INFORMATION THEORY AND THE BRAIN

Information Theory and the Brain deals with a new and expanding area of neuroscience which provides a framework for understanding neuronal processing. It is derived from a conference held in Newquay, UK, where a handful of scientists from around the world met to discuss the topic. This book begins with an introduction to the basic concepts of information theory and then illustrates these concepts with examples from research over the last 40 years. Throughout the book, the contributors highlight current research from four different areas: (1) biological networks, including a review of information theory based on models of the retina, understanding the operation of the insect retina in terms of energy efficiency, and the relationship of image statistics and image coding; (2) information theory and artificial networks, including independent component-based networks and models of the emergence of orientation and ocular dominance maps; (3) information theory and psychology, including clarity of speech models, information theory and connectionist models, and models of information theory and resource allocation; (4) formal analysis, including chapters on modelling the hippocampus, stochastic resonance, and measuring information density. Each part includes an introduction and glossary covering basic concepts.

This book will appeal to graduate students and researchers in neuroscience as well as computer scientists and cognitive scientists. Neuroscientists interested in any aspect of neural networks or information processing will find this a very useful addition to the current literature in this rapidly growing field.

Roland Baddeley is Lecturer in the Laboratory of Experimental Psychology at the University of Sussex.

Peter Hancock is Lecturer in the Department of Psychology at the University of Stirling.

Peter Földiák is Lecturer in the School of Psychology at the University of St. Andrews.
INFORMATION THEORY
AND THE BRAIN

Edited by
ROLAND BADDELEY
University of Sussex

PETER HANCOCK
University of Stirling

PETER FÖLDIÁK
University of St. Andrews
Contents

List of Contributors

Preface

1 Introductory Information Theory and the Brain
 ROLAND BADDELEY
 1.1 Introduction
 1.2 What Is Information Theory?
 1.3 Why Is This Interesting?
 1.4 Practical Use of Information Theory
 1.5 Maximising Information Transmission
 1.6 Potential Problems and Pitfalls
 1.7 Conclusion

2 Problems and Solutions in Early Visual Processing
 BRIAN G. BURTON
 2.1 Introduction
 2.2 Adaptations of the Insect Retina
 2.3 The Nature of the Retinal Image
 2.4 Theories for the RFs of Retinal Cells
 2.5 The Importance of Phase and the Argument for Sparse, Distributed Coding
 2.6 Discussion

3 Coding Efficiency and the Metabolic Cost of Sensory and Neural Information
 SIMON B. LAUGHLIN, JOHN C. ANDERSON, DAVID O’CARROLL
 AND ROB DE RUYTER VAN STEVENINCK
 3.1 Introduction
Contents

3.2 Why Code Efficiently? 42
3.3 Estimating the Metabolic Cost of Transmitting Information 45
3.4 Transmission Rates and Bit Costs in Different Neural Components of the Blowfly Retina 48
3.5 The Energetic Cost of Neural Information is Substantial 49
3.6 The Costs of Synaptic Transfer 50
3.7 Bit Costs Scale with Channel Capacity – Single Synapses Are Cheaper 52
3.8 Graded Potentials Versus Action Potentials 53
3.9 Costs, Molecular Mechanisms, Cellular Systems and Neural Codes 54
3.10 Investment in Coding Scales with Utility 57
3.11 Phototransduction and the Cost of Seeing 58
3.12 Investment in Vision 59
3.13 Energetics – a Unifying Principle? 60

4 Coding Third-Order Image Structure 62
MITCHELL THOMPSON
4.1 Introduction 62
4.2 Higher-Order Statistics 64
4.3 Data Acquisition 65
4.4 Computing the SCF and Power Spectrum 66
4.5 Computing the TCF and Bispectrum 68
4.6 Spectral Measures and Moments 70
4.7 Channels and Correlations 72
4.8 Conclusions 77

Part Two: Information Theory and Artificial Networks 79

5 Experiments with Low-Entropy Neural Networks 84
GEORGE HARPUR AND RICHARD PRAGER
5.1 Introduction 84
5.2 Entropy in an Information-Processing System 84
5.3 An Unsupervised Neural Network Architecture 86
5.4 Constraints 88
5.5 Linear ICA 93
5.6 Image Coding 95
5.7 Speech Coding 97
5.8 Conclusions 100

6 The Emergence of Dominance Stripes and Orientation Maps in a Network of Firing Neurons 101
STEPHEN P. LUTTRELL
6.1 Introduction 101
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 Theory</td>
<td>102</td>
</tr>
<tr>
<td>6.3 Dominance Stripes and Orientation Maps</td>
<td>104</td>
</tr>
<tr>
<td>6.4 Simulations</td>
<td>109</td>
</tr>
<tr>
<td>6.5 Conclusions</td>
<td>118</td>
</tr>
<tr>
<td>Appendix</td>
<td>119</td>
</tr>
<tr>
<td>7 Dynamic Changes in Receptive Fields Induced by Cortical Reorganization</td>
<td>122</td>
</tr>
<tr>
<td>GERMÁN MATO AND NÉSTOR PARGA</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>122</td>
</tr>
<tr>
<td>7.2 The Model</td>
<td>124</td>
</tr>
<tr>
<td>7.3 Discussion of the Model</td>
<td>127</td>
</tr>
<tr>
<td>7.4 Results</td>
<td>130</td>
</tr>
<tr>
<td>7.5 Conclusions</td>
<td>137</td>
</tr>
<tr>
<td>8 Time to Learn About Objects</td>
<td>139</td>
</tr>
<tr>
<td>GUY WALLIS</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>139</td>
</tr>
<tr>
<td>8.2 Neuropsychology</td>
<td>142</td>
</tr>
<tr>
<td>8.3 A Neural Network Model</td>
<td>149</td>
</tr>
<tr>
<td>8.4 Simulating Fractal Image Learning</td>
<td>153</td>
</tr>
<tr>
<td>8.5 Psychophysical Experiments</td>
<td>156</td>
</tr>
<tr>
<td>8.6 Discussion</td>
<td>162</td>
</tr>
<tr>
<td>9 Principles of Cortical Processing Applied to and Motivated by Artificial Object Recognition</td>
<td>164</td>
</tr>
<tr>
<td>NORBERT KRÜGER, MICHAEL PÖTZSCH AND GABRIELE PETERS</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>164</td>
</tr>
<tr>
<td>9.2 Object Recognition with Banana Wavelets</td>
<td>166</td>
</tr>
<tr>
<td>9.3 Analogies to Visual Processing and Their Functional Meaning</td>
<td>171</td>
</tr>
<tr>
<td>9.4 Conclusion and Outlook</td>
<td>178</td>
</tr>
<tr>
<td>10 Performance Measurement Based on Usable Information</td>
<td>180</td>
</tr>
<tr>
<td>MARTIN ELLIFFE</td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>181</td>
</tr>
<tr>
<td>10.2 Information Theory: Simplistic Application</td>
<td>186</td>
</tr>
<tr>
<td>10.3 Information Theory: Binning Strategies</td>
<td>187</td>
</tr>
<tr>
<td>10.4 Usable Information: Refinement</td>
<td>191</td>
</tr>
<tr>
<td>10.5 Result Comparison</td>
<td>194</td>
</tr>
<tr>
<td>10.6 Conclusion</td>
<td>198</td>
</tr>
</tbody>
</table>
Contents

Part Three: Information Theory and Psychology

11 Modelling Clarity Change in Spontaneous Speech
MATTHEW AYLETT
11.1 Introduction
11.2 Modelling Clarity Variation
11.3 The Model in Detail
11.4 Using the Model to Calculate Clarity
11.5 Evaluating the Model
11.6 Summary of Results
11.7 Discussion
204
204
206
207
213
215
218
220

12 Free Gifts from Connectionist Modelling
JOHN A. BULLINARIA
12.1 Introduction
12.2 Learning and Developmental Bursts
12.3 Regularity, Frequency and Consistency Effects
12.4 Modelling Reaction Times
12.5 Speed–Accuracy Trade-offs
12.6 Reaction Time Priming
12.7 Cohort and Left–Right Seriality Effects
12.8 Lesion Studies
12.9 Discussion and Conclusions
221
221
222
223
227
231
232
234
235
239

13 Information and Resource Allocation
JANNE SINKKONEN
13.1 Introduction
13.2 Law for Temporal Resource Allocation
13.3 Statistical Information and Its Relationships to Resource Allocation
13.4 Utility and Resource Sharing
13.5 Biological Validity of the Resource Concept
13.6 An MMR Study
13.7 Discussion
241
241
242
246
248
248
249
251

Part Four: Formal Analysis

14 Quantitative Analysis of a Schaffer Collateral Model
SIMON SCHULTZ, STEFANO PANZERI, EDMUND ROLLS AND ALESSANDRO TREVES
14.1 Introduction
14.2 A Model of the Schaffer Collaterals
14.3 Technical Comments
255
257
259
262
Contents

14.4 How Graded is Information Representation on the Schaffer Collaterals? 264
14.5 Non-uniform Convergence 267
14.6 Discussion and Summary 268
Appendix A. Expression from the Replica Evaluation 270
Appendix B. Parameter Values 272

15 A Quantitative Model of Information Processing in CA1 273
CARLO FULVI MARI, STEFANO PANZERI, EDMUND ROLLS AND ALESSANDRO TREVES
15.1 Introduction 273
15.2 Hippocampal Circuitry 274
15.3 The Model 276
15.4 Statistical–Informational Analysis 280
15.5 Results 281
15.6 Discussion 283
Appendix: Results of the Analytical Evaluation 283

16 Stochastic Resonance and Bursting in a Binary-Threshold Neuron with Intrinsic Noise 290
PAUL C. BRESSLOFF AND PETER ROPER
16.1 Introduction 290
16.2 The One-Vesicle Model 293
16.3 Neuronal Dynamics 294
16.4 Periodic Modulation and Response 300
16.5 Conclusions 301
Appendix A: The Continuous-Time CK Equation 303
Appendix B: Derivation of the Critical Temperature 303

17 Information and Density and Cortical Magnification Factors 305
M. D. PLUMBLEY
17.1 Introduction 305
17.2 Artificial Neural Feature Maps 306
17.3 Information Theory and Information Density 308
17.4 Properties of Information Density and Information Distribution 309
17.5 Symmetrical Conditional Entropy 311
17.6 Example: Two Components 312
17.7 Alternative Measures 312
17.8 Continuous Domain 314
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.9 Continuous Example: Gaussian Random Function</td>
<td>314</td>
</tr>
<tr>
<td>17.10 Discussion</td>
<td>316</td>
</tr>
<tr>
<td>17.11 Conclusions</td>
<td>316</td>
</tr>
</tbody>
</table>

Bibliography
318

Index
341
List of Contributors

John C. Anderson, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom

Matthew Aylett, Human Communications Resource Center, University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 8PL, United Kingdom

Roland Baddeley, Laboratory of Experimental Psychology, Sussex University, Brighton, BN1 9QG, United Kingdom

Paul C. Bressloff, Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University, Leics, LE11 3TU, United Kingdom

John A. Bullinaria, Centre for Speech and Language, Department of Psychology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom

Brian G. Burton, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom

Rob de Ruyter van Steveninck, NEC Research Institute, 4 Independence Way, Princeton NJ 08540, USA

Martin Elliffe, Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom

Carlo Fulvi Mari, Department of Cognitive Neuroscience, SISSA, Via Beirut 2-4, 34013 Trieste, Italy

George Harpur, Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Norbert Krüger, Institut für Neuroinformatik, Ruhr, Universität Bochum, 44801 Bochum, Universitätsstrasse 150, Bochum ND 03/71, Germany

Simon B. Laughlin, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
Contributors

Stephen P. Luttrell, Defence Research Agency, St. Andrews Road, Malvern, Worcs, WR14 3PS, United Kingdom

Germán Mato, Departamento de Física Teórica C-XI, Universidad Autónoma de Madrid, 28049 Madrid, Spain

David O’Carroll, NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA

Stefano Panzeri, University of Oxford, Department of Experimental Psychology, South Parks Road, Oxford OX1 3UD, United Kingdom

Néstor Parga, Departamento de Física Teóica C-XI, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Gabriele Peters, Institut für Neuroinformatik, Ruhr, Universität Bochum, 44801 Bochum, Universitätsstrasse 150, Bochum, ND 03/71, Germany

M. D. Plumbley, Division of Engineering, King’s College London, Strand, London WC2R 2LS, United Kingdom

Michael Pötzsch, Institut für Neuroinformatik, Ruhr, Universität Bochum, 44801 Bochum, Universitätsstrasse 150, Bochum, ND 03/71, Germany

Richard Prager, Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Edmund Rolls, University of Oxford, Department of Experimental Psychology, South Parks Road, Oxford OX1 3UD, United Kingdom

Peter Roper, Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University, Leics, LE11 3TU, United Kingdom

Simon Schultz, University of Oxford, Department of Experimental Psychology, South Parks Road, Oxford OX1 3UD, United Kingdom

Janne Sinkkonen, Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, Finland

Mitchell Thompson, Vision Sciences, University of Aston, Aston Triangle, Birmingham B4 7ET, United Kingdom

Alessandro Treves, Department of Cognitive Neuroscience, SISSA, Via Beirut 2-4, 34013 Trieste, Italy

Guy Wallis, MPI fuer biologische Kybernetik, Spemannstr. 38, Tuebingen 72076, Germany
Preface

This book is the result of a dilemma I had in 1996: I wanted to attend a conference on information theory, I fancied learning to surf, and my position meant that it was very difficult to obtain travel funds. To solve all of these problems in one fell swoop, I decided to organise a cheap conference, in a place anyone who was interested could surf, and to use as a justification a conference on information theory. All I can say is that I thoroughly recommend doing this. Organising the conference was a doddle (a couple of web pages, and a couple of phone calls to the hotel in Newquay). The location was superb. A grand hotel perched on a headland looking out to sea (and the film location of that well-known film *Witches*). All that and not 100 yards from the most famous surfing beach in Britain. The conference was friendly, and the talks were really very good. The whole experience was only marred by the fact that Jack Scannell was out skilfully surfing the offshore breakers, whilst I was still wobbling on the inshore surf.

Before the conference I had absolutely no intention of producing a book, but after going to the conference, getting assurances from the other editors that they would help, and realising that in fact the talks would make a book that I would quite like to read, I plunged into it. Unlike the actual conference organisation, preparing the book has been a lot of work, but I hope the result is of interest to at least a few people, and that the people who submitted their chapter promptly are not too annoyed at the length of time the whole thing took to produce.

Roland Baddeley

xiii