The evolution and differentiation of the continental crust pose fundamental questions that are being addressed by new research concerning melting, melt extraction and transport through the crust, and the effect of melt on crustal rheology, in addition to new advances involving geophysics and geochemistry. Many new insights into crustal processes have been triggered by combined field observations and laboratory experiments, supported by developments in numerical modeling.

The first three chapters deal with the structure of the continents, controls on heat production and the composition, differentiation and evolution of continental crust. The role of arc magmatism in the Phanerozoic and crustal generation in the Archean are addressed next. To understand the modification and differentiation of continental crust we first consider two regional examples, one of the lower crust and one of the middle crust. There follows a series of process-oriented chapters involving melting, melt extraction and migration and crustal rheology. The final two chapters review the emplacement and growth of plutons and outline a modeling approach to the physical controls on crustal differentiation.

Written by experts active in the field, this book provides a valuable summary of recent advances for graduate students and research workers.

M I C H A E L B R O W N has held faculty positions at Oxford Brookes and Kingston universities in the UK, and at the University of Maryland in the USA, where he is currently Professor of Geology and Director of the Laboratory for Crustal Petrology. He is the founding editor of the Journal of Metamorphic Geology and is editor of books on High-temperature Metamorphism and Crustal Anatexis (Unwin Hyman, 1990) and The Origin of Granites and Related Rocks (Geological Society of America Special Paper).
Michael Brown and his colleagues and students investigate the pressure–temperature–time–deformation evolution of metamorphic belts, and the generation, segregation, transfer, and emplacement of granite within the Earth’s crust. His work involves integration between field and laboratory studies, and theoretical analysis and modeling. Michael Brown was awarded the Coke Medal for 2005 by the Geological Society.

TRACY RUSHMER is currently a faculty member at the University of Vermont and teaches introductory and advanced courses in petrology and tectonics. Her research has focused on the physical and chemical processes of partial melting and differentiation. She integrates both igneous and metamorphic rock processes and explores melting processes mainly through experimentation. The rock deformation laboratory at the University of Vermont has been built to investigate the chemical signatures of magmas derived in active environments and compares them with partial melt compositions when deformation is not present. Experimentally investigating this interactive process, deformation combined with partial melting in both silicate and metal–silicate systems, has resulted in multiple papers and book chapters over the past decade. She was the Mineralogical Society of America’s Distinguished Lecturer in 1999–2000.
EVOLUTION AND DIFFERENTIATION OF THE CONTINENTAL CRUST

Edited by

MICHAEL BROWN
University of Maryland

TRACY RUSHMER
University of Vermont
Contents

List of Contributors

1. Introduction	1
2. Structure of the continental lithosphere	21
3. Thermo-mechanical controls on heat production distributions and the long-term evolution of the continents	67
4. Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow	92
5. The significance of Phanerozoic arc magmatism in generating continental crust	135
6. Crustal generation in the Archean	173
7. Structural and metamorphic process in the lower crust: evidence from a deep-crustal isobarically cooled terrane, Canada	231
8. Nature and evolution of the middle crust: heterogeneity of structure and process due to pluton-enhanced tectonism	268
9. Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility	296
10. Melt extraction from the lower continental crust of orogens: the field evidence	331
11. The extraction of melt from crustal protoliths and the flow behavior of partially molten crustal rocks: an experimental perspective	384
12. Melt migration in the continental crust and generation of lower crustal permeability: inferences from modeling and experimental studies	430
13. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust	455
14. Elements of a modeling approach to the physical controls on crustal differentiation	520

Index

v
Contributors

Richard J. Arculus
Department of Geology
The Australian National University
Canberra, ACT 0200, Australia

Scott A. Barboza
ExxonMobil Upstream Research Co.
3319 Mercer Street
Houston, TX 77027–6019

George W. Bergantz
Department of Earth and Space Sciences
63 Johnson Hall, Box 351310
Seattle, WA 98195

Michael Brown
Department of Geology
University of Maryland
College Park, MD 20742

John D. Clemens
Centre for Earth and Environmental Sciences Research
Kingston University
Penrhyn Road, Kingston-upon-Thames
Surrey, KT1 2EE, UK

Alexander R. Cruden
Department of Geology
University of Toronto
22 Russell Street
Toronto, Ontario M5S 3B1, Canada

Jon P. Davidson
Department of Earth Sciences
University of Durham
Durham, DH1 3LE, UK
and formerly
Department of Earth and Space Sciences
University of California at Los Angeles
Los Angeles, CA 90095, USA

Simon Hanmer
Natural Resources Canada
615 Booth Street
Ottawa, Ontario K1A 0E9, Canada

Sidney R. Hemming
Lamont–Doherty Earth Observatory
Rt. 9W
Palisades, NY 10964
Contributors

Karl E. Karlstrom
Department of Earth and Planetary Sciences
University of New Mexico
Albuquerque, NM 87131

Adrian Lenardic
Department of Earth Science
Rice University
Houston, TX 77005

Alan Levander
Department of Earth Science
Rice University
Houston, TX 77005

Sandra McLaren
Research School of Earth Sciences
The Australian National University
Canberra, ACT 0200, Australia

Scott M. McLennan
Department of Geosciences
State University of New York at Stony Brook
Stony Brook, NY 11794–2100

Julian Mecklenburgh
Rock Deformation Laboratory
Department of Earth Sciences
University of Manchester
Manchester, M13 9PL, UK

Stephen A. Miller
Department of Geodynamics and Geophysics
University of Bonn
Nussallee 8
D-53115 Bonn
Germany

Hugh Rollinson
Department of Earth Sciences
Sultan Qaboos University
PO Box 36, Al Khodh
Postal Code 123
Muscat, Oman
and formerly
Geography and Environmental Management Unit
Cheltenham and Gloucester College of Higher Education
Francis Close Hall, Swindon Road
Cheltenham, GL50 4AZ, UK

Tracy Rushmer
Department of Geology
University of Vermont
Burlington, VT 05405

Ernest H. Rutter
Rock Deformation Laboratory
Department of Earth Sciences
University of Manchester
Manchester, M13 9PL, UK

Mike Sandiford
School of Earth Sciences
University of Melbourne
Victoria, 3010, Australia

Stuart R. Taylor
Department of Geology
Australian National University
Canberra, ACT 2601, Australia

Michael L. Williams
Department of Geosciences
University of Massachusetts
Amherst, MA 01003, USA