This volume provides a case study of a marine pollutant of exceptional potency: tributyltin (TBT). TBT compounds are extremely poisonous, and have been widely utilised as active ingredients in marine anti-fouling paint formulations to obtain increased fuel efficiencies during ship operations, and long lifetimes between repainting for maritime vessels and structures. However, its extreme toxicity has resulted in numerous adverse biological effects on non-target organisms. The environmental persistence of TBT ensures that such problems are likely to continue for some time to come.

This authoritative synthesis reviews the environmental chemistry and toxicological effects of TBT and its degradation products, and outlines the international response to control TBT. A wide variety of disciplines are brought together to illustrate the general principles, pathways and problems involved in identifying and quantifying an environmental toxin, elucidating deleterious biological consequences, and the legal framework that can invoke mitigation via regulation.

This text serves a dual purpose. Firstly, from a research perspective, it provides a benchmark for assessing environmental recovery and therefore has wide appeal for undergraduate courses in environmental science, chemistry, ecology and marine biology. Secondly, by depicting the evolution of environmental legislation, it forms a valuable sourcebook for environmental planners and serves as a ‘successful’ case study for undergraduate courses in environmental law, planning and science.
TRIBUTYL Tin: CASE STUDY OF AN ENVIRONMENTAL CONTAMINANT
CAMBRIDGE ENVIRONMENTAL CHEMISTRY SERIES

Series Editors:
P. G. C. Campbell, Institut National de la Recherche Scientifique, Université du Québec, Canada
J. N. Galloway, Department of Environmental Science, University of Virginia, USA
R. M. Harrison, School of Chemistry, University of Birmingham, England

Other books in print in the series:
P. Brimblecombe, Air Composition and Chemistry, Second edition
A.C. Chamberlain, Radioactive Aerosols
M. Cresser and A. Edwards, Acidification of Freshwaters
M. Cresser, K. Killham and A. Edwards, Soil Chemistry and its Applications
R. M. Harrison and S. J. de Mora, Introductory Chemistry for the Environmental Sciences, Second edition
Tributyltin: case study of an environmental contaminant

Edited by

STEPHEN J. DE MORA
Département d’océanographie, Université du Québec à Rimouski
This book is dedicated to my dad.

Both his silent encouragement and gentle cajoling inspired me to set goals which seemingly daunting were nevertheless attained.
Contents

Contributors xiii
Preface xv

1 The tributyltin debate: ocean transportation versus seafood harvesting 1
 Stephen J. de Mora
 1.1 Introduction 1
 1.2 Environmental chemistry 3
 1.3 Biological effects 7
 1.4 Legislative response 10
 1.5 The efficacy of controls 12
 1.6 The end of the beginning 13
 1.7 References 15

2 Industrial manufacture and applications of tributyltin compounds 21
 R. F. Bennett
 2.1 Organotin compounds 21
 2.2 Tributyltin compounds 22
 2.3 Synthesis of tributyltin compounds 22
 2.4 Industrial manufacture of tributyltin compounds 26
 2.5 TBT industrial waste and by-product disposal 30
 2.6 Industrial development of TBT compounds 31
 2.7 The application of tributyltin compounds in wood preservation 32
 2.8 The use of tributyltin compounds in anti-fouling coatings 39
 2.9 The Organotin Environmental Programme Association 52
 2.10 Environmental risk–benefit considerations 54
 2.11 References 58

3 The analysis of butylated tin compounds in the environment and in biological materials 62
 Ph. Quevauciller
 3.1 Sampling and storage 63
 3.2 Analytical methods 65
x Contents

3.3 Quality control and evaluation of the method’s performance 75
3.4 Conclusions 84
3.5 References 86

4 The occurrence, fate and toxicity of tributyltin and its degradation products in fresh water environments 94
R. James Maguire
4.1 Introduction 94
4.2 Sources and environmental occurrence 94
4.3 Persistence and fate 109
4.4 General toxicity summary 111
4.5 Toxicity of butyltin species to fresh water organisms 116
4.6 Assessment of the toxicity of concentrations of butyltin species in fresh water environments 127
4.7 Research recommendations 129
4.8 References 130

5 The distribution and fate of tributyltin in the marine environment 139
Graeme Batley
5.1 Introduction 139
5.2 Sources of tributyltin in estuarine and marine waters 140
5.3 Tributyltin concentrations in marine waters 140
5.4 Tributyltin in the surface microlayer 143
5.5 Degradation processes of dissolved TBT 147
5.6 Sediment/water partitioning 151
5.7 Tributyltin concentrations in estuarine and marine sediments 157
5.8 Degradation processes of TBT in estuarine sediments 158
5.9 Conclusions 161
5.10 References 162

6 Biological effects of tributyltin on marine organisms 167
Claude Alzieu
6.1 Bioaccumulation and metabolism 167
6.2 Contamination levels 174
6.3 Biological effects 176
6.4 Conclusions 203
6.5 References 205

7 TBT-induced imposex in neogastropod snails: masculinization to mass extinction 212
Peter E. Gibbs and Geoffrey W. Bryan†
7.1 Introduction 212
7.2 The imposex scenario as exemplified by Nucella lapillus 215
7.3 Characterization of imposex intensity 217
7.4 Mechanisms of sterilization 220
7.5 Bioaccumulation of TBT and the mechanism specificity of its effect 221
7.6 Recovery from imposex following amelioration of TBT pollution 224
8 Environmental law and tributyltin in the environment 237
Klaus Bosselmann
8.1 Introduction 237
8.2 The International Maritime Organisation 242
8.3 Regulation of TBT 245
8.4 Regulation of TBT in New Zealand 249
8.5 Conclusions 259
8.6 Bibliography 262

9 The efficacy of legislation in controlling tributyltin in the marine environment 264
Carol Stewart
9.1 Introduction 264
9.2 Legislative history 265
9.3 Efficacy of organotin legislation and recovery of the marine environment 268
9.4 Factors which may limit or hinder recovery 284
9.5 Overview of other toxic organotin compounds 288
9.6 Hazards of non-organotin-based antifoulants 289
9.7 Summary 292
9.8 References 292

Index 298
Contributors

Dr Claude Alzieu
IFREMER, Technopolis 40, 155 rue Jean-Jacques Rousseau, 92138 Issy les Molineux, France

Dr Graeme Batley
Centre for Advanced Analytical Chemistry, CSIRO Division of Coal and Energy Technology, Private Mail Bag 7, Menai, NSW 2234, Australia

Mr R. F. Bennett
Denton Lodge, 11 Whitstable Road, Blean, Canterbury, Kent CT2 9EA

Dr Klaus Bosselmann
Faculty of Law, University of Auckland, Private Bag 92019, Auckland, New Zealand

Dr Geoffrey W. Bryan†
NERC Plymouth Marine Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB

Professor Stephen J. de Mora
Département d’océanographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, Canada G5L 3A1

Dr Peter E. Gibbs
NERC Plymouth Marine Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB

Dr R. James Maguire
National Water Research Institute, Department of the Environment, Canada Centre for Inland Waters, Burlington, Ontario, Canada L7R 4A6

Dr Ph. Quevaullier
European Commission, Measurements and Testing Programme (BCR), 200 Rue de la Loi, B-1150 Brussels, Belgium

Dr Carol Stewart
Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
Preface

Tributyltin (TBT) compounds are extremely poisonous, an attribute that has seen them utilized as the active ingredient in marine anti-fouling paint formulations. The potency of TBT ensures good fuel efficiencies during ship operation and long lifetimes between repainting for both boats and structures used in mariculture. However, its extreme toxicity has resulted in numerous adverse biological effects on non-target organisms, of particular importance being the shell deformations observed in oysters and the masculinization of female marine snails. The environmental persistence of TBT ensures that such problems are likely to continue for some time to come. In the first instance, this book describes the manufacture and industrial applications of TBT compounds, reviews their distribution and behaviour in the environment, and summarises their deleterious effects on organisms and aquatic ecosystems.

The widespread use of these anti-fouling paints has meant that TBT has become a contaminant of global concern. Many countries have taken diverse steps to regulate the use of TBT-based products in order to protect coastal and fresh water ecosystems, together with their resources. The political response to this pollutant has been notably faster and more widespread globally than that shown towards other pollutants in the environment, such as lead, for example, despite the fact that public health was never threatened. The steps taken have not been without controversy, considering the economic advantages to shipping on the one hand and the ecological damage on the other hand. The diversity of opinion is reflected in the range of authors presenting material here. Hopefully this book portrays a balanced point of view reflecting the responsible actions that have been taken worldwide. The history of the international legislative response to this toxic contaminant is documented. Also included is a consideration of the efficacy, to date, of the recently imposed TBT
Preface

controls. TBT usage is now restricted and as the flux of TBT into the environment has diminished lately, environmental concentrations are set to decrease, albeit slowly in some circumstances. Thus, the maximum extent of the distribution is likely to have been already achieved. This is probably also the case for biological damage, but population dynamics for some species may be such that recovery to ‘pre-TBT’ levels may be prolonged.

Thus, this book reviews the environmental chemistry and toxicological effects of TBT and its degradation products. Hand in hand with this, it outlines the international response to control TBT. These two facets serve a dual purpose. Firstly, from a research perspective, the text provides a benchmark for assessing environmental recovery and should have wide appeal for teaching in tertiary courses for environmental science and chemistry, as well as ecology and marine biology. Secondly, depicting an evolution of environmental legislation, the book is aimed at environmental planners in general but should be useful as a ‘successful’ case study for tertiary courses in environmental law, planning and science. The material is presented in such a way that this text will act as a general guide illustrating the principles, pathways and problems involved in identifying and quantifying an environmental toxin, elucidating deleterious biological consequences, and the process of mitigation and legislation to protect the environment.

Stephen de Mora
Rimouski