ELEMENTARY MATRICES
AND SOME APPLICATIONS TO DYNAMICS
AND DIFFERENTIAL EQUATIONS

by

Formerly Deputy-Chief Scientific Officer in the
Aerodynamics Division, the National Physical Laboratory

W. J. DUNCAN, C.B.E., D.Sc., F.R.S.
Mechan Professor of Aeronautics and Fluid Mechanics in
the University of Glasgow, Fellow of University College London

AND

A. R. COLLAR, M.A., D.Sc., F.R.Ae.S.
Sir George White Professor of Aeronautical Engineering
in the University of Bristol

CAMBRIDGE
AT THE UNIVERSITY PRESS
1963
CONTENTS

Preface

xvii

CHAPTER I

FUNDAMENTAL DEFINITIONS AND ELEMENTARY PROPERTIES

<table>
<thead>
<tr>
<th>Art.</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Preliminary Remarks</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Notation and Principal Types of Matrix</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Summation of Matrices and Scalar Multipliers</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Multiplication of Matrices</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Continued Products of Matrices</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Properties of Diagonal and Unit Matrices</td>
<td>12</td>
</tr>
<tr>
<td>1.7 Partitioning of Matrices into Submatrices</td>
<td>13</td>
</tr>
<tr>
<td>1.8 Determinants of Square Matrices</td>
<td>16</td>
</tr>
<tr>
<td>1.9 Singular Matrices, Degeneracy, and Rank</td>
<td>18</td>
</tr>
<tr>
<td>1.10 Adjoint Matrices</td>
<td>21</td>
</tr>
<tr>
<td>1.11 Reciprocal Matrices and Division</td>
<td>22</td>
</tr>
<tr>
<td>1.12 Square Matrices with Null Product</td>
<td>23</td>
</tr>
<tr>
<td>1.13 Reversal of Order in Products when Matrices are Transposed or Reciprocated</td>
<td>25</td>
</tr>
<tr>
<td>1.14 Linear Substitutions</td>
<td>26</td>
</tr>
<tr>
<td>1.15 Bilinear and Quadratic Forms</td>
<td>28</td>
</tr>
<tr>
<td>1.16 Discriminants and One-Signed Quadratic Forms</td>
<td>30</td>
</tr>
<tr>
<td>1.17 Special Types of Square Matrix</td>
<td>33</td>
</tr>
</tbody>
</table>

CHAPTER II

POWERS OF MATRICES, SERIES, AND INFINITESIMAL CALCULUS

<table>
<thead>
<tr>
<th>Art.</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introductory</td>
</tr>
<tr>
<td>2.2</td>
<td>Powers of Matrices</td>
</tr>
<tr>
<td>2.3</td>
<td>Polynomials of Matrices</td>
</tr>
<tr>
<td>2.4</td>
<td>Infinite Series of Matrices</td>
</tr>
<tr>
<td>2.5</td>
<td>The Exponential Function</td>
</tr>
<tr>
<td>2.6</td>
<td>Differentiation of Matrices</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>page</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>2.7 Differentiation of the Exponential Function</td>
<td>45</td>
</tr>
<tr>
<td>2.8 Matrices of Differential Operators</td>
<td>46</td>
</tr>
<tr>
<td>2.9 Change of the Independent Variables</td>
<td>48</td>
</tr>
<tr>
<td>2.10 Integration of Matrices</td>
<td>52</td>
</tr>
<tr>
<td>2.11 The Matrizant</td>
<td>53</td>
</tr>
</tbody>
</table>

CHAPTER III
LAMBDA-MATRICES AND CANONICAL FORMS

3.1 Preliminary Remarks

PART I. Lambda-Matrices

3.2 Lambda-Matrices
3.3 Multiplication and Division of Lambda-Matrices
3.4 Remainder Theorems for Lambda-Matrices
3.5 The Determinantal Equation and the Adjoint of a Lambda-Matrix
3.6 The Characteristic Matrix of a Square Matrix and the Latent Roots
3.7 The Cayley-Hamilton Theorem
3.8 The Adjoint and Derived Adjoints of the Characteristic Matrix
3.9 Sylvester’s Theorem
3.10 Confluent Form of Sylvester’s Theorem

PART II. Canonical Forms

3.11 Elementary Operations on Matrices
3.12 Equivalent Matrices
3.13 A Canonical Form for Square Matrices of Rank r
3.14 Equivalent Lambda-Matrices
3.15 Smith’s Canonical Form for Lambda-Matrices
3.16 Collinearatory Transformation of a Numerical Matrix to a Canonical Form
CHAPTER IV
MISCELLANEOUS NUMERICAL METHODS

4.1 Range of the Subjects Treated
96

PART I. Determinants, Reciprocal and Adjoint Matrices, and Systems of Linear Algebraic Equations
4.2 Preliminary Remarks
96
4.3 Triangular and Related Matrices
97
4.4 Reduction of Triangular and Related Matrices to Diagonal Form
102
4.5 Reciprocals of Triangular and Related Matrices
103
4.6 Computation of Determinants
106
4.7 Computation of Reciprocal Matrices
108
4.8 Reciprocation by the Method of Postmultipliers
109
4.9 Reciprocation by the Method of Submatrices
112
4.10 Reciprocation by Direct Operations on Rows
119
4.11 Improvement of the Accuracy of an Approximate Reciprocal Matrix
120
4.12 Computation of the Adjoint of a Singular Matrix
121
4.13 Numerical Solution of Simultaneous Linear Algebraic Equations
125

PART II. High Powers of a Matrix and the Latent Roots
4.14 Preliminary Summary of Sylvester’s Theorem
133
4.15 Evaluation of the Dominant Latent Roots from the Limiting Form of a High Power of a Matrix
134
4.16 Evaluation of the Matrix Coefficients Z for the Dominant Roots
138
4.17 Simplified Iterative Methods
140
4.18 Computation of the Non-Dominant Latent Roots
143
4.19 Upper Bounds to the Powers of a Matrix
145

PART III. Algebraic Equations of General Degree
4.20 Solution of Algebraic Equations and Adaptation of Aitken’s Formulae
148
4.21 General Remarks on Iterative Methods
150
4.22 Situation of the Roots of an Algebraic Equation
151
CONTENTS

CHAPTER V
LINEAR ORDINARY DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

PART I. General Properties

Art. page
5-1 Systems of Simultaneous Differential Equations 156
5-2 Equivalent Systems 158
5-3 Transformation of the Dependent Variables 159
5-4 Triangular Systems and a Fundamental Theorem 160
5-5 Conversion of a System of General Order into a First-Order System 162
5-6 The Adjoint and Derived Adjoint Matrices 165
5-7 Construction of the Constituent Solutions 167
5-8 Numerical Evaluation of the Constituent Solutions 172
5-9 Expansions in Partial Fractions 175

PART II. Construction of the Complementary Function
and of a Particular Integral

5-10 The Complementary Function 178
5-11 Construction of a Particular Integral 183

CHAPTER VI
LINEAR ORDINARY DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS (continued)

PART I. Boundary Problems

6-1 Preliminary Remarks 186
6-2 Characteristic Numbers 187
6-3 Notation for One-Point Boundary Problems 188
6-4 Direct Solution of the General One-Point Boundary Problem 191
6-5 Special Solution for Standard One-Point Boundary Problems 195
6-6 Confluent Form of the Special Solution 198
6-7 Notation and Direct Solution for Two-Point Boundary Problems 200
CONTENTS

PART II. Systems of First Order

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-8</td>
<td>Preliminary Remarks</td>
<td>202</td>
</tr>
<tr>
<td>6-9</td>
<td>Special Solution of the General First-Order System, and its Connection with Heaviside's Method</td>
<td>203</td>
</tr>
<tr>
<td>6-10</td>
<td>Determinantal Equation, Adjoint Matrices, and Modal Columns for the Simple First-Order System</td>
<td>205</td>
</tr>
<tr>
<td>6-11</td>
<td>General, Direct, and Special Solutions of the Simple First-Order System</td>
<td>206</td>
</tr>
<tr>
<td>6-12</td>
<td>Power Series Solution of Simple First-Order Systems</td>
<td>209</td>
</tr>
<tr>
<td>6-13</td>
<td>Power Series Solution of the Simple First-Order System for a Two-Point Boundary Problem</td>
<td>211</td>
</tr>
</tbody>
</table>

CHAPTER VII

NUMERICAL SOLUTIONS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>Range of the Chapter</td>
<td>212</td>
</tr>
<tr>
<td>7-2</td>
<td>Existence Theorems and Singularities</td>
<td>212</td>
</tr>
<tr>
<td>7-3</td>
<td>Fundamental Solutions of a Single Linear Homogeneous Equation</td>
<td>214</td>
</tr>
<tr>
<td>7-4</td>
<td>Systems of Simultaneous Linear Differential Equations</td>
<td>215</td>
</tr>
<tr>
<td>7-5</td>
<td>The Peano-Baker Method of Integration</td>
<td>217</td>
</tr>
<tr>
<td>7-6</td>
<td>Various Properties of the Matrizant</td>
<td>218</td>
</tr>
<tr>
<td>7-7</td>
<td>A Continuation Formula</td>
<td>219</td>
</tr>
<tr>
<td>7-8</td>
<td>Solution of the Homogeneous First-Order System of Equations in Power Series</td>
<td>222</td>
</tr>
<tr>
<td>7-9</td>
<td>Collocation and Galerkin's Method</td>
<td>224</td>
</tr>
<tr>
<td>7-10</td>
<td>Examples of Numerical Solution by Collocation and Galerkin’s Method</td>
<td>228</td>
</tr>
<tr>
<td>7-11</td>
<td>The Method of Mean Coefficients</td>
<td>232</td>
</tr>
<tr>
<td>7-12</td>
<td>Solution by Mean Coefficients: Example No. 1</td>
<td>233</td>
</tr>
<tr>
<td>7-13</td>
<td>Example No. 2</td>
<td>237</td>
</tr>
<tr>
<td>7-14</td>
<td>Example No. 3</td>
<td>240</td>
</tr>
<tr>
<td>7-15</td>
<td>Example No. 4</td>
<td>243</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER VIII
KINEMATICS AND DYNAMICS OF SYSTEMS

PART I. Frames of Reference and Kinematics

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Frames of Reference</td>
<td>246</td>
</tr>
<tr>
<td>8.2</td>
<td>Change of Reference Axes in Two Dimensions</td>
<td>247</td>
</tr>
<tr>
<td>8.3</td>
<td>Angular Coordinates of a Three-Dimensional Moving Frame of Reference</td>
<td>250</td>
</tr>
<tr>
<td>8.4</td>
<td>The Orthogonal Matrix of Transformation</td>
<td>251</td>
</tr>
<tr>
<td>8.5</td>
<td>Matrices Representing Finite Rotations of a Frame of Reference</td>
<td>251</td>
</tr>
<tr>
<td>8.6</td>
<td>Matrix of Transformation and Instantaneous Angular Velocities</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Expressed in Angular Coordinates</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Components of Velocity and Acceleration</td>
<td>256</td>
</tr>
<tr>
<td>8.8</td>
<td>Kinematic Constraint of a Rigid Body</td>
<td>259</td>
</tr>
<tr>
<td>8.9</td>
<td>Systems of Rigid Bodies and Generalised Coordinates</td>
<td>260</td>
</tr>
</tbody>
</table>

PART II. Statics and Dynamics of Systems

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.10</td>
<td>Virtual Work and the Conditions of Equilibrium</td>
<td>262</td>
</tr>
<tr>
<td>8.11</td>
<td>Conservative and Non-Conservative Fields of Force</td>
<td>263</td>
</tr>
<tr>
<td>8.12</td>
<td>Dynamical Systems</td>
<td>266</td>
</tr>
<tr>
<td>8.13</td>
<td>Equations of Motion of an Aeroplane</td>
<td>267</td>
</tr>
<tr>
<td>8.14</td>
<td>Lagrange’s Equations of Motion of a Holonomous System</td>
<td>269</td>
</tr>
<tr>
<td>8.15</td>
<td>Ignoration of Coordinates</td>
<td>272</td>
</tr>
<tr>
<td>8.16</td>
<td>The Generalised Components of Momentum and Hamilton’s Equations</td>
<td>274</td>
</tr>
<tr>
<td>8.17</td>
<td>Lagrange’s Equations with a Moving Frame of Reference</td>
<td>277</td>
</tr>
</tbody>
</table>

CHAPTER IX
SYSTEMS WITH LINEAR DYNAMICAL EQUATIONS

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introductory Remarks</td>
<td>280</td>
</tr>
<tr>
<td>9.2</td>
<td>Disturbed Motions</td>
<td>280</td>
</tr>
<tr>
<td>9.3</td>
<td>Conservative System Disturbed from Equilibrium</td>
<td>281</td>
</tr>
<tr>
<td>9.4</td>
<td>Disturbed Steady Motion of a Conservative System with Ignorable</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Coordinates</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Art.</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-5</td>
<td>283</td>
</tr>
<tr>
<td>9-6</td>
<td>284</td>
</tr>
<tr>
<td>9-7</td>
<td>288</td>
</tr>
<tr>
<td>9-8</td>
<td>289</td>
</tr>
<tr>
<td>9-9</td>
<td>291</td>
</tr>
<tr>
<td>9-10</td>
<td>295</td>
</tr>
<tr>
<td>9-11</td>
<td>299</td>
</tr>
<tr>
<td>9-12</td>
<td>302</td>
</tr>
</tbody>
</table>

CHAPTER X

ITERATIVE NUMERICAL SOLUTIONS OF LINEAR DYNAMICAL PROBLEMS

| 10-1 Introductory | 308 |

PART I. Systems with Damping Forces Absent

10-2 Remarks on the Underlying Theory	308
10-3 Example No. 1: Oscillations of a Triple Pendulum	310
10-4 Example No. 2: Torsional Oscillations of a Uniform Cantilever	314
10-5 Example No. 3: Torsional Oscillations of a Multi-Cylinder Engine	316
10-6 Example No. 4: Flexural Oscillations of a Tapered Beam	318
10-7 Example No. 5: Symmetrical Vibrations of an Annular Membrane	320
10-8 Example No. 6: A System with Two Equal Frequencies	322
10-9 Example No. 7: The Static Twist of an Aeroplane Wing under Aerodynamical Load	325

PART II. Systems with Damping Forces Present

| 10-10 Preliminary Remarks | 327 |
| 10-11 Example: The Oscillations of a Wing in an Airstream | 328 |
CONTENTS

CHAPTER XI
DYNAMICAL SYSTEMS WITH SOLID FRICTION

Art.
11-1 Introduction
11-2 The Dynamical Equations
11-3 Various Identities
11-4 Complete Motion when only One Coordinate is Frictionally Constrained
11-5 Illustrative Treatment for Ankylyotic Motion
11-6 Steady Oscillations when only One Coordinate is Frictionally Constrained
11-7 Discussion of the Conditions for Steady Oscillations
11-8 Stability of the Steady Oscillations
11-9 A Graphical Method for the Complete Motion of Binary Systems

page
332
335
336
339
344
345
348
350
354

CHAPTER XII
ILLUSTRATIVE APPLICATIONS OF FRICTION THEORY TO FLUTTER PROBLEMS

12-1 Introductory
PART I. Aeroplane No. 1
12-2 Numerical Data
12-3 Steady Oscillations on Aeroplane No. 1 at \(V = 260 \). (Rudder Frictionally Constrained)
12-4 Steady Oscillations on Aeroplane No. 1 at Various Speeds. (Rudder Frictionally Constrained)
12-5 Steady Oscillations on Aeroplane No. 1. (Fuselage Frictionally Constrained)

358
362
363
367
369

PART II. Aeroplane No. 2
12-6 Numerical Data
12-7 Steady Oscillations on Aeroplane No. 2. (Rudder Frictionally Constrained)
12-8 Steady Oscillations on Aeroplane No. 2. (Fuselage Frictionally Constrained)
12-9 Graphical Investigation of Complete Motion on Aeroplane No. 2 at \(V = 230 \). (Rudder Frictionally Constrained)

369
370
372
372

PART III. Aeroplane No. 3
12-10 Aeroplane No. 3

380
CONTENTS

CHAPTER XIII
PITCHING OSCILLATIONS OF A FRICTIONALLY
CONSTRAINED AEROFOIL

Art. page
13.1 Preliminary Remarks 382

PART I. The Test System and its Design
13.2 Description of the Aerofoil System 383
13.3 Data Relating to the Design of the Test System 384
13.4 Graphical Interpretation of the Criterion for Steady Oscilla-
tions 387
13.5 Alternative Treatment Based on the Use of Inertias as
Parameters 389
13.6 Theoretical Behaviour of the Test System 392

PART II. Experimental Investigation
13.7 Preliminary Calibrations of the Actual Test System 395
13.8 Observations of Frictional Oscillations 395
13.9 Other Oscillations Exhibited by the Test System 398

List of References 399
List of Authors Cited 403
Index 404

ADDENDA ET CORRIGENDA

Additional Definitions.

The trace of a square matrix is the sum of the elements in the principal
diagonal. It is equal to the sum of the latent roots.

Characteristic vector or proper vector is equivalent to "modal column" or
"modal row", though less explicit. The term "eigenvector" is sometimes used
but is to be strongly deprecated.

p. 33. Special types of square matrix. Add

"Matrix is unitary when \(u^{-1} = \bar{u} \)."
A real unitary matrix is orthogonal but an orthogonal matrix need not be
real.
All the latent roots of a unitary matrix have unit modulus.
Matrix is persymmetric when the value of \(u_{ij} \) depends only on \((i+j) \)."

p. 110. Insert dagger \(\dagger \) against footnote.
ADDENDA ET CORRIGENDA

p. 120, 2nd table, 2nd row, for “$r_6 - 2r_6$” read “$r_6 - 3r_6$”.

p. 121, line 1. Delete “method of”.

p. 121, § 4 12, lines 2, 3. For “the first or the third” read “any”.

p. 144, para. beginning at line 8 should read
“If there are p distinct dominant roots $\lambda_1 \lambda_2 \ldots \lambda_p$ and if $\kappa_1, \kappa_2, \ldots, \kappa_p$ are the corresponding modal rows, the procedure is as follows. Partition the (β, n) matrix $[\kappa_1, \kappa_2, \ldots, \kappa_p]$ in the form $[\alpha, \beta]$, where α is a (p, p) submatrix, assumed to be non-singular (rearrangement of the rows of u and columns of $[\alpha, \beta]$ may be necessary to satisfy this condition). In this case the required matrix w is constructed in the partitioned form

$$w = \begin{bmatrix} I, & -\alpha^{-1}\beta \\ 0, & 0 \end{bmatrix}$$

and then

$$v = u(I - w) = u\begin{bmatrix} 0, & -\alpha^{-1}\beta \\ 0, & I \end{bmatrix}.$$

Evidently v has p zero columns and hence p zero latent roots. If rearrangement has been required, u must be in the corresponding rearranged form.

The choice of a non-singular submatrix α is a generalization of the choice of a non-zero element κ_1 in the elimination of a single dominant root.

This process is in effect that which is applied in the numerical example on p. 330.”

p. 150, § 4·21, line 9. For “a machine could no doubt be” read “machines have been” and in line 10 delete “most of”.

p. 152, line 5. For “changed” read “reversed”.

p. 176, equation (4), denominator of third fraction, for

“$\Delta^{(1)} (\lambda_p) (\lambda - \lambda_p)$” read “$\lambda_p \Delta^{(1)} (\lambda_p) (\lambda - \lambda_p)$”.

p. 195, § 6·5, line 7. For “initial” read “initial”.

p. 252, equation at bottom, interchange first and third matrices on the right-hand side.

p. 277. The symbol α stands for a set of parameters and for the components of the total acceleration of P. One of these should be represented by β, say.

p. 291, § 9·9. The following is a simple alternative proof of the reality of the roots of the determinantal equation $\Delta_m(z) = 0$ when A and E are real and symmetrical.

Let z, k respectively denote any root and its associated modal column, and let \bar{z}, \bar{k} be the corresponding conjugates (see § 1·17). Then

$$zAk = Ek.$$(1)

Premultiplication by \bar{k}' yields

$$z\bar{k}'Ak = \bar{k}'Ek,$$(2)

and by transposition

$$zk'\bar{A}k = k'\bar{A}Ek.$$
ADDENDA ET CORRIGENDA

The conjugate relation is

\[\tilde{z} k A \tilde{k} = \tilde{z} E \tilde{k}. \](3)

Comparison of (2) and (3) gives \(z = \tilde{z} \), which shows that \(z \) is real. Thus by (1) \(k \) is real, and by (2) \(z \) is positive when the potential energy function is positive and definite.

p. 296, equation (7). An alternative is \(Q = k' E q \).

p. 309, equation in (b). We may replace \(k' A \) by \(k' E \) which may be simpler.

p. 310, § 10-2 (e), second sentence should read “The principle shows that first order errors in the mode yield only second order errors in the frequency as calculated by the equation of energy”.

Also line 10 should read “used, and when \(U \) happens to be symmetrical, a convenient...”.

p. 315, line 9 from bottom, for “Rayleigh’s principle will next be applied” read “Since \(U \) is symmetrical, the extension of Rayleigh’s principle given in § 10-2 (e) can be applied...”.

p. 363, § 12-3, line 4, for “given” read “are given”

p. 396, line above the diagram. For “0-84 degree” read “84 degrees per lb.ft.”
PREFACE

The number of published treatises on matrices is not large, and so far as we are aware this is the first which develops the subject with special reference to its applications to differential equations and classical mechanics. The book is written primarily for students of applied mathematics who have no previous knowledge of matrices, and we hope that it will help to bring about a wider appreciation of the conciseness and power of matrices and of their convenience in computation. The general scope of the book is elementary, but occasional discussions of advanced questions are not avoided. The sections containing these discussions, which may with advantage be omitted at the first reading, are distinguished by an asterisk.

The first four chapters give an account of those properties of matrices which are required later for the applications. Chapters I to III introduce the general theory of matrices, while Chapter IV is devoted to various numerical processes, such as the reciprocation of matrices, the solution of algebraic equations, and the calculation of latent roots of matrices by iterative methods.

The remainder of the book is concerned with applications. Chapters V and VI deal in some detail with systems of linear ordinary differential equations with constant coefficients, and Chapter VII contains examples of numerical solutions of systems of linear differential equations with variable coefficients. The last six chapters take up the subject of mechanics. They include an account of the kinematics and dynamics of systems, a separate discussion of motions governed by linear differential equations, illustrations of iterative methods of numerical solution, and a treatment of simple dynamical systems involving solid friction. The part played by friction in the motions of dynamical systems is as yet very incompletely understood, and we have considered it useful to include a very brief description of some experimental tests of the theory.

A considerable number of worked numerical examples has been included. It is our experience that the practical mathematician, whose requirements we have mainly considered, is often able to grasp the significance of a general algebraic theorem more thoroughly when it is illustrated in terms of actual numbers. For examples of
PREFACE

applications of dynamical theory we have usually chosen problems relating to the oscillations of aeroplanes or aeroplane structures. Such problems conveniently illustrate the properties of dissipative dynamical systems, and they have a considerable practical importance.

A word of explanation is necessary in regard to the scheme of numbering adopted for paragraphs, equations, tables, and diagrams. The fourth paragraph of Chapter 1, for example, is denoted by § 1·4. The two equations introduced in § 1·4 are numbered (1) and (2), but when it is necessary in later paragraphs to refer back to these equations they are described, respectively, as equations (1·4·1) and (1·4·2). Tables and diagrams are numbered in each paragraph in serial order: thus, the two consecutive tables which appear in § 7·13 are called Tables 7·13·1 and 7·13·2, while the single diagram introduced is Fig. 7·13·1.

The list of references makes no pretence to be complete, and in the case of theorems which are now so well established as to be almost classical, historical notices are not attempted. We believe that much of the subject-matter—particularly that relating to the applications—presents new features and has not appeared before in text-books. However, in a field so extensive and so widely explored as the theory of matrices, it would be rash to claim complete novelty for any particular theorem or method.

The parts of the book dealing with applications are based very largely on various mathematical investigations carried out by us during the last seven years for the Aeronautical Research Committee. We wish to express our great indebtedness to that Committee and to the Executive Committee of the National Physical Laboratory for permission to refer to, and expand, a number of unpublished reports, and for granting many other facilities in the preparation of the book. We wish also to record our appreciation of the care which the Staff of the Cambridge University Press has devoted to the printing.

Our thanks are also due to Miss Sylvia W. Skan of the Aerodynamics Department of the National Physical Laboratory for considerable assistance in computation and in the reading of proofs.

R. A. F.
W. J. D.
A. R. C.

March 1938