Index

References in italics are main references or definitions.

acausal set, 211
partial Cauchy surface, 204
acceleration vector, 70, 72, 78, 84, 107
relative acceleration of world lines, 78–80
achronal boundary, 187, 312
achronal set, 186, 187, 202, 203, 209, 211, 266, 267: edge, 202
affine parameter, 33, 86
generalized, 259, 278, 291
Alexandrov topology, 196
anti-de Sitter space, 131–4, 188, 206, 218
apparent horizon, 320, 321–3, 324
area law for black holes, 318, 332, 333
asymptotically simple spaces, 222: empty and simple spaces, 222
weakly asymptotically simple and empty spaces, 225, 310: asymptotically predictable spaces, 310, 311, 312
strongly future asymptotically predictable, 313, 315, 317: regular predictable space, 318, 319, 320;
static, 325, 326; stationary, 324, 325, 327–31, 334–47
asymptotically simple past, 316
atlas, 11, 12, 14
axi-symmetric stationary space–times, 161–70
black holes, 329, 331, 341–7
b-boundary, 283, 289
b-bounded, 292, 293
b-completeness, 259, 277, 278
bases of vectors, one-forms, tensors, 16–18, 51
change of basis, 19, 21
coordinate basis, 21
orthonormal basis, 38, 52
pseudo-orthonormal basis, 86
beginning of universe, 3, 8, 358–9, 363
in Robertson–Walker models, 137–42
in spatially homogeneous models, 144–9
Bianchi’s identities, 36, 42, 43, 85
bifurcation
of black holes, 315–16
of event horizons, 326
Birkhoff’s theorem, 372
black-body radiation in universe, 348–50, 354–5, 357, 363
black holes, 308–23, 315
final state of, 323–47
rotating black hole, 329
boundary
of manifold, 12
of future set, 187
of space-time: c-boundary, 217–21, 222–5; b-boundary, 276–84, 289–91
Brans–Dicke scalar field, 59, 64, 71, 77, 362
energy inequalities, 90, 95
bundle, 50, 174
of linear frames, 51, 53, 54, 174, 293–4
of orthonormal frames, 52, 54, 276–83, 289: metric on, 278
of tensors, 51, 54, 198
tangent bundle, 51, 54
c-boundary, 217–21, 224–5
canonical form, 48
Carter’s theorem, 331
Cartesian product, 15
Cauchy data, 147, 231–3, 254
Cauchy development, 6, 94, 119, 147, 201–6, 209–11, 217, 228
local existence, 248, 255
global existence, 251, 255
stability, 253, 255, 301, 310
Cauchy horizon, 202–4, 265, 287, 362
examples, 120, 133, 159, 178, 203, 205, 287
Cauchy problem, 60, 226–55
Cauchy sequences, 257, 282
Cauchy surface, 205, 211, 212, 263, 265, 274, 275, 313
examples, 119, 125, 142, 154

[385]
INDEX

386

Cauchy surface (cont.)
 lack of, 133, 159, 178, 205, 206
 partial Cauchy surface, 204, 217, 301–2, 310–20, 323
 causal boundary of space–time, 217–21, 221–5; see also conformal structure
 causal future (past), $J^+(J^-)$, 183
 causal structure, 6, 127–30, 180–225
 causally simple set, 188, 206, 207, 223
 local causality neighbourhood, 195
 causality conditions
 local causality, 69
 chronology condition, 189
 causality condition, 190
 future, past distinguishing conditions, 192
 strong causality condition, 192
 stable causality condition, 198
 causality tensors, 6, 162, 164, 170, 175, 189, 492, 197
 and singularity theorems, 272
 caustics, 120, 132–3, 170; see also conjugate points
 charged scalar field, 68
 chart, 11
 Christoffel relations, 40
 chronological future (past), $I^+(I^-)$, 182, 217
 chronology condition, 189, 192, 194, 266
 violating set, 189
 cigar singularity, 144
 closed trapped surface, 2, 262, 263, 266
 examples, 155, 161
 in asymptotically flat spaces, 311, 319
 outer trapped surface, 319; marginally outer trapped surface, 321
 outside collapsing star, 301, 308
 in expanding universe, 353–8
 Codacci’s equation, 47, 232, 352
 collapse of star, 3, 8, 300–23, 360
 compact space–time, 40, 189
 compact space sections, 272–5
 completeness conditions
 inextendibility, 68
 metric completeness, 257
 geodesic completeness, 257
 b-completeness, 259, 278–283
 completion by Cauchy sequences, 282, 283
 components of connection, 31
 components of tensor, 19
 of p-form, 21
 conformal curvature tensor, 41, 85; see Weyl tensor
 conformal metrics, 42, 60, 63, 180, 222
 conformal structure of infinity and singularities
 c-boundary, 217–21
 examples, 122, 127, 132, 141, 145, 154, 158, 160, 165, 177
 in asymptotically flat spaces, 222–4
 horizons, 128–30
 conformally flat theory, 75–6
 congruence of curves, 69
 conjugate points, 4, 5, 267
 on timelike geodesics, 97, 98, 111, 100, 112, 217
 on null geodesics, 100, 101, 115, 102, 116
 connection, 30, 31, 34, 40, 41, 59, 63
 and bundles over \mathcal{M}, 53–5, 277
 on hypersurface, 46
 conservation
 of energy and momentum, 61, 62, 67, 73
 of matter, theorem, 94, 298
 of vorticity, 63–4
 constraint equations, 232
 continuity conditions
 for map, 11
 of space–time, 57, 284
 contraction of tensor, 19
 contracted Bianchi identities, 43
 convergence of curves, see expansion
 convergence of fields
 weak, 243
 strong, 243
 convex normal neighbourhood, 34, 60, 103, 105, 184
 local causality neighbourhood, 195
 coordinates, 12
 normal coordinates, 34, 41
 coordinate singularities, 118, 133, 150, 158, 163, 171
 Copernican principle, 134, 135, 142, 350, 356, 358
 cosmological constant, 73, 95, 124, 137, 139, 168, 362
 cosmological models
 isotropic, 134–42
 spatially homogeneous, 142–9
 covariant derivatives, 31–3, 40, 59
 covering spaces, 181, 204–5, 273, 293
 cross-section of a bundle, 52
 curvature tensor, 35, 36, 41
 identities, 36, 42, 43
 of hypersurface, 47
 physical significance, 78–116
 curve, 15
 geodesic, 33, 63, 103–16, 213–17
 non-spacelike, 105, 112, 184, 185, 207, 213
 null, 86–8
 timelike, 78–86, 103, 182, 184, 213–17
 de Sitter space–time, 124–31
 density of matter in universe, 137, 357
<table>
<thead>
<tr>
<th>INDEX</th>
<th>387</th>
</tr>
</thead>
<tbody>
<tr>
<td>development, 228, 248, 251, 253</td>
<td>exp, exponential map, 33, 103, 119</td>
</tr>
<tr>
<td>existence, 246–9</td>
<td>generalized, 292</td>
</tr>
<tr>
<td>deviation equation</td>
<td>expansion</td>
</tr>
<tr>
<td>timelike curves, 80</td>
<td>of null geodesics, 88, 101, 312, 319, 321, 324, 354</td>
</tr>
<tr>
<td>null geodesics, 87</td>
<td>of timelike curves, 82–4, 97, 271, 356</td>
</tr>
<tr>
<td>diffeomorphism, 22, 56, 74, 227</td>
<td>of universe, 137, 273, 348–59</td>
</tr>
<tr>
<td>differentiability conditions, 11, 12</td>
<td>extension</td>
</tr>
<tr>
<td>and singularities, 284–7</td>
<td>of development, 228, 249</td>
</tr>
<tr>
<td>of initial data, 251</td>
<td>of manifold, 58: locally inextendible, 59</td>
</tr>
<tr>
<td>of space–time, 57–8</td>
<td>of space–time, 145, 150–5, 156–9, 163–4, 171, 175: inextendible, 58, 141; inequivalent extensions, 171–2</td>
</tr>
<tr>
<td>differential of function, 17</td>
<td>exterior derivative, 25, 35</td>
</tr>
<tr>
<td>distance from point, 103–5</td>
<td>Fermi derivative, 80–1</td>
</tr>
<tr>
<td>distance function, 215</td>
<td>fibre bundles, see bundles</td>
</tr>
<tr>
<td>distributional solution of field equations, 256</td>
<td>field equations</td>
</tr>
<tr>
<td>domain of dependence, see Cauchy development, 201</td>
<td>for matter fields, 65</td>
</tr>
<tr>
<td>dominant energy condition, 91, 92, 94, 237, 293, 323</td>
<td>for metric tensor, 71–7</td>
</tr>
<tr>
<td>for Weyl tensor, 85</td>
<td>fluid, 69; see also perfect fluid</td>
</tr>
<tr>
<td>for perfect fluid</td>
<td>focal points, see also perfect fluid</td>
</tr>
<tr>
<td>forms</td>
<td>forms</td>
</tr>
<tr>
<td>one-forms, 16, 44–5</td>
<td>one-forms, 16, 44–5</td>
</tr>
<tr>
<td>q-forms, 21, 47–9</td>
<td>q-forms, 21, 47–9</td>
</tr>
<tr>
<td>Euler–Lagrange equations, 65</td>
<td>Friedmann equation, 138</td>
</tr>
<tr>
<td>fluid, 69; see also perfect fluid</td>
<td>Friedmann space–times, 135</td>
</tr>
<tr>
<td>future asymptotically predictable, 310</td>
<td>function, 14</td>
</tr>
<tr>
<td>future Cauchy development, D+, 201</td>
<td>fundamental forms of surfaces</td>
</tr>
<tr>
<td>future horizon, H+, 202</td>
<td>first, 44, 99, 231</td>
</tr>
<tr>
<td>future distinguished condition, 192, 195</td>
<td>second, 46, 99, 100, 112, 230, 262, 273, 274</td>
</tr>
<tr>
<td>future event horizon, 129, 312</td>
<td>future event horizon, 129, 312</td>
</tr>
<tr>
<td>future horizons, E+, 184</td>
<td>future horizons, E+, 184</td>
</tr>
<tr>
<td>future set, 186, 187</td>
<td>future set, 186, 187</td>
</tr>
<tr>
<td>future trapped set, 267, 268</td>
<td>future trapped set, 267, 268</td>
</tr>
<tr>
<td>g-completeness, 257, 258</td>
<td>g-completeness, 257, 258</td>
</tr>
<tr>
<td>gauge conditions, 230, 247</td>
<td>general conditions, 320, 247</td>
</tr>
<tr>
<td>Gauss' equation, 47, 336, 352</td>
<td>Gauss' equation, 47, 336, 352</td>
</tr>
<tr>
<td>Gauss' theorem, 49–50</td>
<td>Gauss' theorem, 49–50</td>
</tr>
<tr>
<td>postulates, (a), 60, (b), 61, (c), 77</td>
<td>postulates, (a), 60, (b), 61, (c), 77</td>
</tr>
<tr>
<td>breakdown of, 362–3</td>
<td>breakdown of, 362–3</td>
</tr>
<tr>
<td>generic condition, 101, 192, 194, 266</td>
<td>generic condition, 101, 192, 194, 266</td>
</tr>
</tbody>
</table>
INDEX

geodesics, 33, 55, 63, 217, 284–5
as extremum, 107, 108, 213
see also null geodesics and timelike geodesics
geospatially complete, 33, 257
examples, 119, 126, 133, 170
geospatially incomplete, 258, 287–9
examples, 141–2, 155, 159, 163, 176, 190
see also singularities
globally hyperbolic, 206–12, 213, 215, 223
Gödel’s universe, 168–70
gravitational radiation from black holes, 313, 329, 333
harmonic gauge condition, 230, 247
Hausdorff spaces, 13, 56, 221, 283
non-Hausdorff boundary, 283, 289–92
non-Hausdorff spaces, 13, 173, 177
homogeneity
homogeneous space–time, 168
spatial homogeneity, 134, 142–9, 371
horizons, E±, 184
horizons
apparent horizon, 320–3, 324
event horizon, 129, 312, 315, 319, 324–33
particle horizon, 128
horizontal subspace (in bundle), 53–5, 277–82
lift, 54, 277
Hoyle and Narlikar’s C-field, 90, 126
Hubble constant, 137, 355
Hubble radius, 351
IF, indecomposable past set, 218
isometry, 42, 56, 135–6, 142, 164, 168, 174, 323, 326, 329, 330, 334, 340–6, 369–70
isotropy of observations, 134–5, 349, 358
and universe, 351, 354
Israel’s theorem, 326
Jacobi equation, 80, 96
Jacobi field, 96, 97, 99, 100
Kerr solution, 161–8, 225, 301, 310, 327, 332
as final state of black hole, 325–33
global uniqueness, 331
Killing vector field, 43, 62, 164, 167, 300, 323, 329, 327, 330, 339
bivector, 167, 330, 331
Kruskal extension of Schwarzschild solution, 153–5
Lagrange, 64–7
for matter fields, 67–70
for Einstein’s equations, 75
Laplace, 2, 364, 365–8
length of curve, 37
length of curve
generalized, 259, 280
non-spacelike curve, 105, 213, 214, 215:
longest curve, 5, 105, 107–8, 120, 213
light cone, see null cone
limit of non-spacelike curves, 184–5
limiting mass of star, 304–7
Lipschitz condition, 11
local Cauchy development theorem, 248
local causality assumption, 60
local causality neighbourhoods, 195
local conservation of energy and momentum, 61
local coordinate neighbourhood, 12
locally inextendible manifold, 59
Lorentz metric, 35, 39, 44, 56, 190, 252
Lorentz group, 52, 62, 173, 277–80
Lorentz transformation, 279, 290–1
m-completeness, 257, 278
manifold, 11, 14
as space–time model, 56, 57, 363
map of manifold, 22, 23
induced tensor maps, 22–4
marginally outer trapped surface, 321
matter equations, 59–71, 88–96, 117, 254
maximal development, 251–252
maximal timelike curve, 110–12
Maxwell’s equations, 68, 85, 156, 179
INDEX

metric tensor, 36–44, 61, 62–4
covariant derivative, 40, 41
Lorentz, 38, 39, 44, 56, 57, 190, 237
on hypersurface, 44–6, 231
positive definite, 38, 45, 126, 257, 259, 278, 282, 283
space of metrics, 198, 232
microwave background radiation, 139, 348–50, 354, 356, 358
isotropy, 348–53, 358
null vector, 38, 103, 104
cone, 38, 42, 60, 103–5, 184, 185, 207
geodesic, 105, 213
Nordström theory, 76
normal coordinates, 34, 41, 63
ordinary of boundary, 27
of hypersurface, 44
orthogonal group \(O(p, q)\), 52, 277–83
orthogonal vectors, 36
orthonormal basis, 38, 52, 54, 80–2, 276–83, 291
pseudo-orthonormal basis, 86–7, 344
outer trapped surface, 319, 320
pancake singularity, 144
paracomplete manifold, 14, 34, 38, 57
parallel transport, 32, 40, 277
non-integrability, 35, 36
p.p. singularity, 260, 290, 291
parallelizable manifold, 52, 182

partially imprisoned non-spacelike curve, 154, 289–92
partial Cauchy surface, 204, 217, 265, 274, 295, 301
and black holes, 310–24
particle horizon, 128, 140, 144
past, dual of future, 183; thus past set is dual of future set, 186
PIFs, PIFs, 218
Penrose collapse theorem, 262
Penrose diagram, 123
perfect fluid, 69–70, 79, 84, 136, 143, 168, 305, 372
plane-wave solutions, 178, 188, 206, 260
postulates for special and general relativity
space–time model, 56
local causality, 60
conservation of energy and momentum, 61
metric tensor, 71, 77
p.p. curvature singularity, 260, 289–92
prediction in General Relativity, 205–6
product bundle, 50
propagation equations
expansion, 84, 88
shear, 85, 88
vorticity, 83, 88
properly discontinuous group, 173
pseudo-orthonormal basis, 86–7, 102, 114, 271, 290, 344
rank of map, 23
Raychaudhuri equation, 84, 97, 136, 275, 286, 352
redshift, 129, 139, 144, 161, 309, 355, 358
regular predictable space, 318, 332
Reissner–Nordström solution, 156–61, 188, 206, 225, 310, 360–1
global uniqueness, 326
Ricci tensor, 36, 41, 72–5, 85, 88, 95, 290, 352
Riemann tensor, 35, 36, 41, 85, 290, 352
Robertson–Walker spaces, 134–42, 276, 352–7
scalar field, 67, 68, 95; see also Brans–Dicke
scalar polynomial curvature singularities, 141–2, 146, 151, 260, 289
Schwarzschild solution, 149–56, 225, 262, 310, 316, 326
local uniqueness, 371
global uniqueness, 326
outside star, 299, 306, 308–9, 316, 360
Schwarzschild radius, 299, 300, 307–8, 353
mass, 306, 309
length, 353, 358
Index

390

INDEX

space-like geodesics, 63, 96–100, 103, 111–12, 133, 159, 170, 217, 258, 288
space-like hypersurface, 44
space-like singularity, 159, 360–1
space-like vector, 38, 57
topology of manifold, 12–14
Alexandrov topology, 196, 197
topology of set of Lorentz metrics, 198, 252
topology of space of curves, 208, 214
torsion tensor, 34, 41
totally imprisoned curves, 194, 195, 289–98
trapped region, 319–20
trapped set, 267
trapped surface, see closed trapped surface
uniqueness of solutions
of Einstein’s equations: locally, 246, 255; globally, 251, 255
of second order linear equations, 239, 243
universe, 3, 348–59, 360, 362, 364
spatially homogeneous universe models
anisotropic, 142–9; isotropic, 134–42, 351–3, 356–7
vacuum solutions of field equations, 118, 150, 161, 170, 178, 244–54
variation
of fields in Lagrangian, 65
of space-like curve, 106–10, 295
of non-space-like curves, 112–16, 191
vector, 15, 16, 38, 57
field, 21, 27, 51, 52, 54, 55, 277, 278
variation vector, 107–16, 191, 275, 295
see also Killing vector
vertical subspaces in bundles, 53, 277
volume, 48, 49
vorticity
of Jacobi fields, 97
of null geodesics, 88
of space-like curves, 82–4, 352
weak energy condition, 89, 94
weakly asymptotically simple and empty spaces, 225, 310
Weyl tensor, 41, 42, 55, 88, 101, 224, 344