AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER

AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER

WITH APPLICATIONS IN CHEMICAL & MECHANICAL PROCESS ENGINEERING

BY J. M. KAY AND

R. M. NEDDERMAN

THIRD EDITION

CAMBRIDGE UNIVERSITY PRESS

© in this web service Cambridge University Press

www.cambridge.org

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521098809

© Cambridge University Press 1974

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1957 Second edition 1963 Reprinted 1965 Third edition 1974 Re-issued 2013

A catalogue record for this publication is available from the British Library

 Third edition
 0 521 20533 6 hard covers

 0 521 09880 7 paper back

 (Second edition
 0 521 05467 2 hard covers

 0 521 09210 8 paperback)

ISBN 978-0-521-20533-7 Hardback ISBN 978-0-521-09880-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

PREFACE TO THE THIRD EDITION

This book is based on lectures which have been given in the Department of Chemical Engineering at Cambridge over a period of years. The first edition was published in 1957. The new edition incorporates some additional material and has been completely revised with the introduction of st units throughout. The book falls into three main sections. Chapters 1–11 constitute an elementary introduction to fluid mechanics, heat conduction and heat transfer. Chapters 12–18 form a hard core of basic theory covering the generalized principles of fluid flow and convective transfer. Chapters 19–23 are concerned with certain special applications which are of interest in process engineering.

On re-reading the original text after a number of years, the authors of the new edition were conscious of the fact that the book presented a highly condensed account of the basic physical and mathematical principles which are relevant to fluid flow and transfer processes in actual engineering applications. We have deliberately retained this style in the new edition. One advantage of this degree of concentration is that the text can be kept short while at the same time a large amount of ground can be covered. To this extent the book should be regarded as an introduction to the subject and should ideally be read in conjunction with other more specialized texts which deal with individual topics in greater detail and which can give comprehensive information on experimental data.

The author of the first edition would like to put on record his acknowledgment to Sir Melvill Jones for first arousing his interest in the subject and for convincing him of the importance of identifying clearly the basic physical principles in problems of aerodynamics and fluid flow. He would also like to record his debt to the late Professor T. R. C. Fox whose rigorous analytical approach exerted a profound influence on the preparation of the lecture courses in the early years of the Chemical Engineering Department at Cambridge.

The joint authors of the new third edition hope that the book will continue to be useful to a wide range of readers with interests in chemical and mechanical engineering. The revised text also covers the syllabus in Fluid Mechanics and Transfer Processes which now forms an optional subject in part IB of the Natural Sciences Tripos.

The authors wish to thank the Council of the Senate of Cambridge University and the Council of Engineering Institutions for permission to reproduce questions set in their examinations. J. M. K.

CAMBRIDGE

J. M. K. R. M. N.

CONTENTS

Preface	1	page v
List of Symbols		xiv
Dimensio	Dimensionless Ratios	
Chapter 1	: INTRODUCTION AND DEFINITIONS	
1.1	Liquids and gases	1
1.2	Hydrostatic pressure	2
1.3	Fluids in motion	2
1.4	Viscosity	5
1.5	Temperature and heat	6
1.6	The first law of thermodynamics	7
1.7	Conduction, convection and radiation	10
1.8	Diffusion and mass transfer	11
1.9	Mathematical note	12
Chapter 2	2: FLUID FLOW	
2.1	Continuity in fluid flow	13
2.2	The general equation of continuity	13
2.3	The acceleration of a fluid element	15
2.4	Differentiation following the motion of the fluid	16
2.5	Bernoulli's equation	16
2.6	Vortex motion	18
2.7	Flow measurement	22
Chapter :	3: THE ENERGY AND MOMENTUM EQUATIONS	
3.1	The energy equation for steady flow along a streamline	ə 29
3.2	The energy equation for steady flow in a pipe	32
3.3	The energy equation with shaft work	33

3.4 The momentum equation for steady flow 34

vii

viii	Contents				
Chapter 4	4: Applications of the Continuity, Energy Momentum Equations	AND			
4.1	Sudden enlargement of a pipe	page 37			
4.2	Reaction on a horizontal pipe bend	38			
4.3	The jet pump or ejector	39			
4.4	The Pelton wheel	41			
4.5	Reaction turbines	44			
4.6	Flow past a cascade of vanes	46			
4.7	Flow of a gas through a nozzle	50			
4.8	Normal shock wave	53			
Chapter S	Chapter 5: Dimensional Analysis Applied to Fluid Mechanics				
5.1	Statement of the principle	56			
5.2	Force or drag on a submerged body	5 7			
5.3	Physical significance of the Reynolds number and the force coefficient	he 60			
5.4	Pressure drop for flow through a pipe	61			
5.5	Power required to drive a fan	63			
5.6	Flow with a free surface	64			
5.7	Flow with surface tension	65			
5.8	Gas bubbles rising through liquids	66			
Chapter (Chapter 6: Flow in Pipes and Channels				
6.1	Friction coefficients and the Reynolds number	68			
6.2	Laminar flow in pipes	69			
6.3	Turbulent flow in a smooth pipe	71			
6.4	Turbulent flow in a rough pipe	76			
6.5	Energy and hydraulic gradients	77			
6.6	Uniform flow in an open channel	79			
6.7	Loss of head with turbulent flow through pipe bend and fittings	s 81			

Cambridge University Press
978-0-521-09880-9 - An Introduction to Fluid Mechanics and Heat Transfer: With
Applications in Chemical & Mechanical Process Engineering
J. M. Kay and R. M. Nedderman
Frontmatter
More information

	Contents	ix
Chapter 7	: PUMPS AND COMPRESSORS	
7.1	Classification of pumps	page 84
7.2	Flow through a centrifugal pump impeller	86
7.3	The energy equation for a centrifugal pump	88
7.4	The head-capacity curve	90
7.5	Dimensional analysis applied to a pump	91
7.6	Specific speed of a pump	94
7.7	Cavitation	94
7.8	Numerical example of a pump calculation	96
7.9	Classification of compressors	98
7.10	Flow through a centrifugal compressor	101
7.11	Dimensional analysis applied to a turbo-compressor	104

Chapter 8: HEAT CONDUCTION AND HEAT TRANSFER

8.1	Thermal conductivity	106
8.2	Continuity of heat flow in a solid	106
8.3	Steady flow of heat in one dimension	109
8.4	Steady radial flow of heat in a cylinder	113
8.5	Steady flow of heat in a thin rod or fin	115
8.6	Extended surfaces for heat transfer	117

Chapter 9: HEAT EXCHANGERS.

9.1	Heat-transfer factors	120
9.2	Mean temperature difference for flow in a pipe with the wall at uniform temperature	121
9.3	Mean temperature difference for a counter-flow heat exchanger	123
9.4	Efficiency of a counter-flow heat exchanger	125
9.5	Parallel-flow heat exchangers	126
9.6	Double-pass, multi-pass and cross-flow exchangers	127

x	Contents	
Chapter 1	0: DIMENSIONAL ANALYSIS APPLIED TO HEAT Transfer	
10.1	Note on dimensions for temperature and heat page	e 13 0
10.2	Forced convection—flow through a tube with heat transfer	131
10.3	Physical significance of the Nusselt, Stanton and Prandtl numbers	133
10.4	Forced convection in high-speed flow	139
10.5	Free convection	141
Chapter 1	11: HEAT TRANSFER AND SKIN FRICTION IN TURBULENT FLOW	
11.1	Reynolds analogy	143
11.2	Taylor-Prandtl analogy	144
11.3	Pressure drop and heat transfer for flow in a tube	147
11.4	Application to heat-exchanger design	149
Chapter 1	2: Equations of Motion for a Viscous Fluid	
12.1	Stresses in a viscous fluid	150
12.2	Relationship between stress and rate of strain	151
12.3	Navier-Stokes equation	152
12.4	Dynamical similarity	153
12.5	Flow between parallel walls	155
12.6	Laminar flow of a viscous liquid film down a vertical wall	157
12.7	Flow past a sphere	159
12.8	Extensional flows	161
Chapter 1	13: BOUNDARY LAYERS	
13.1	The boundary-layer equations for laminar flow	163
13.2	Boundary-layer thickness	165
13.3	Separation and transition	166
13.4	The momentum equation for the boundary layer	168
13.5	Approximate solution for laminar boundary-layer flow	170
13.6	Approximate method for turbulent boundary-layer flow	173

	Contents	xi
Chapter 3	14: TURBULENT FLOW	
14.1	Fluctuating velocity components and the Reynolds stresses page	ge 17 7
14.2	Mixing length theories	179
14.3	The Prandtl momentum transfer theory	182
14.4	The universal velocity profile	185
14.5	Logarithmic resistance formulae for turbulent flow in pipes	188
14.6	The velocity profile and resistance formula for rough pipes	189
Chapter 1	5: Potential Flow	
15.1	The use of inviscid flow theory	191
15.2	Potential and stream functions	191
15.3	Examples of potential functions	192
15.4	Potential flow round a cylinder	193
15.5	Magnus effect	195
Chapter 1	6: DIFFUSION AND MASS TRANSFER	
16.1	The diffusion law	196
16.2	Diffusion of a gas according to the kinetic theory	19 6
16.3	Steady molecular diffusion	198
16.4	The equation of continuity for mass transfer in a fluid	199
16.5	Similarity for mass transfer in fluid flow	201
16.6	Mass transfer in turbulent flow	204
Chapter 1	7: THE ENERGY EQUATION AND HEAT TRANSFER	
17.1	The energy equation for an element of fluid	207
17.2	Similarity for heat transfer in fluid flow	209
17.3	The energy equation for a boundary layer	211
17.4	Approximate solution for heat transfer in a laminar boundary layer	213
17.5	The energy equation with turbulent flow	215

xii	Contents	
Chapter	18: Forced Convection	
18.1	Forced convection in laminar flow p	age 217
18.2	Forced convection in a laminar boundary layer	218
18.3	Forced convection with laminar flow in a pipe	220
18.4	Forced convection in turbulent flow	223
Chapter	19: Compressible Flow in Pipes and Nozzles	
19.1	Compressible flow through a convergent nozzle	228
19.2	Compressible flow through a convergent-divergent nozzle	t 231
19.3	Shock waves	234
19.4	Pitot tube in a high-velocity stream	236
19.5	Compressible flow in a pipe with friction	237
Chapter 2	20: Open-channel Flow	
20.1	Non-uniform flow with friction	241
20.2	Flow over a weir	244
20.3	Hydraulic jump	246
20.4	Flow below a sluice gate	248
Chapter 2	21: Solid Particles in Fluid Flow	
21.1	Shape factors and mean diameters	250
21.2	Particle-size distribution	252
21.3	Solid particles in fluid streams	255
21.4	Separation of solid particles from fluids	258
21.5	Cyclone collectors	259
21.6	Venturi scrubber	261
Chapter 2	22: Flow through Packed Beds and Fluidize Solids	ED
22.1	Viscous flow through a bed of solid particles	262
22.2	General analysis of flow through packed beds	264
22.3	Filtration	266
22.4	Fluidized solids	270
22.5	Expansion of fluidized beds	271
22.6	Heat and mass transfer in packed beds and fluidized solids	1 273

Cambridge University Press
978-0-521-09880-9 - An Introduction to Fluid Mechanics and Heat Transfer: With
Applications in Chemical & Mechanical Process Engineering
J. M. Kay and R. M. Nedderman
Frontmatter
More information

Contents	xiii
Chapter 23: Condensation and Evaporation	
23.1 Film condensation	$page \ 276$
23.2 Heat transfer to boiling liquids	278
23.3 Condensers and evaporators	282
Appendices	
1. Engineer's Guide to Vector Analysis	284
2. Equations of Motion for an Inviscid Fluid	287
3. VORTICITY AND CIRCULATION	289
4. Stress Components in a Viscous Fluid and t Equations of Motion	не 290
5. LAMINAR BOUNDARY-LAYER FLOW	295
6. Heat Transfer with Laminar Flow in a Pipe	297
7. CONVERSION FACTORS	300
Examples	302
Outline Solutions	311
Index	320

a

A

of sound

A rea

Cambridge University Press 978-0-521-09880-9 - An Introduction to Fluid Mechanics and Heat Transfer: With Applications in Chemical & Mechanical Process Engineering J. M. Kay and R. M. Nedderman Frontmatter More information

LIST OF SYMBOLS

Cross-sectional area of stream tube, radius of a pipe, velocity

Ъ Linear dimension, e.g. breadth of pump impeller A coefficient, constant, concentration С C_A Concentration of component (A)Skin friction coefficient C_f Specific heat at constant pressure c_p c_v Specific heat at constant volume, velocity coefficient Č A constant, discharge coefficient $C_{\mathcal{A}}$ Molal concentration of component (A) C_{D} Drag coefficient đ Diameter D Diameter D Diffusion coefficient **Exponential** constant e E Internal energy Flow component of velocity in a pump F Force Gravitational acceleration g G Mass velocity $= \rho u$ $G_{\mathbf{A}}$ Mass transfer rate for (A)Height, head, heat transfer factor h H Enthalpy, dimension of heat, head i Unit vector in x direction Unit vector in y direction i k A coefficient, thermal conductivity Unit vector in z direction k K A constant Length 1' Mixing length L Dimension of length, latent heat Mass, hydraulic mean depth m Mass, dimension of mass, molecular weight, momentum М xiv

c a b b * • •

xv

	Last of Symbols
n	Number
n	Unit vector normal
N	Number, rotational speed
N₄	Molal transfer rate for (A)
0	Order of magnitude
p	Pressure
Р	Power
q	Heat flux
Q	Volumetric flow, heat quantity, rate of heat supply
r	Radius
r	Position vector
R	Radius, gas constant
Ř	Universal gas constant per mole
8	Distance
8	Surface area
t	Time
T	Temperature, torque, dimension of time
u, v, w	Velocity components in x, y, z directions
u	Vector velocity
u _m	Mean velocity in a pipe
U	Velocity
v ~	Velocity, specific volume
v	r.m.s. velocity in turbulent flow
V	Volume
w	Velocity of whirl
W	Work
x, y, z	Space coordinates
α	An angle, coefficient, thermal diffusivity
β	An angle, coefficient
γ	Ratio of specific heats c_p/c_v
δ	Element of length, thickness of boundary layer
δ*	Displacement thickness of boundary layer
Δ	Incremental quantity
ε	Roughness size, fraction void
η	Efficiency
Ð	Angle, temperature, momentum thickness of boundary layer
6	Dimension of temperature
٨	A parameter, depth of flow in open channel

List of Symbols

- μ Coefficient of viscosity
- v Kinematic viscosity, molecular density
- Π Dimensionless ratio
- ρ Density

xvi

- σ Surface tension
- au Skin friction, shearing stress
- τ_0 Skin friction at surface or boundary
- ϕ Angle, coefficient, thermal thickness of boundary layer, potential function
- ω Angular velocity
- ψ Stream function
- Ω Angular velocity
- ∇ Vector operator 'nabla'

DIMENSIONLESS RATIOS

Fr	Froude number $\frac{U^2}{gL}$
Gr	Grashof number $\frac{\beta g \Delta \theta L^3}{\nu^2}$
M	Mach number U/a
Nu	Nusselt number $\frac{hd}{k}$
Pe	Peclet number $\frac{\rho U c_{p} d}{\kappa}$ or $\frac{U d}{\alpha}$
Pr	Prandtl number $\frac{\mu c_g}{\kappa}$ or $\frac{\nu}{\alpha}$
Re	Reynolds number $\frac{\rho U d}{\mu}$ or $\frac{U d}{\nu}$
Sc	Schmidt number $\frac{\nu}{\mathscr{D}}$
St	Stanton number $\frac{h}{\rho U c_p}$
We	Weber number $\frac{\rho U^2 L}{\sigma}$