When can you see fireballs and whom should you contact if you spot one? When is it best to hunt for comets and meteors and whereabouts? How do you gauge the size of the coma in the head of a comet and estimate its degree of condensation? Clear and easy to use, this guide shows you how to make successful and valuable observations and records of comets, asteroids, meteors, and the zodiacal light. For each topic the historical background and current scientific understanding support a wealth of observational techniques.

Comet observers are shown techniques for search and discovery. They can learn how to make visual estimates of brightness and size, and how to make photographic studies of cometary heads and tails. Asteroid hunters will find a ‘life list’ of quarry and guidelines on how to search for these objects and then how to photograph or electronically image them. Fruitful photographic and electronic methods for studying meteors and meteor showers are provided. Visual and photographic techniques show you how to examine the often elusive zodiacal light. The more adventurous are provided with advanced techniques on how to make successful astrometric, spectroscopic, and electronic observations. This is rounded off with an invaluable list of centers world-wide to contact with your details of unusual sightings.
Observing Comets, Asteroids, Meteors, and the Zodiacal Light
PRACTICAL ASTRONOMY HANDBOOK SERIES

The Practical Astronomy Handbooks are a new concept in publishing for amateur and leisure astronomy. These books are for active amateurs who want to get the very best out of their telescopes and who want to make productive observations and new discoveries. The emphasis is strongly practical: what equipment is needed, how to use it, what to observe, and how to record observations in a way that will be useful to others. Each title in the series will be devoted either to the techniques used for a particular class of object, for example observing the Moon or variable stars, or to the application of a technique, for example the use of a new detector, to amateur astronomy in general. The series will build into an indispensable library of practical information for all active observers.

Titles available in this series

1. A Portfolio of Lunar Drawings
 by Harold Hill
2. Messier’s Nebulae and Star Clusters
 by Kenneth Glyn Jones
3. Observing the Sun
 by Peter O. Taylor
4. The Observer’s Guide to Astronomy (Volumes 1 & 2)
 edited by Patrick Martinez
5. Observing Comets, Asteroids, Meteors, and the Zodiacal Light
 by Stephen J. Edberg and David H. Levy
6. The Giant Planet Jupiter
 by John H. Rogers
7. High Resolution Astrophotography
 by Jean Dragesco
Observing Comets, Asteroids, Meteors, and the Zodiacal Light

STEPHEN J. EDBERG
Jet Propulsion Laboratory, Pasadena

and

DAVID H. LEVY
Lunar and Planetary Laboratory, University of Arizona
Dedication

For Janet, who has had to share me with Astronomy, and Aaron, Shanna, and Jordan too, and for my parents Joe and Sophie, who guided, encouraged, and supported me.

With love from Steve

For my brother Richard, my sister Joyce and her husband Larry, and my brother Gerry and his wife Audrey, who know so well what Astronomy means to me.

With love from David
Contents

Authors’ notes xiii
Acknowledgements xv

1 Introduction 1

2 General observation techniques 3
 2.1 Dark adaptation, averted vision, and eye sensitivity 3
 2.2 Atmospheric transparency and sky brightness 4
 2.3 Seeing and optical quality 4
 2.4 Scientific observing 5
 2.5 Record keeping and submission 5
 2.6 Finding objects in the sky 6
 2.7 Time 9

3 Comets 11
 3.1 For whom the comet tolls 11
 3.2 Historical notes 12
 3.2.1 The nineteenth century 14
 3.2.2 Bright twentieth century comets 15
 3.3 Cometary phenomena and nomenclature 19
 3.3.1 Anatomy: how are comets made? 20
 3.3.2 Families of comets 29
 3.3.3 Sungrazing comets 31
 3.3.4 Comet nomenclature 32
 3.4 Comet hunting 33
 3.4.1 Background 33
 3.4.2 Preparation 36
 3.4.3 Patterns of search 37
 3.4.4 Equipment required 37
 3.4.5 Methods of hunting 38
 3.4.6 When to hunt for comets 38
 3.4.7 Where to hunt 39
 3.4.7.1 Sun vicinity 39
Contents

3.4.7.2 Horizon at twilight 40
3.4.7.3 Areas to avoid 40
3.4.8 Ways to ruin an otherwise pleasant observing session 41
3.4.9 Eleven statistics regarding comet discoveries 42
3.4.10 Photographic search procedures 43
3.4.11 Checking out suspects 44
3.4.12 Discovering a comet 45

3.5 Visual comet studies 47
3.5.1 Magnitude estimates 47
3.5.2 Coma size measurement 53
3.5.3 Degree of condensation 54
3.5.4 Tail measurements 56
3.5.5 Drawings 59
3.5.6 Polarization studies 62

3.6 Photographic observations and electronic imaging 64
3.6.1 Imaging technique 65
3.6.2 Tracking a comet 65
3.6.3 General comet photography 67
3.6.3.1 Wide angle photography 68
3.6.3.2 Moderate scale photography 70
3.6.3.3 Near-nucleus photography 70

3.7 Conclusion 71

4 Asteroids 72
4.1 Introduction 72
4.2 Some historical notes 73
4.2.1 Origins 73
4.2.2 Discovery and naming of asteroids 76
4.3 The nature and origin of the asteroids 81
4.3.1 The distribution of asteroids in space 83
4.3.2 Near-earth asteroids 85
4.3.3 Asteroids and comets 86
4.3.4 The future 88
4.4 Observing asteroids 88
4.4.1 Starting your observing program 88
4.4.2 A life-list 88
4.5 Photography and electronic imaging 99
4.6 Modern asteroid search methods 102
4.7 Observing occultations by asteroids and of asteroids 103
4.8 Conclusion 107
Contents

5 Meteors 108
5.1 Introduction 108
5.2 Historical notes 109
5.3 Meteor astronomy 110
5.4 Meteor showers 114
5.4.1 Major annual showers 114
5.4.2 List of annual meteor showers 117
5.5 The meteor observer 119
5.5.1 Planning: moonlight and weather 119
5.5.2 Comfort 119
5.5.3 Staying awake 121
5.5.4 Safety 121
5.6 Observing overview 122
5.7 Visual observing procedures 123
5.7.1 Weather report 123
5.7.2 Time 124
5.7.3 Magnitude 125
5.7.4 Color 127
5.7.5 Shower membership 127
5.7.6 Comments 127
5.7.7 Plotting 128
5.7.8 Observing meteor storms 128
5.7.9 Minor shower and ‘sporadic’ nights 130
5.7.10 Fireballs, trains, and electrophonic sounds 131
5.7.11 Re-entering satellites 133
5.7.12 Telescopic meteor observations 133
5.7.13 Recording data 134
5.7.14 Report forms 134
5.7.15 Making the observations 135
5.7.15.1 Single observer 135
5.7.15.2 Group observing 136
5.8 Meteor photography 142
5.8.1 Lens and film selection 142
5.8.2 Aiming 144
5.8.3 Using a stationary support 144
5.8.4 Using a clock drive system 144
5.8.5 Electronic image intensifiers – meteors and television 146
5.8.6 Meteor choppers 147
5.8.7 Meteor train photography 148
5.9 Radio methods of meteor observation 149
Contents

6 The zodiacal light 151
 6.1 Introduction and historical notes 151
 6.2 Astronomy of the zodiacal light 153
 6.3 Visually observing the zodiacal light 157
 6.4 Photographing the zodiacal light 164
 6.5 Dust satellites of Earth? 165

7 Advanced observing techniques 167
 7.1 Astrometry 167
 7.1.1 Technique 167
 7.1.2 Measuring positions 168
 7.1.3 Data reduction 169
 7.1.4 Triangulation 173
 7.1.4.1 An example of meteor triangulation 178
 7.2 Spectroscopy 178
 7.2.1 Methods and equipment 181
 7.2.2 Technique 183
 7.2.3 Meteor spectrophotography 187
 7.3 Photoelectric photometry 188
 7.3.1 Observing procedures in photometry 191
 7.3.1.1 Observing asteroids with a photoelectric
 photometer 192
 7.3.1.2 Observing with a CCD 194
 7.3.2 Photometry of comets 194
 7.3.3 Photometry of the zodiacal light 199
 7.3.4 Conclusion 201

Appendix I: Glossary 202
Appendix II: Report forms 208
Appendix III: Working list of meteor streams 217
Appendix IV: A simple reduction program for astrometry 220
Appendix V: Addresses of organizations and publications 224
Appendix VI: References and bibliography 227

Index 238
Authors’ notes

‘Debris of the solar system,’ we thought, had a rather nice ring to it. A single volume with a discussion of the observing possibilities of four seemingly unrelated but complex areas – comets, asteroids, meteors, and the dust tepees familiarly called the zodiacal light – was, for its authors, a highly desirable project.

This book has its genesis in two ideas. The first was a pair of observing manuals we wrote for the Astronomical League and the Association of Lunar and Planetary Observers called Observe: Comets and Observe: Meteors. In the years since their publication we thought that although these areas are really very different, requiring diverse skills and procedures, comets and meteors as objects in space are so related that a single book about them would be an interesting challenge. Adding asteroids and the zodiacal light to the project followed naturally.

The second idea, that we do this book together, was not a challenge at all. Since we met each other ten years ago, our mutual passion for the subject has kept our friendship brisk and our planning for the book lively and entertaining.

For two people who don’t live that far apart we always joke about the distances we have to travel to visit each other. One precious memory is of sitting together at a conference in Heidelberg while Uwe Keller of the Max Planck Institute of Aeronomy displayed the very first clear image of the nucleus of Halley’s Comet. As we looked transfixed at what the Giotto spacecraft had photographed, we saw for the first time that this comet was a place, a world, with depressions and a mountain on its land. But during another meeting, this time in Canada, we became so engrossed in a back-of-the-hall conversation about the latest comet that someone asked us to leave the lecture we were supposed to have been paying attention to!

We hope that the following pages will help to clarify a difficult and elusive subject. We have included numerous references throughout the text so that you, whether you are a beginner or an expert, will have further opportunities to expand your knowledge and practice. We have deliberately tried not to put our different writing styles into a melting pot, and you will no doubt find that the writing for much of the visual observing sections, which are Levy’s forte, has a different style from the thoughts expressed in the sections on photo-
Authors' notes

tography, spectroscopy, and the analysis of data, areas which are Edberg's strength.

And although we have made every effort to clean up any errors, we are aware that this is a subject with several points of view, and that others will disagree with some of what we say. For example, many good meteor observers feel that observing in groups is far less desirable than observing individually. We know this is a point of contention. Nevertheless, we have devoted a considerable amount of space in the 'Meteors' chapter to describing how to observe meteors effectively as observing teams. Our main justification is that observing that way is fun, and fun is ultimately what amateur astronomy is all about.

Now as to the errors: if you find one, each author blames the other for it.

Stephen Edberg
David Levy
Acknowledgements

To Steve Iverson, for his guidance of an enthusiastic amateur astronomer through courses in general science and chemistry, and his sponsorship and leadership of the astronomy club through Edberg's high school years;

To Bill Curtis and Tom Baur who made Edberg's summer at the High Altitude Observatory an education and fond memory; to Kitt Peak and Mount Wilson and Sacramento Peak solar observatories for all the practical experience they gave Edberg; and to Don Landman who inspired Edberg to greater inquiry high atop Haleakula;

To Steve Larson, Clark Chapman, Donald Davis, Stuart Weidenschilling, and Rick Greenberg, for their teaching and inspiration during Levy's years of association with them;

To Eugene and Carolyn Shoemaker, with whom Levy has been observing since 1989, and who have been exemplary teachers;

To astronomers Larry Lebofsky, Ray Newburn, Peter Millman, Ian Halliday, Bruce MacIntosh, and David Meisel, to meteor observers Norman McLeod III, Michael Morrow, Karl and Wanda Simmons, Pete Manley, and special thanks to Sophie Edberg, Murray Geller, and Rollin Van Zandt;

To Christopher Spratt, who provided assistance with the section on history and naming of asteroids, and to Brian Marsden, Charles Morris, Clifford Cunningham, Daniel W. E. Green, and Mark Coco for their suggestions;

To Simon Mitton and Cambridge University Press; as usual they have been efficient, professional, patient, and fun to work with;

Finally, we will always be indebted to Ted Bowell, first-rate asteroid scientist and friend, who named two of the many asteroids he has discovered 3672 Stevedberg and 3673 Levy.