Chemistry and Pharmacology of Natural Products

Lignans

Chemical, biological and clinical properties
CHEMISTRY AND PHARMACOLOGY OF NATURAL PRODUCTS

Series Editors: Professor J.D. Phillippo, The School of Pharmacy, University of London; Dr D.C. Ayres, Department of Chemistry, Queen Mary College, University of London; H. Baxter, formerly at the Laboratory of the Government Chemist, London.

Also in this series
Edwin Haslam Plant polyphenols: vegetable tannins revisited
Lignans

Chemical, biological and clinical properties

D.C. AYRES
Department of Chemistry
Queen Mary College, London

and

J.D. LOIKE
Department of Physiology and Cellular Biophysics
College of Physicians and Surgeons of Columbia University, New York
Contents

Preface xi
Glossary for lignans xiii

1 Introduction 1
 Nomenclature 4
 Absolute configuration 8
 Correlation of absolute configurations 9
 References 10

2 A registry of the natural lignans 12
 The order of the material 12
 Absolute configuration 14
 Arrangement of individual entries
 (i) The Chemical Abstracts Registry number 15
 (ii) Literature references 16
 (iii) Structural diagrams 16
 References for the preamble 16
 Structures and references in the registry 17

3 Biological and clinical properties of podophyllotoxin and
 other lignans 85
 Introduction 85
 Use of lignans in folk and modern medicine 85
 (i) History of podophyllotoxin 87
 Biological properties and mechanism of action of
 podophyllotoxin 90
 (i) Microtubules 90
 (ii) Antiviral properties 93
 (iii) Nucleoside transport 94
 (iv) Antitumour effects 95
 Mammalian lignans 95
 (i) Structure 95
 (ii) Biological properties 97
Contents

Structure and biological activity of other lignans 98
(i) Acyclic lignans 98
(ii) Arylnaphthalenes 99
(iii) Dibenzocyclo-octadienes (bridged biphenyls) 100
(iv) Lignans acting on cyclic adenosine-3',5'-monophosphate (cAMP) 100
(v) Lignans acting on platelet activating factor (PAF) 102
(vi) Biological effects of lignans on plants and insects 103
Conclusions 105
References 106

4 Etoposide and Teniposide 113
Introduction 113
Clinical applications 114
Structure and synthesis 116
Mechanism of action 117
(i) Inhibition of nucleoside transport 118
(ii) DNA effects 118
(iii) Effects on oxidative phosphorylation 122
Cell sensitivity and resistance towards Etoposide 122
Structure/activity studies – DNA effects 125
Pharmacokinetics and pharmacology 127
(i) Cellular uptake of Etoposide and Teniposide 127
(ii) Pharmacokinetics 128
(iii) Metabolism 129
(iv) Toxicity 130
Conclusions and future studies 130
References 132

5 Isolation, purification and initial characterisation 138
Plant root sources 138
Leaf and stem sources 140
Seeds as sources 140
Fruits as sources 141
Resin and heartwood sources 142
Lignan glycosides 144
Isolation procedures 145
(i) Solvent extraction 145
(ii) Fractional extraction 146
(iii) Separation by precipitation 148
Contents

(iv) Extraction of polar lignans from biological materials 148
Chromatographic methods 149
 (i) Thin layer chromatography 149
 (ii) Column chromatography 151
 (iii) High-performance liquid chromatography 153
 (iv) Gas–liquid chromatography 155
Formation of artefacts 156
 (i) Changes induced by bases 156
 (ii) Changes induced by acids 157
References 159

6 Determination of structure 166
 Ultraviolet absorption spectra 166
 Dibenzocyclo-octadiene lignans 170
 Arylnaphthalene lignans 170
 Infrared absorption spectra 170
 (i) Lignan solvates 171
 (ii) Preparation of the sample 171
 (iii) Functional group responses 171
 Mass spectra 175
 Diarylbutanes and diarylbutyrolactones 177
 Tetrahydrofurans (epoxylignans) 180
 Furofurans (bisepoxylignans) 183
 Oxofurans 185
 Aryltetralins 186
 Arylnaphthalenes 190
 Dibenzocyclo-octadienes 191
 Lignan conjugates 192
 Nuclear magnetic resonance spectra 195
 (i) Introductory remarks 195
 (ii) Aromatic substitution patterns 195
 (iii) Dibenzylbutanes and dibenzylbutyrolactones 197
 (iv) 13C NMR spectroscopy 199
 Furans 202
 (i) 9,9'-Epoxylignans 202
 (ii) 7,7'-Epoxylignans 203
 (iii) 7,9'-Epoxylignans 206
 Furofurans 208
 Chemical correlation of furofurans and furans 213
Contents

Aryltetrahydronaphthalenes
 (i) Orientation of aromatic substituents 219
 (ii) Use of CMR spectra 220
 (iii) Aryltetrahydronaphthalene lactones 221
 (iv) Absolute configuration 228
Dibenzocyclo-octadiene lignans
 (i) Orientation of aromatic substituents 235
 (ii) The steganacin subgroup 237
Lignan conjugates 242
Higher glycosides 246
Optical rotatory dispersion and circular dichroism 247
 (i) Optical rotatory dispersion 247
 (ii) Circular dichroism 249
 (a) Dibenzylbutyrolactones 249
 (b) Furans and furofurans 249
 (c) Aryltetrahydronaphthalenes 253
 (d) Compounds with inherent dissymmetry 256
References 257

7 Biosynthesis
 The chemistry of lignin 269
 Cleavage of lignin 273
 (i) Acidic cleavage 273
 (ii) Alkaline cleavage 274
 (iii) Enzymic cleavage 275
Oligomers of cinnamic acid 275
Lignan biosynthesis 278
 (i) The quinone methide mechanism 279
 (ii) Biomimetic synthesis 280
 (iii) Experiments in vivo 287
 (a) Preliminary studies and structural correlations 287
 (b) The tetrahydronaphthalene group 291
 (c) Apolignans and arylnaphtalenes 295
 (d) Biogenesis of ether groups 296
References 298

8 Synthesis
 Oxidative coupling 303
Dibenzylbutanes and dibenzylbutyrolactones 306
 (i) The Stobbe condensation 306
 (ii) Other syntheses initiated by carbanions 310
Contents

(iii) Stereoselective synthesis 313
(iv) Conjugate additions 315
Oxygenation of the side chain 318
Reactions with N-bromosuccinamide and dichlorodicyano-1,4-benzoquinone 322
Diels–Alder syntheses 325
Routes to specific classes of lignins 330
Arylnaphthalenes 330
Furans 333
 (i) 9,9’-Epoxylignans 333
 (ii) 7,7’-Epoxylignans 334
 (a) The bicyclic lactone route 337
 (iii) 7,9’-Epoxylignans 338
Furofurans (7,9’:7’,9-diepoxylignans) 339
 (i) Synthesis of monolactones 340
 (ii) Synthesis of dilactones 341
 (a) Unsymmetrical dilactones 342
Dibenzocyclo-octadienes 344
 (i) Oxidative coupling 345
 (ii) Ullmann synthesis 346
 (iii) Elaboration of phenanthrenes 350
Dihydro- and tetrahydronaphthalenes 354
 (i) Summary of above procedures relevant to tetralin synthesis 354
 (a) Oxidative coupling 354
 (b) Development of the Stobbe and carbanion condensation products 355
 (c) Oxidative cyclisation 355
 (d) Diels–Alder synthesis 356
 (ii) Modification of other lignans by Friedel–Crafts cyclisation 357
 (iii) Synthesis of podophyllotoxins 362
 (a) Bristol–Myers group syntheses 368
 (iv) Derivatives of podophyllotoxins 370

References 373

Botanical index 385
General index 388
To students and colleagues in Westfield College,
Preface

The first systematic review of the naturally occurring lignans was presented by Professor R.D. Haworth in his Tilden lecture of 1942. There have been a number of subsequent review articles, notably that by W.M. Hearon and W.S. MacGregor in 1955. Their chemistry was covered in a collection of learned reviews published in honour of Professor L.R. Row by Andhra University Press in 1978. The present work is the first to cover the whole field of lignan chemistry including the application and promise of lignans as pharmaceutical agents. It is anticipated that expansion will continue through the application of modern methods of chromatography including HPLC, combined with the use of 2D-NMR and NOE for structure evaluation. These techniques are of especial relevance to the study of oligomeric lignans which are touched upon in the text.

The principal classes are defined in Chapter 1 with an explanation of the system of nomenclature that has been adopted. The contribution of Dr G.P. Moss who took on the considerable task of rationalising the often conflicting systems is gratefully acknowledged. It is hoped that readers who find that we have diverged from their own preference will accept that changes had to be made in order to be self-consistent. The system used throughout the book evolved with the help of some twenty active researchers who kindly responded to our requests for criticism of draft proposals.

Chapter 2 is a registry of lignans described up to April 1988 and includes at least one leading literature reference and plant source for each entry. A comprehensive review of the sources of lignans and neolignans has recently been published (p. 84) and Professor Richard Gottlieb is thanked for his help in making the manuscript available before publication. The senior author (DCA) would be particularly grateful if any sins of commission or omission in the registry are brought to his attention.

Chapter 3 (DCA and JDL) describes the general aspects of the pharmacology of lignans. The fourth chapter (JDL) describes the development of the clinically effective podophyllotoxin derivatives, Etoposide and Teniposide. Moreover, this chapter describes the current understanding of the
Preface

mechanism of action of these drugs. Subsequent chapters (DCA) deal with the isolation, characterisation and synthesis of lignans; here the volume of material necessitated a selective approach and this has been based on examples of general application largely chosen from the more recent literature. Dr Paul Dewick offered valuable criticism of the section on biosynthesis and the lignin scheme which appears in it was published with the approval of the American Chemical Society.

The infrared spectrum of wuweizisu C was provided by Professor H. Taguchi and material for the SFiORD Scheme 6.14 by Professor D.N. Kirk, who also read part of the manuscript. Acknowledgement is also made to the Royal Society of Chemistry for the data in Scheme 6.32, to the Editor of the Journal of Natural Products for Scheme 6.33 and to the Editor of Tetrahedron for Scheme 6.34. Permission to publish Scheme 6.39 was given by the Pharmaceutical Society of Japan and material for figures 6.36 and 6.37 was kindly provided by Dr Peter B. Hulbert. We also wish to thank those authors who approved of the use of their material and to numerous others who responded to chemical queries which arose during the preparation of the manuscript.

The support of the Chemistry Department in Queen Mary College is gratefully acknowledged and Professor B. J. Aylett and Mr G. Coumarides are thanked for help with computing.

The production of the text owes much to the services of the library of the Royal Society of Chemistry, to the staff of the Cambridge University Press and to Editorial colleagues Professor J. David Phillipson and Mr Herbert Baxter.

London D.C. Ayres January 1990
New York J.D. Loike
Glossary for lignans

ACTINOMYCIN D (structure as given)

ADENOCARCINOMA Malignant cancer of epithelial cell origin, derived from any of the three germ layers with a glandular growth pattern.

ADRIAMYCIN (structure as given)

A1BN Azo bis-isobutylnitrile
ALOAPAECIA Loss of hair
AMPHIPATHIC molecules that contain both a hydrophilic and a hydrophobic moiety.
Glossary for lignans

AMSACRINE (m-AMSA; structure as given)

ANTIPYRETIC An agent used to control body temperature.

ARA-C CYTOSINE ARABINOSIDE (structure as given)

BIOGENETIC EQUIVALENT A substance available to the plant which may be converted by enzymic action to a metabolite needed for biogenesis.

BLEOMYCIN (structure as given)
Glossary for lignans

CEREBELLAR ATAXIA Motor abnormality associated with lesions in the cerebellum

CHLOROTIC Pertaining to a kind of anaemia sometimes affecting girls at puberty, characterised by a pale or greenish hue of the skin.

CHROMATIN Chromosomal material composed of DNA and proteins.

CISPLATIN (structure as given)

\[\text{Cisplatin or cis-diaminedichloroplatinum} \]

COLLIN'S REAGENT for the selective oxidation of alcohols using chromium trioxide/pyridine.

CONCANAVALIN A Globular protein of molecular weight 26,000 with two identical subunits, each containing 237 aminoacids.

COREY'S METHOD for the stepwise oxidation of allylic alcohols and aldehydes to carboxylic acids using manganese dioxide/hexane followed by manganese dioxide/CN⁻/methanol/acetic acid.

COSY A two dimensional NMR technique used to identify coupled protons

CYCLOPHOSPHAMIDE (structure as given)

\[\text{Cyclophosphamide} \]

CYTOTOXIC NUCLEOSIDES Nucleosides which can damage cells.

DABCO 1,4-Diazabicyclo-[2,2,2]-octane.

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DIBAL Di-isobutylaluminium hydride

DIPYRIDAMOLE (structure as given)

\[\text{Dipyridamole} \]

DIURETIC Treatment to excite discharge of urine.

DMAD Dimethyl acetylenedicarboxylate.
Glossary for lignans

DMSA Dimethylsilylamide.
DOXORUBICIN See adriamycin.
ENTEROHEPATIC CIRCULATION The cycling of compounds through the liver and intestine.
ERYTHROPHAGOCYTIC LYMPHOSTIOCYTOSIS A malignancy of white cells that are highly phagocytic.
EUKARYOTIC (eucaryotic) pertaining to an organism whose cells contain a limiting membrane around the nuclear material.
FETISON’S METHOD Oxidation with silver carbonate freshly precipitated onto Celite.
FIBROBLAST CELL LINE derived from elongated cells present in connective tissue and capable of forming collagen fibre.
FREMY’S SALT Potassium nitrosodisulphonate $K_4[(SO_3)_2NO]_2$.
HARDWOOD includes both coniferyl and sinapyl residues in its lignin in contrast to softwood lignin, which is largely derived from coniferyl alcohol.
HELA CELLS from a patient, Helen Lane, with carcinoma of the uterine cervix.
HEPATOTOXIC relates to an agent capable of damaging the liver.
HMBA Hexamethylyphosphoramid.
HMDS Hexamethyldisilamid $HN(SiMe_3)_2$ commonly used as the lithio derivative.
IFOSFAMIDE An isomer of cyclophosphamide where both amide groups carry one chloroethyl substituent.
IMMUNOBLOTTING Transferring proteins to special nitrocellulose filters where they can be tested for their capacity to react with specific antibodies.
IMMUNOMODULATOR A bioreactive substance that affects the physiological response of cells derived from the immune system.
INDOR Internuclear double resonance used mainly in proton spectra to detect coupling by monitoring the amplitude of one transition, while sweeping a low power excitation through the frequency range of the other.
KARPLUS RELATION relates the magnitude of the coupling between vicinal protons to the dihedral angle between the linking C—H bonds.
L 1210 CELL LINE A lymphocytic mouse leukemic cell line which has been used extensively for routine screening programs of chemical agents and natural products for cytotoxic activity.
LAMELLAE (middle) The inner of two membranes which enclose the chloroplasts, which are the sites of photosynthesis.
LANTHANIDE SHIFT REAGENTS Paramagnetic lanthanide β-diketoneolate complexes which associate with basic organic functional groups.
LDA Lithium di-isopropylamide.
LEUKEMIA Malignant neoplasms of white cell precursors.
LEUKOÆNIA An abnormally low white cell count.
LHDS Lithium hexamethyldisilamid.
LTBA Lithium tri-β-butoxyaluminium hydride.
LTBI Lithium triethyl borohydride.
LYMPHOCYTIC Associated with or related to lymphocytes.
LYMPHOMA Malignancies that are characterised by the proliferation of cells native to the lymphoid tissues.
Glossary for lignans

LYMPHOCYTIC S49 CELL LINE A transformed cell line established from a lymphoma induced in a BALB/c mouse. These cells retain many of the properties of thymocytes.

LYMPHOCYTIC LEUKAEMIA Leukaemic cells that arise from white blood cell precursors of the lymphocyte.

MACROPHAGE any large mononuclear phagocyte.

MAYTANSINE (structure as given).

METHOTREXATE (structure as given).

MITOGEN a substance which stimulates mitosis and the transformation of lymphocytes including those associated with lectin.

MURINE relating to mice.

NADH The reduced form of nicotinamide-adenine dinucleotide.

NASAL EMPYEMA A collection of pus within the nasal passage.

NASOPHARYNX Part of the pharynx lying directly behind the nasal passages and above the soft palate.

NBMPR 4-nitrobenzylthioinosine (structure as given).

NBMPR or 4-nitrobenzylthioinosine

NBS N-hydroxybenzylsuccinimide.

NEUTROPHILS White blood cells that contain horseshoe-shaped nuclei and neutrophilic granules.
Glossary for lignans

OCULOCUTANEOUS TELANGIECTASIA A group of abnormal prominent capillaries, venules and arterioles that create small focal red lesions in the eye.

OXOLINIC ACID (structure as given).

PERIPHERAL NEUROPATHY A nervous disease or disorder involving the peripheral nervous system.

PHAGOCYTE A scavenger cell which ingests bacteria, foreign particles etc.

SPLENOCYTE A phagocytic mononuclear leukocyte of the spleen.

TAL Tyrosine ammonia lyase

TAXOL (structure as given).

TFA Trifluoroacetic acid

THROMBOCYTOPENIA A reduction in platelet count.

VERAPAMIL (structure as given)

VESICANT Any agent used in chemical warfare to blister and burn body tissues by contact with the skin or by inhalation.
Glossary for lignans

VINCRISTINE (structure as given).

[Diagram of Vincristine molecule]