NEW STUDIES IN ARCHAEOLOGY

Production and exchange of stone tools
NEW STUDIES IN ARCHAEOLOGY

Series editors
Colin Renfrew, University of Cambridge
Jeremy Sabloff, University of New Mexico

Other titles in the series
Ian Hodder and Clive Orton: Spatial Analysis in Archaeology
Kenneth Hudson: World Industrial Archaeology
Keith Muckelroy: Maritime Archaeology
Graham Connah: Three Thousand Years in Africa
Richard E. Blanton, Stephen A. Kowalewski, Gary Feinman and Jill Appel: Ancient Mesoamerica
Stephen Plog: Stylistic Variation in Prehistoric Ceramics
Peter Wells: Culture Contact and Culture Change
Ian Hodder: Symbols in Action
Patrick Vinton Kirch: Evolution of the Polynesian Chiefdoms
Dean Arnold: Ceramic Theory and Cultural Process
Geoffrey W. Conrad and Arthur A. Demarest: Religion and Empire: The Dynamics of Aztec and Inca Expansionism
Graeme Barker: Prehistoric Farming in Europe
Daniel Miller: Artefacts as Categories
Rosalind Hunter-Anderson: Cultural Evolution in the Prehistoric American South-West
ROBIN TORRENCE

Production and Exchange of Stone Tools

Prehistoric Obsidian in the Aegean
For John
CONTENTS

List of illustrations ix
Preface xi

1 Complementary views of exchange: acquisition, production and consumption 1
 A new challenge for archaeology 1
 Starting from basic facts 2
 Using a general system 4
 Developing middle range theory 7

2 Past and present perspectives 10
 Regional studies of resource use 10
 Production over a region 23
 The gravity model 26
 Trade routes 27
 Site-oriented studies 27
 Approaches meriting further research 36

3 Designing an instrument for measuring exchange 38
 A framework for measuring exchange 38
 Control over supply and production 40
 Efficiency through cost-controls 42
 Mass production 46
 Prediction of archaeological correlates 48
 Applying the measuring tool to modern cases 50
 Direct access to resources: Australian Aborigines 51
 Reciprocal exchange in Arnhem Land 52
 Greenstone axe production and exchange 54
 Highland New Guinea axe exchange 57
 Partially commercialized gunflint industries 59
 Ethiopian hide workers 61
 English gunflint industry 66
 French gunflint industry 75
 Turkish knappers 79
 Mexican metateros 80
 Calibrating the measurement scales 82
 Potential for archaeology 90

4 A test case: Aegean obsidian exchange 93
 Implementing the proposed methodology 93
Contents

Theories for Aegean obsidian exchange 95
Socio-political complexity and exchange 105
The research design 110

5 **Regional analyses based on production** 115
Exchange types and mathematical models 115
The regional data 121
Measures of cost 122
Site hierarchy and the nature of imports 126
The qualitative approach 128
Regression analyses 130
Changes in the cost of procurement 134
Production as a viable alternative 137

6 **Workshops, craft specialists and commercial production** 139
Obsidian emporia 140
Teotihuacan workshops 143
Part-time or full-time specialization 145
The great obsidian workshop 147
Mainland and Cretan workshops 150
Estimation of person-hours 154
Efficiency and standardization 157
The role of obsidian in the growth of Phylakopi 162

7 **Acquisition and production at raw material sources** 164
The potential compared to the reality 164
The Melos quarries 166
Evidence for restricted access 169
Resource extraction 171
Preform manufacture 186
Bifaces 187
Macrocute reduction sequences 189
Production estimates 203
Export of unmodified nodules 206
Spatial patterning 207
Procurement by direct access 214
Realizing the potential of quarry analysis 216

8 **Cautionary tales** 218
Distribution without exchange 218
Noncommercial exchange in complex societies 222
Grounds for optimism 226
Alternative avenues of research 229
Middle range theory in archaeology 233

References 235

Index 253
ILLUSTRATIONS

Figures
1. General model for archaeological inferences about prehistoric exchange 5
2. Interaction zones in the Mediterranean region 11
3. Exponential fall-off pattern of Near Eastern obsidian 13
4. Changes in obsidian blade form in relation to distance from source 25
5. Household composition of source types for different models of exchange 33
6. Prospecting for good stone at an Australian Central Desert quarry 52
7. Tool production at an Australian Central Desert quarry 53
8. Aboriginal greenstone axes from the Mt William quarry, Australia 54
9. General view of Mt William greenstone quarry, Australia 55
10. New Guinea axe quarry and various axe types 58
11. Zambian gunflint maker at work 60
12. Zambian gunflints 62
13. Obsidian hide scraper, Ethiopia 63
14. Chronological development of English gunflint production 68
15. Spatial patterning at Lingheathen flint mines, Brandon, England 70
16. Tools used in the production of English gunflints 72
17. Reconstruction of an English gunflint workshop 73
18. Relationship of waste to number of English gunflints per blade 76
19. Tools used in the production of French gunflints 78
20. Aegean obsidian sources and distribution of obsidian from Melos 94
21. Island of Melos showing the location of relevant sites 95
22. Aerial view of the settlement at Phylakopi 97
23. General view of Sta Nychia obsidian quarry 112
24. Waste by-products of stone working at Sta Nychia quarry 113
25. Predicted fall-off patterns for various exchange types 116
26. Sites used in the regional analysis of Aegean obsidian exchange 121
27. Neolithic and Bronze Age Aegean obsidian blade cores 126
28. Fall-off patterns for Aegean Bronze Age obsidian debitage 130
29. Fall-off patterns for Aegean obsidian blade dimensions 131
30. Aegean Bronze Age obsidian blades 134
31. Plan of Phylakopi showing location of the ‘Great Obsidian Deposit’ 148
32. Waste by-products from the ‘Great Obsidian Deposit’ at Phylakopi 151
33. Blades and cores from Phylakopi 152
34. Location in the Cyclades and Crete of hypothetical obsidian workshops 153
35. General view of major obsidian sources at Demenegaki 167
36. General view of major obsidian sources at Sta Nychia 168
37. Sta Nychia: density of surface obsidian and location of source areas 172
38. Demenegaki: density of surface obsidian and location of source areas 173
39. Rhyolitic obsidian outcrop at Sta Nychia 176
40. Calcareous ash obsidian outcrop at Sta Nychia 177
41. Rhyolitic obsidian outcrop at Demenegaki showing evidence of quarrying 177
Illustrations

42. Traces of prehistoric obsidian extraction at Demenegaki 180
43. Hammerstones from the Melos quarries 182
44. Primary, secondary and tertiary flakes from the Melos quarries 183
45. Quarry bifaces and scrapers from the Melos quarries 185
46. Macrocores from the Melos quarries 188
47. Macrocores from the Melos quarries 189
48. Sta Nychia: sampling units, working areas and biface findspots 190
49. Demenegaki: sampling units, working areas and biface findspots 191
50. Macrocore reduction sequences for the Melos quarries 194
51. Waste by-products of macrocore production at the Melos quarries 195
52. Typical systematic sample of quarry waste by-products at Demenegaki 207
53. Primary, secondary and tertiary flakes from the Melos quarries 209
54. Dendrogram output from cluster analysis of working areas at the Melos quarries 210
55. Discriminant analysis of working areas at the Melos quarries 211
56. Blade cores, retouched flakes and waste flakes from the Melos quarries 213

Tables
1. Ethiopian obsidian hide scrapers and waste by-products: coefficients of variation 65
2. Summary of ethnographic descriptions of stone working 83–4
3. New Guinea flake tools: coefficients of variation 86
4. Characterization studies of Aegean obsidians 95
5. Predictions for quantitative and qualitative regional analyses 120
6. Measures of consumption and production used in studies of obsidian exchange 124
7. Relative proportions of debitage types 128
8. Mean dimensions of prismatic blades 129
9. Mean weights of debitage 129
10. Pearson’s r values for regression analyses of Bronze Age obsidian production 132
11. Standard errors for regression analyses of Bronze Age obsidian production 133
12. Phylakopi obsidian deposit: assemblage composition 150
13. Phylakopi obsidian deposit: estimation of size and density 155
14. Estimation of scale of workshop outputs 155
15. Phylakopi obsidian deposit: estimation of total number of blade fragments 156
16. Descriptive statistics for prismatic blades 158
17. Descriptive statistics for non-crested blades 159
18. Standardization of Aztec blades 160
19. Phylakopi obsidian deposit: blade platform types 161
20. Phylakopi obsidian deposit: incidence of hinge fractures 161
21. Summary descriptions of outcrops 174
22. Evaluation of sources compared to intensity of utilization 178
23. Relationship between matrix type and intensity of utilization 179
24. Obsidian bifaces 184
25. Summary of sampling units at the Melos quarries 192
26. Macrocore platform types 192
27. Macrocore descriptive statistics 193
28. Complete flakes: coefficients of variation 199–200
29. Mean debitage counts per quarter meter square in relation to density 202
30. Areal extent of surface obsidian 204
31. Estimated amount of surface debitage 204
32. Estimates for macrocore production 205
33. Results of the discriminant analysis 212
34. Mean percentages of flake types within clustered working areas 212
35. Behavioral reconstruction of the working areas 212
Rarely have the high expectations generated by the ‘New Archaeology’ of the 1960s and 1970s been achieved. As it has turned out, reconstructing human behavior on the basis of the remains preserved in the archaeological record is much more problematic than had been foreseen. Archaeological methodology for making inferences about the aspects of social life that were defined as interesting and important have subsequently been found to be extremely simplistic at best and at worst totally inadequate. In contrast, some would argue that the study of exchange is a notable exception. Largely as a result of the many new techniques for sourcing raw materials, the enthusiasm for reconstructing prehistoric exchange systems has continued to grow rapidly. Unfortunately it is not all that easy. The relationship between a distribution map of goods and the exchange system(s) which operated in the past are not as straightforward as the large number of studies might lead one to believe. Prehistoric exchange cannot escape the need for the development of rigorous methods for linking the static material remains of the archaeological record to past dynamic behavior, what Binford has termed ‘middle range theory’.

This book is an attempt to fill the need in archaeology for a middle range theory for exchange; that is, to develop theory relating the process of exchange with its material consequences. Although a general form of archaeological inference is already used implicitly in most studies, by exposing the structure of the logic behind it, a wide range of new approaches are highlighted. In particular, it seems clear that although most emphasis has been placed on using the nature of consumption as a reflection of type of exchange, the study of the acquisition of raw materials and production of goods hold just as much potential. Such a general argument can flounder if left at the theoretical level. It can, however, gain force if illustrated with respect to a specific category of goods. I have therefore concentrated on the class of artifacts that I know best, stone tools. But there is no reason why the same principles cannot be applied to any exchanged material, be it shells, pottery, metal or whatever.

The same comment is relevant for the analysis of Aegean obsidian exchange which forms the core of the book. Admittedly it is only one case study and the data are deficient in several areas, but I think it is extremely important to evaluate the ideas proposed here by actually putting them into practice. In this way the strengths as well as the weaknesses of the approach can be illustrated. I hope that my attempt to build archaeological theory for exchange will spark others to carry out the research needed to answer the questions posed by the analysis of prehistoric Aegean obsidian exchange.
Preface

The ideas presented here have been germinating since 1981 when I completed my doctoral thesis on Aegean obsidian. That I was able to move beyond those initial attempts to come to grips with the confrontation of high-level theory with real archaeological data (what Colin Renfrew called my ‘wrestling with angels’) is due to the perceptive criticisms and the patience of a large number of scholars and friends. In the first place I must thank Colin Renfrew who first invited me to join the Melos project and who has since supported my attempts to give meaning to my data, and with Jeremy Sabloff has constantly urged me to publish the ideas. I hope they are glad I let them grow a little first. Insightful comments by William Rathje in response to my lecture in Tucson provided an important turning point in the research. Lewis Binford’s work has always been a model of what was needed in archaeology; he also helped me to understand the necessity of testing middle range theory in the present world. Many scholars working in Mesoamerica have commented on my dissertation and shared the results of their own attempts to solve similar problems on different data sets. John Clark, Thomas Hester, Michael Spence, Harry Shafer and Payson Sheets have been particularly helpful. I must single out the benefits gained from the lengthy and persistent criticisms of John Clark, whose knowledge of flint knapping gives him an invaluable perspective. Conversations with the following over the years have also contributed to the theory building: James Brown, John Cherry, Jack Davis, Clive Gamble, Larry Keeley, Isabel McBryde, Catherine Perles, Colin Renfrew, Curtis Runnels, Robert Santley, Todd Whitelaw, Sander Van der Leeuw, and Malcolm Wagstaff.

Research in Greece has been carried out through permits from the Cycladic Ephorate of the Greek Archaeological Service, whose cooperation is gratefully acknowledged. Colin Renfrew invited me to study the quarries on Melos and the assemblages at Phylakopi and provided assistance of many types. In the field I was aided at times by John Cherry, Alec Daykin and Mathew Freedman. Permission to study material from other excavations has been graciously extended by the following scholars: Gerald Cadogan, the late Jack Caskey, Sinclair Hood, Thomas Jacobsen, and Peter Warren. In Greece I have also benefited from the assistance and company of many friends but especially Betty Banks, Tucker Blackburn, Peter Callaghan, Jack Davis, John and Gatewood Overbeck, Elizabeth Schofield, James Wright, and all the members of the Melos project.

Research funds have been scrounged from many places but I am grateful to the Universities of Southampton and Sheffield, the British Academy and the National Endowment for the Humanities for institutional support.

Clive Tilley and David Leigh took many of the photographs of Demenagaki and Sta Nychia, respectively; whereas figure 44 is the work of Nick Bradford. Lewis Binford, Isabel McBryde, and David Phillipson also donated photographs from their own fieldwork. John Owen and Dave Maddison of the Geography Photographic Lab at Sheffield University are to be praised for their excellent developing and printing and constant good humors. Sarah Colley prepared the excellent artifact drawings. The remaining line drawings are the product of Barry Vincent, who depended in
Preface

many cases on originals by John Cherry. The typists Val Kinsler, Dorothy Cruse and before them Ann Larson helped spot inconsistencies and errors as well.

In the end it was always John Cherry who helped me through the many ups and downs. It was through him that I become involved in exchange studies; he has also assisted in all phases of the work from the fieldwork, through the laboratory analyses to the illustrations. Most of all he has provided a shoulder to lean on and all the painful pushing and prodding that was needed to complete the job. The final product is therefore dedicated to our life together.

Sheffield

Thanksgiving 1984