

Financial Derivatives

This book offers a succinct account of the principles of financial derivatives pricing. The first chapter provides readers with an intuitive exposition of basic random calculus. Concepts such as volatility and time, random walks, geometric Brownian motion, and Itô's lemma are discussed heuristically. The second chapter develops generic pricing techniques for assets and derivatives, determining the notion of a stochastic discount factor or pricing kernel, and then uses this concept to price conventional and exotic derivatives. The third chapter applies the pricing concepts to the special case of interest rate markets, namely, bonds and swaps, and discusses factor models and term-structure-consistent models. The fourth chapter deals with a variety of mathematical topics that underlie derivatives pricing and portfolio allocation decisions, such as mean-reverting processes and jump processes, and discusses related tools of stochastic calculus, such as Kolmogorov equations, martingales techniques, stochastic control, and partial differential equations.

Jamil Baz is the chief investment strategist of GLG, a London-based hedge fund. Prior to holding this position, he was a portfolio manager with PIMCO in London, a managing director in the Proprietary Trading Group of Goldman Sachs, chief investment strategist of Deutsche Bank, and executive director of Lehman Brothers fixed income research division. Dr. Baz teaches financial economics at Oxford University. He has degrees from the London School of Economics (M.Sc.), MIT (S.M.), and Harvard University (A.M., Ph.D.).

George Chacko is chief investment officer of Auda, a global asset management firm, in New York. He is also a professor at Santa Clara University, California, where he teaches finance. Dr. Chacko previously served for ten years as a professor at Harvard Business School in the finance department. Dr. Chacko held managing directorships in fixed income sales and trading at State Street Bank in Boston and in pension asset management at IFL in New York. He holds a B.S. from MIT, an M.B.A. from the University of Chicago, and an M.A. and Ph.D. from Harvard University.

Financial Derivatives

Pricing, Applications, and Mathematics

JAMIL BAZ

GLG

GEORGE CHACKO

Auda

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521066792

© Jamil Baz and George Chacko 2004

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004 First paperback edition 2009

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Baz, Jamil

Financial derivatives: pricing, applications, and mathematics / Jamil Baz, George Chacko.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-81510-X

1. Derivative securities. I. Chacko, George. II. Title.

HG6024.A3B396 2003 332.63'2 – dc21

2002041452

ISBN 978-0-521-81510-9 hardback ISBN 978-0-521-06679-2 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To Maurice and Elena J.B.
To my parents G.C.

Contents

Ac	know	ledgme	ents	page x1
	Intr	oductio	on	1
1	Preliminary Mathematics			5
	1.1	Random Walk		
	1.2	Another Take on Volatility and Time		
	1.3	A First Glance at Itô's Lemma		
	1.4	Continuous Time: Brownian Motion; More		
		on Itâ	ò's Lemma	11
	1.5	Two-I	Dimensional Brownian Motion	14
	1.6	Bivar	iate Itô's Lemma	15
	1.7	Three	Paradoxes of Finance	16
		1.7.1	Paradox 1: Siegel's Paradox	16
		1.7.2	Paradox 2: The Stock, Free-Lunch Paradox	18
		1.7.3	Paradox 3: The Skill Versus Luck Paradox	19
2	Principles of Financial Valuation			22
	2.1	-		
	2.2	Risk and the Equilibrium Pricing of Securities		
	2.3	The Binomial Option-Pricing Model		41
	2.4	Limiting Option-Pricing Formula		46
	2.5	2.5 Continuous-Time Models		
		2.5.1	The Black-Scholes/Merton Model – Pricing	
			Kernel Approach	48
		2.5.2	The Black-Scholes/Merton Model –	
			Probabilistic Approach	57
		2.5.3	The Black-Scholes/Merton Model – Hedging	
			Approach	61

vii

3

Cambridge University Press 978-0-521-06679-2 - Financial Derivatives: Pricing, Applications, and Mathematics Jamil Baz and George Chacko Frontmatter More information

	~
V111	Contents

2.6	Exoti	c Options	63
	2.6.1	Digital Options	64
	2.6.2	Power Options	65
	2.6.3	Asian Options	67
	2.6.4	Barrier Options	71
Inte	rest Ra	ate Models	78
3.1	Intere	est Rate Derivatives: Not So Simple	78
3.2	Bond	s and Yields	80
		Prices and Yields to Maturity	80
	3.2.2	Discount Factors, Zero-Coupon Rates, and	
		Coupon Bias	82
	3.2.3	Forward Rates	85
3.3		e Models of Interest Rate Risk	88
		Duration	88
	3.3.2	Convexity	99
		The Free Lunch in the Duration Model	104
3.4		verview of Interest Rate Derivatives	108
		Bonds with Embedded Options	109
		Forward Rate Agreements	110
		Eurostrip Futures	112
		The Convexity Adjustment	113
		Swaps	118
		Caps and Floors	120
		Swaptions	121
3.5		Curve Swaps	122
		The CMS Swap	122
		The Quanto Swap	127
3.6		r Models	131
	3.6.1	A General Single-Factor Model	131
		The Merton Model	135
		The Vasicek Model	139
		The Cox-Ingersoll-Ross Model	142
		Risk-Neutral Valuation	144
3.7		-Structure-Consistent Models	147
		"Equilibrium" Versus "Fitting"	147
	3.7.2		153
	3.7.3	, ,	
		Volatility	157
	3.7.4		162
3.8		Bonds and Their Derivatives	166
	3.8.1	The Merton Model	167
	3.8.2	The Jarrow-Turnbull Model	168

			Contents	ix
	3.9	The F	Heath, Jarrow, and Morton Approach	172
			est Rates as Options	180
L			ics of Asset Pricing	184
	4.1		om Walks	184
			Description	184
		4.1.2		186
	4.2	Arith	metic Brownian Motion	192
		4.2.1	Arithmetic Brownian Motion as a Limit of a	
			Simple Random Walk	192
		4.2.2	Moments of an Arithmetic Brownian Motion	196
			Why Sample Paths Are Not Differentiable	198
			Why Sample Paths Are Continuous	198
			Extreme Values and Hitting Times	199
			The Arcsine Law Revisited	203
	4.3		netric Brownian Motion	204
			Description	204
		4.3.2	Moments of a Geometric Brownian	207
	4.4	T. A. C.	Motion	207
	4.4		alculus	209
		4.4.1	Riemann-Stieljes, Stratonovitch, and Itô	209
		112	Integrals Itô's Lemma	209
			Multidimensional Itô's Lemma	222
	4.5		Reverting Processes	225
	4.5		Introduction	225
			The Ornstein-Uhlenbeck Process	225
			Calculations of Moments with the Dynkin	223
		1.0.0	Operator	226
		4.5.4	The Square-Root Process	228
	4.6		Process	229
			Pure Jumps	229
		4.6.2	Time Between Two Jumps	231
		4.6.3	Jump Diffusions	232
			Itô's Lemma for Jump Diffusions	233
	4.7	Kolm	ogorov Equations	234
		4.7.1	The Kolmogorov Forward Equation	234
		4.7.2	The Dirac Delta Function	236
		4.7.3	The Kolmogorov Backward Equation	236
	4.8		ngales	239
		4.8.1	Definitions and Examples	239
		4.8.2	E	241
		483	Martingales and Brownian Motion	242

X		Contents	
4.9	Dynar	Dynamic Programming	
	4.9.1	The Traveling Salesman	245
	4.9.2	Optimal Control of Itô Processes:	
		Finite Horizon	247
	4.9.3	Optimal Control of Itô Processes:	
		Infinite Horizon	248
4.1	0 Partia	l Differential Equations	253
	4.10.1	The Kolmogorov Forward Equation Revisited	253
	4.10.2	Risk-Neutral Pricing Equation	256
	4.10.3	The Laplace Transform	257
	4.10.4	Resolution of the Kolmogorov Forward	
		Equation	262
	4.10.5	Resolution of the Risk-Neutral Pricing	
		Equation	265
Bibliog	raphy		269
Index			327

Acknowledgments

We are as ever in many people's debt. Both authors are lucky to have worked with or been taught by eminent experts such as John Campbell, Sanjiv Das, Jerome Detemple, Ken Froot, Andrew Lo, Franco Modigliani, Vasant Naik, Michael Pascutti, Lester Seigel, Peter Tufano, Luis Viceira, and Jean-Luc Vila. A list, by no means exhaustive, of colleagues who have read or influenced this manuscript includes Richard Bateson, Eric Briys, Robert Campbell, Marcel Cassard, Didier Cossin, François Degeorge, Lev Dynkin, David Folkerts-Landau, Vincent Koen, Ravi Mattu, Christine Miqueu-Baz, Arun Muralidhar, Prafulla Nabar, Brian Pinto, David Prieul, Vlad Putyatin, Nassim Taleb, Michele Toscani, Sadek Wahba, and Francis Yared. Special thanks are due to Tarek Nassar, Saurav Sen, Feng Li, and Dee Luther for diligent help with the manuscript. The biggest debt claimant to this work is undoubtedly Robert Merton, whose influence pervades this manuscript, including the footnotes; as such, because there is no free lunch, he must take full responsibility for all serious mistakes, details of which should be forwarded directly to him.