Cambridge Tracts in Mathematics
and Mathematical Physics

General Editors
F. Smithies, Ph.D. and J. A. Todd, F.R.S.

No. 47

Convexity
CONVEXITY

BY

H. G. EGGLESTON
Professor of Mathematics in the
University of London

CAMBRIDGE UNIVERSITY PRESS
CAMBRIDGE
LONDON • NEW YORK • MELBOURNE
CONTENTS

Preface
Page vii

Chapter 1. General Properties of Convex Sets

1. Preliminaries and notation
2. The definition of convexity and its relation to affine transformations
3. Intersections, closures and interiors of convex sets
4. Sections and projections of convex sets
5. The dimension of a convex set. Barycentric coordinates
6. Intersections of convex sets with hyperplanes
7. Separation of convex sets and support hyperplanes
8. The convex cover
9. Duality in Euclidean space
10. Convex polytopes
11. Continuous mappings of convex sets. Regular convex sets

Chapter 2. Helly’s Theorem and Its Applications

1. Radon’s proof of Helly’s theorem
2. Carathéodory’s theorem
3. The relation of Helly’s theorem to Carathéodory’s theorem
4. Kirchberger’s theorem
5. Horn’s extensions of Helly’s theorem

Chapter 3. General Properties of Convex Functions

1. The definition of a convex function; boundedness and continuity
2. The directional derivatives of a convex function
3. Differential conditions for convexity
CONTENTS

vi

4 Planar convexity in terms of polar coordinates page 53
5 The distance and support functions of a convex set 54

Chapter 4. APPROXIMATIONS TO CONVEX SETS.
THE BLASCHKE SELECTION THEOREM

1 Classes of convex sets as metric spaces 59
2 The Blaschke selection theorem 64
3 Approximations by convex polytopes and regular convex sets 67
4 The volume of a convex set. Continuity 71
5 Sets and numbers associated with a convex set 76

Chapter 5. TRANSFORMATIONS AND COMBINATIONS OF CONVEX SETS

1 Linear and concave arrays of convex sets 79
2 Mixed volumes 82
3 Surface area 88
4 Steiner symmetrization 90
5 The Brünn-Minkowski theorem: the Minkowski and Fenchel-Alexandroff inequalities 96
6 Central symmetrization 101

Chapter 6. SOME SPECIAL PROBLEMS

1 The isoperimetric inequality 103
2 The isoperimetric inequality in R² 107
3 Relations between the inradius, circumradius, minimal width and diameter of a convex set 111
4 Plane convex sets 115

Chapter 7. SETS OF CONSTANT WIDTH

1 General properties 123
2 Plane sets of constant width 127
3 Minimal universal covers 131

Notes 136
References 139
Index 141
PREFACE

Although convexity is used in many different branches of mathematics there is no easily available account dealing with the subject in a manner which combines generality with simplicity. My aim in writing this tract has been to provide a short introduction to this field of knowledge for the use of those starting research or for those working on other topics who feel the need to use and understand convexity.

In a short tract, on a subject such as this, it is difficult to decide both the level of generality to aim at and the exact parts of the subject to omit. On the one hand, to accommodate the needs of economists and others, it is desirable to have available results that refer to n-dimensional real Euclidean space; on the other hand, more general spaces present such diverse characteristics that they cannot be conveniently dealt with in a tract of this size. For this reason the containing space is taken to be n-dimensional real Euclidean space except in the last two chapters. As to the subjects omitted there is nothing on the geometry of numbers, packing or covering problems, differential geometry on convex surfaces, integral geometry or the analogy with complex convexity.

The tract falls naturally into three parts. The first and third chapters contain the basic properties of individual convex sets and functions. The second chapter is an illustration of the way in which the comparatively simple properties obtained in the first chapter can be applied. In the fourth and fifth chapters convexity is investigated more fully, the properties of classes of convex sets are developed and the effects of certain operations on these classes are studied. The last two chapters contain examples of results and techniques in the solution of particular problems.

The notes at the end of the tract contain brief indications of the sources of the material in the tract and of suitable papers or books for further reading. Other bibliographies will be found in the books referred to there, in particular those by Bonnesen and Fenchel, by Hadwiger and by Fejes Tóth.
viii

PREFACE

My thanks are due to Dr F. Smithies, Fellow of St John’s College, Cambridge for inviting me to write this tract and for reading the manuscript; and to Mr B. J. Birch, Fellow of Trinity College, Cambridge, for reading the proofs with a critical eye. Apart from correcting many minor mistakes both have made suggestions for improving the text that have been of great value.

H. G. E.

7 HAUXTON ROAD,
TRUMFINGTON,
CAMBRIDGE

27 August 1957