaver-shape diagram: BK 231
8.33 Cleaver-shape diagram: SHK 232
8.34 Cleaver-shape diagram: EF–HR 233
8.35 Cleaver-shape diagram: MLK 234
9.1 Bifaces: areas of cortex, primary flake scar and secondary flaking 246
9.2 Bifaces: as Fig. 9.1B, but for the two most common raw materials 247
10.1 Sources and distribution of raw materials used for stone tools found at sites in Beds I–IV and the Masek Beds 255
10.2 Lava bifaces: charts showing tool frequency within weight classes and the range of edge lengths preserved on them 264
10.3 Lava bifaces: charts showing tool frequency in various weight categories and the range of edge length preserved on them 264
10.4 Phonolite bifaces: charts showing tool frequency in various weight categories and the range of edge length preserved on them 265
10.5 Quartzite bifaces: charts showing the tool frequency in various weight categories and the range of edge lengths preserved on them 266
10.6 The different average weight/edge-length relationships of basalt bifaces from Bed IV made on cores and on large flakes 268
10.7 Cross sections of quartzite slab bifaces as compared to a quartzite biface made on a large flake 269
10.8 The fourfold increase of shape and area as perimeter length is doubled and also the greater area of a circle than that of a slim triangle of the same perimeter length 270
10.9 Edge length available for use on a triangular and a disc-shaped tool 270
10.10 Percentages of blank types on which bifaces are made in Bed IV 272
10.11 The changing ratio of weight to edge length 272

of handaxes as they are re-sharpened several times 274
10.12 and 10.13 The maximum and minimum size ranges from sites in Bed I, Lower and Lower Middle Bed II for polychromes, spherocore and spheroids 276
10.14 The maximum and minimum size ranges for polychromes, subspheroids and spheroids from sites in Upper Middle and Upper Bed II 276
10.15 and 10.16 The maximum and minimum size ranges for polychromes and the subspheroid group from sites in Bed III and the base of Bed IV, and from Lower Bed IV 277
10.17 The maximum and minimum size ranges for polychromes and the subspheroid group for Upper Bed IV, Masek and post Masek sites 277
10.18 Weight frequency charts for subspheroids from Beds III, IV, Masek and post Masek sites 278
10.19 Weight frequency charts for subspheroids from Bed IV sites 279
10.20 Numbers of quartzite pieces with spherical index of 2 and less 280
10.21 Weight frequencies for Beds III, IV and the Masek Beds samples of subspheroids and hammerstones compared with hammerstones from P63 flaking floor 281
10.22 and 10.23 Scatter diagrams showing the width/length and thickness/length ratios for the outils écaillés and punches from JK, PDK Trench IV, HEB East, HEB West Level 1 and HEB Level 3 284
10.24 and 10.25 Scatter diagrams to show the width/length and thickness/length ratios of outils écaillés and punches from WK Upper and Intermediate Channels, WK East C and PDK Trenches I–III 285
10.26 Width/length and thickness/length ratios for outils écaillés and punches from WK East A 286
10.27 Comparable ratios for outils écaillés and punches from experimental flaking 286
10.28 How the concavo-convex edge is formed through battering the end of a flake 287
10.29 and 10.30 The three main ways in which flakes split while being battered 288
10.31 The two main ways in which an oval cobble can be held for bipolar flake battering 289
10.32 The angled pits produced on cobbles used for bipolar battering 290
10.33 The time required to penetrate elephant skin 1.5 cm thick with un-retouched flakes of quartzite, phonolite, basalt and chert 292
10.34 Rates of skin cutting by different flake types 293
A.1 Detail of map of the main Pits surface 314
A.2 Arrangement of surveyed strips on main Pits surface 316
A.3 Control points used for measuring a single strip 316
A.4 Modification to levelling staff in order to make measurements in narrow grooves 319
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Table Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Soil samples from Olduvai: the JK Pits and vicinity</td>
<td>33</td>
</tr>
<tr>
<td>7.1</td>
<td>List of fauna from sites excavated in Beds III, IV and the Masek Beds</td>
<td>131–2</td>
</tr>
<tr>
<td>7.2</td>
<td>List of all known fauna from Beds III, IV and the Masek Beds</td>
<td>133</td>
</tr>
<tr>
<td>7.3</td>
<td>Minimum number of individual mammals from sites excavated in Beds III, IV and the Masek Beds</td>
<td>134</td>
</tr>
<tr>
<td>7.4</td>
<td>Minimum numbers and percentages of mammals from sites excavated in Beds III, IV and the Masek Beds</td>
<td>134</td>
</tr>
<tr>
<td>7.5</td>
<td>Fauna from JK</td>
<td>135–6</td>
</tr>
<tr>
<td>7.6</td>
<td>Fauna from WK Lower Channel</td>
<td>137</td>
</tr>
<tr>
<td>7.7</td>
<td>Fauna from HEB East</td>
<td>138</td>
</tr>
<tr>
<td>7.8</td>
<td>Fauna from HEB and HEB West</td>
<td>139</td>
</tr>
<tr>
<td>7.9</td>
<td>Fauna from WK Intermediate Channel</td>
<td>140</td>
</tr>
<tr>
<td>7.10</td>
<td>Fauna from WK Upper Channel</td>
<td>141</td>
</tr>
<tr>
<td>7.11</td>
<td>Fauna from WK East A</td>
<td>142</td>
</tr>
<tr>
<td>7.12</td>
<td>Fauna from WK East C</td>
<td>143</td>
</tr>
<tr>
<td>7.13</td>
<td>Fauna from PDK Trenches I–III</td>
<td>143</td>
</tr>
<tr>
<td>7.14</td>
<td>Fauna from FLK Masek</td>
<td>144</td>
</tr>
<tr>
<td>8.1</td>
<td>The biface samples studied</td>
<td>150</td>
</tr>
<tr>
<td>8.2</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: length</td>
<td>158–9</td>
</tr>
<tr>
<td>8.3</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: weight</td>
<td>160–1</td>
</tr>
<tr>
<td>8.4</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: ratio Th/B</td>
<td>160–1</td>
</tr>
<tr>
<td>8.5</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: ratio T/L</td>
<td>162–3</td>
</tr>
<tr>
<td>8.6</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: ratio B/L</td>
<td>162</td>
</tr>
<tr>
<td>8.7</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: ratio B/L</td>
<td>164–5</td>
</tr>
<tr>
<td>8.8</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: ratio L/L</td>
<td>164–5</td>
</tr>
<tr>
<td>8.9</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: t-values and estimates of significance: length</td>
<td>166</td>
</tr>
<tr>
<td>8.10</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: t-values and estimates of significance: weight</td>
<td>167</td>
</tr>
<tr>
<td>8.11</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: t-values and estimates of significance: ratio Th/B</td>
<td>168</td>
</tr>
<tr>
<td>8.12</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: t-values and estimates of significance: ratio T/L</td>
<td>169</td>
</tr>
<tr>
<td>8.13</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: t-values and estimates of significance: ratio B/L</td>
<td>170</td>
</tr>
<tr>
<td>8.14</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: t-values and estimates of significance: ratio CEL/B</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>8.15</td>
<td>Metrical analysis of bifaces: handaxes and cleavers: t-values and estimates of significance: ratio L/L</td>
<td>173</td>
</tr>
<tr>
<td>8.16</td>
<td>Metrical analysis of bifaces: summary of all the statistical comparisons of the handaxe and cleaver samples</td>
<td>174–5</td>
</tr>
<tr>
<td>8.18</td>
<td>Metrical analysis of bifaces: handaxes: weight</td>
<td>174–5</td>
</tr>
<tr>
<td>8.19</td>
<td>Metrical analysis of bifaces: handaxes: ratio Th/B</td>
<td>176–7</td>
</tr>
<tr>
<td>8.20</td>
<td>Metrical analysis of bifaces: handaxes: ratio T/L</td>
<td>176–7</td>
</tr>
<tr>
<td>8.21</td>
<td>Metrical analysis of bifaces: handaxes: ratio B/L</td>
<td>176–7</td>
</tr>
<tr>
<td>8.22</td>
<td>Metrical analysis of bifaces: handaxes: ratio B/L</td>
<td>176–7</td>
</tr>
<tr>
<td>8.23</td>
<td>Metrical analysis of bifaces: handaxes: ratio L/L</td>
<td>178–9</td>
</tr>
<tr>
<td>8.24</td>
<td>Metrical analysis of bifaces: handaxes: t-values and estimates of significance: length</td>
<td>180</td>
</tr>
<tr>
<td>8.25</td>
<td>Metrical analysis of bifaces: handaxes: t-values and estimates of significance: weight</td>
<td>181</td>
</tr>
<tr>
<td>8.26</td>
<td>Metrical analysis of bifaces: handaxes: t-values and estimates of significance: ratio Th/B</td>
<td>182</td>
</tr>
<tr>
<td>8.27</td>
<td>Metrical analysis of bifaces: handaxes: t-values and estimates of significance: ratio T/L</td>
<td>183</td>
</tr>
<tr>
<td>8.28</td>
<td>Metrical analysis of bifaces: handaxes: t-values and estimates of significance: ratio B/L</td>
<td>184</td>
</tr>
<tr>
<td>8.29</td>
<td>Metrical analysis of bifaces: handaxes: t-values and estimates of significance: ratio B/L</td>
<td>185</td>
</tr>
<tr>
<td>8.30</td>
<td>Metrical analysis of bifaces: handaxes: t-values and estimates of significance: ratio L/L</td>
<td>186</td>
</tr>
<tr>
<td>8.31</td>
<td>Metrical analysis of bifaces: summary of all the statistical comparisons of the handaxe samples</td>
<td>187</td>
</tr>
<tr>
<td>8.32</td>
<td>Metrical analysis of bifaces: cleavers: length</td>
<td>188–9</td>
</tr>
<tr>
<td>8.33</td>
<td>Metrical analysis of bifaces: cleavers: weight</td>
<td>188–9</td>
</tr>
<tr>
<td>8.34</td>
<td>Metrical analysis of bifaces: cleavers: ratio Th/B</td>
<td>190–1</td>
</tr>
<tr>
<td>8.35</td>
<td>Metrical analysis of bifaces: cleavers: ratio T/L</td>
<td>190–1</td>
</tr>
<tr>
<td>8.36</td>
<td>Metrical analysis of bifaces: cleavers: ratio B/L</td>
<td>192</td>
</tr>
<tr>
<td>8.37</td>
<td>Metrical analysis of bifaces: cleavers: ratio B/L</td>
<td>192</td>
</tr>
<tr>
<td>8.38</td>
<td>Metrical analysis of bifaces: cleavers: ratio L/L</td>
<td>194–5</td>
</tr>
<tr>
<td>8.39</td>
<td>Metrical analysis of bifaces: cleavers: cleaver edge angle</td>
<td>194</td>
</tr>
<tr>
<td>8.40</td>
<td>Metrical analysis of bifaces: cleavers: ratio CEL/B</td>
<td>195</td>
</tr>
</tbody>
</table>
LIST OF TABLES

8.41 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: length
8.42 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: weight
8.43 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: ratio Th/B
8.44 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: ratio T/L
8.45 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: ratio B/L
8.46 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: ratio B/B
8.47 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: ratio L/L
8.48 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: cleaver edge angle
8.49 Metrical analysis of bifaces: cleavers: t-values and estimates of significance: ratio CEL/B
8.50 Metrical analysis of bifaces: summary table for all the statistical comparisons of the cleaver samples
9.1 Handaxes: frequency of occurrence of the various raw materials, by site
9.2 Cleavers: frequency of occurrence of the various raw materials, by site
9.3 Handaxes and cleavers: frequency of cortex and primary scars, by biface type and raw material
9.4 Handaxes and cleavers: occurrence of different combinations of cortex and primary scars on the two faces
9.5 Handaxes and cleavers: occurrence of different combinations of cortex and primary scars on the two faces, by bed and industry type
9.6 Handaxes and cleavers: occurrence of different combinations of cortex and primary scars on the two faces, by raw material and industry type
9.7 Handaxes: means and standard deviations for quantitative attributes, by site
9.8 Cleavers: mean and standard deviations for quantitative attributes, by site
9.9 Handaxes from Bed IV only: means and standard deviations for quantitative attributes, by raw material and industry type
9.10 Cleavers from Bed IV only: means and standard deviations for quantitative attributes, by raw material and industry type
9.11 Handaxes: medians and interquartile ranges for types of surface and for secondary scar ratios, by site
9.12 Cleavers: medians and interquartile ranges for types of surface and for secondary scar ratios, by site
9.13 Handaxes from Bed IV only: medians and interquartile ranges for types of surface and for secondary scar ratios, by raw material and industry type
9.14 Cleavers from Bed IV only: medians and interquartile ranges for types of surface and for secondary scar ratios, by raw material and industry type
9.15 Handaxes and cleavers from Bed IV only: typological frequencies for each raw material
10.1 The archaeological distribution of polyhedrons, spheroids and subspheroids in the Olduvai sequence
10.2 Polyhedrons, spheroids and subspheroids in Beds III and IV, the Masek Beds and post-Masek occurrences
10.3 The archaeological distribution of outils écaillés, punches and pitted anvils in the Olduvai sequence
10.4 Outils écaillés, punches and pitted anvils in Bed III, Upper and Lower Bed IV
10.5 Results of experimental battering of flakes using bipolar techniques
10.6 Experimental butchery of large carcasses with stone tools showing the amount of meat removed and time involved
A.1 Booking of the control points for strip C of the main Pits surface
A.2 Booking of the levelling
PLATES

Frontispiece Olduvai Gorge

Between pages 322 and 323

1 The north side of the gorge showing Beds I, II and the red Bed III overlain by Bed IV
2 Bed III, JK: photographic mosaic of the pits and furrows
3 JK, Pit 2
4 JK: two pairs of convergent furrows
5 Aerial photograph of Magado Crater
6 Magado Crater: salt evaporation pits
7 Magado Crater: irrigation channels
8 Bed IV, HEB Level 3: cleaver and handaxes
9 Bed IV, HEB West, Level 2b: cleavers and handaxes
10 Looking west down the gorge from WK, East
11 Bed IV, site WK at an early stage in the excavation
12 Bed IV, WK Upper Channel: pitted anvils, handaxes and other artefacts
13 Bed IV, WK Upper Channel: handaxes, cleavers and other artefacts, with faunal remains
14 Handaxes from WK Upper Channel
15 Cleavers from WK Upper Channel
16 WK Upper Channel: handaxes and bifaces
17 Three pitted hammerstones or anvils with single pits from WK Upper Channel
18 Pitted hammerstones or anvils from WK Upper Channel
19 A pitted anvil from WK Upper Channel
20 Quartzite handaxes from FLK Masek Beds
21 Two large quartzite handaxes from FLK Masek Beds
22 Elephant acetabulum from JK
23 Elephant acetabulum from HEB Level 3
24 Fragments of elephant limb bone shafts flaked to pointed ends, from HEB and LLK
25 Three distal ends of humeri, probably of hippopotamus
26 Three proximal condyles of hippopotamus femora
Introductory Note to the 50th Anniversary of the Discovery of
‘Zinjanthropus’

The Olduvai Gorge in the Republic of Tanzania came to the attention of the world shortly after my mother Mary discovered the ‘Zinjanthropus boisei’ skull on July 17th 1959. The field of African prehistory, and in particular the study of human evolution, has changed and developed dramatically over the past 50 years. I am particularly pleased that Cambridge University Press have decided to republish the 5 monographs that comprehensively cover the many scientific studies that have been undertaken on the Olduvai material collected by my parents, Louis and Mary, working with a number of colleagues. As the Golden Anniversary of the discovery approaches, it is timely to reflect on the importance of that find.

I was lucky to arrive at Olduvai two days after the discovery and I well recall the excitement of the occasion. My parents were operating on a very tight budget and the field season was short. Fortunately, on hand was world-renowned photographer Des Bartlett who, aided by his wife Jen, fully recorded on film the first few days of excavations and reassembly of bone fragments back in camp. As pieces were glued back together, and the shape of the skull and its morphology became clear, my parents showed uncharacteristic and unrestrained emotion! At the time, ages for fossils were wild guesses and radiometric dating had not been done anywhere in Africa. The best, guessed age for Zinj was a little more than 500,000 years. Some months later, a real Potassium/Argon date was obtained by Jack Evenden and Garniss Curtis, and the 1,750,000 age was announced. This ignited huge excitement worldwide and for the first time my father was able to raise financial support for extended field work at Olduvai. Everything changed. The unqualified enthusiasm and support of the National Geographic Society from 1960 onwards had a major impact on the later work at Olduvai, and indeed on the growing international interest of Africa as the cradle of humanity.

Since those first exciting years at Olduvai, the investigation of human origins has gone forward and extended to many other sites in Africa. The age of hominins has been taken back to beyond five million years and the collected fossils and lithic records are now numerous. International multi-disciplinary teams are working in many parts of the world and, with the exception of a few fundamentalist ‘flat earth’ types, the acceptance of the fossil record of our past is widely accepted. Much of this has come about because of the initial Olduvai finds.

The pioneering work at Olduvai was the launch of this fantastic 50-year period when we as a species have come to realize and appreciate our common evolutionary past. Olduvai, conserved and protected by the Republic of Tanzania, remains as a landmark in the epic story of humanity, and these monographs are a wonderful testimony to that landmark.

Richard Leakey, FRS
ACKNOWLEDGEMENTS

Once more I wish to express my gratitude to the United Republic of Tanzania for permission to continue working at Olduvai Gorge, as well as to Mr A. A. Mturi, Director of Antiquities, and Mr A. J. N. Mgina, former Conservator of the Ngorongoro Conservation Authority, for their help and cooperation.

The National Geographic Society, Washington, DC has been largely responsible for funding the work at Olduvai over many years. I am deeply indebted to the Committee for Research and Exploration for their generosity and to the late Dr Melvin M. Payne, then Chairman, for his interest and encouragement. The L. S. B. Leakey Foundation has also made generous grants, particularly for the purchase of vehicles. Other persons, who wish to remain anonymous, have made most welcome annual gifts. To all those whose financial aid has enabled me to work at Olduvai I tender my most grateful thanks.

Mr Peter Jones worked for several years at Olduvai as my assistant, I am greatly indebted to him for his skilful photography and help in camp logistics. His chapter in this volume describing his experimental work in the manufacture and uses of stone tools is a most valuable contribution which throws new light on some of the features that have long puzzled those of us studying stone industries.

I am once more deeply indebted to Dr Richard Hay for his help and cooperation in solving the stratigraphic problems of the sites excavated in Beds III, IV and the Masek Beds. Drs Andrew Brock, the late Alan Cox and Frank Brown have all contributed greatly to elucidating the geomagnetic sequence at Olduvai; their work has been invaluable. My particular thanks are due to Dr Raymonde Bonnefille for her study of the Olduvai fossil pollen spectra. When she began her work at the gorge it was widely considered to be a waste of time and money since the consensus of opinion held that pollen grains were almost certainly unobtainable from the highly alkaline Olduvai sediments. Dr Bonnefille’s identification of many hundreds of specimens and comparison with the extant flora has been an invaluable contribution to our knowledge of the past environment. Dr Derek Roe and Dr Paul Callow merit my special thanks for voluntarily undertaking to analyse the bifacial tools; this has been of very great help in studying the industries. Mr Gordon Hanes has made valuable contributions to Olduvai by financing the building of two site museums and two windmills to generate electricity. The late Mr George Dove, former owner of the Nduu Safari Lodge, most kindly devoted a great deal of time to building the camp and also supplied furniture from his own house before leaving Tanzania for Australia. Mr R. I. M. Campbell and Mr John Reader, both professional photographers, have made available their skill to photograph sites and specimens; they have my particular thanks.

Many others have helped the work at Olduvai, directly and indirectly. My thanks are especially due to Mrs John Brindeis, Mrs Janet Leakey, Dr R. J. Clarke, Mrs M-A. Harms, Dr John Harris, Miss Mary Jackes and Dr Celia Nyamweru, for their active assistance at Olduvai.

By 1968 the late Mr Heslon Mukiri, who had been my excavation foreman since 1937 during my first dig in Kenya at the Neolithic site of Hyrax Hill, sadly found himself unable to continue active field work. He was sorely missed but I am greatly indebted to my Wakamba staff for their skill and patience in excavation.

Since I left Olduvai and returned to live in Kenya the Governors of the National Museums of Kenya and my son Richard have made available to me study space to prepare this volume for publication. I am most grateful for their courtesy.

M. D. Leakey
ABREVIATIONS FOR ARTEFACTS SHOWN IN SITE PLANS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWL</td>
<td>Awl</td>
</tr>
<tr>
<td>CH</td>
<td>Chopper</td>
</tr>
<tr>
<td>D</td>
<td>Debitage</td>
</tr>
<tr>
<td>DC</td>
<td>Discoid</td>
</tr>
<tr>
<td>HM</td>
<td>Hammerstone</td>
</tr>
<tr>
<td>HX</td>
<td>Handaxe</td>
</tr>
<tr>
<td>LTF</td>
<td>Laterally trimmed flake</td>
</tr>
<tr>
<td>OE</td>
<td>Outil écaillé</td>
</tr>
<tr>
<td>PAV</td>
<td>Pitted anvil/hammerstone</td>
</tr>
<tr>
<td>PU</td>
<td>Punch</td>
</tr>
<tr>
<td>SC</td>
<td>Scraper</td>
</tr>
<tr>
<td>SPH or SP</td>
<td>Spheroid</td>
</tr>
<tr>
<td>SSP</td>
<td>Subspheroid</td>
</tr>
<tr>
<td>ST</td>
<td>Sundry tool</td>
</tr>
<tr>
<td>UT</td>
<td>Utilised</td>
</tr>
<tr>
<td>UTH</td>
<td>Utilised heavy-duty</td>
</tr>
<tr>
<td>UTL</td>
<td>Utilised light-duty</td>
</tr>
</tbody>
</table>