
Chapter 1

INTRODUCTION

The demand for capacity in cellular and wireless local area networks has grown
in a literally explosive manner during the last decade. In particular, the need
for wireless Internet access and multimedia applications require an increase in
information throughput with orders of magnitude compared to the data rates
made available by today’s technology. One major technological breakthrough that
will make this increase in data rate possible is the use of multiple antennas at
the transmitters and receivers in the system. A system with multiple transmit
and receive antennas is often called a multiple-input multiple-output (MIMO)
system. The feasibility of implementing MIMO systems and the associated signal
processing algorithms is enabled by the corresponding increase of computational
power of integrated circuits, which is generally believed to grow with time in an
exponential fashion.

1.1 Why Space-Time Diversity?

Depending on the surrounding environment, a transmitted radio signal usually
propagates through several different paths before it reaches the receiver antenna.
This phenomenon is often referred to as multipath propagation. The radio signal
received by the receiver antenna consists of the superposition of the various mul-
tipaths. If there is no line-of-sight between the transmitter and the receiver, the
attenuation coefficients corresponding to different paths are often assumed to be
independent and identically distributed, in which case the central limit theorem
[Papoulis, 2002, Ch. 7] applies and the resulting path gain can be modelled as a
complex Gaussian random variable (which has a uniformly distributed phase and
a Rayleigh distributed magnitude). In such a situation, the channel is said to be
Rayleigh fading.

Since the propagation environment usually varies with time, the fading is time-
variant and owing to the Rayleigh distribution of the received amplitude, the
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2 Introduction Chapter 1

channel gain can sometimes be so small that the channel becomes useless. One way
to mitigate this problem is to employ diversity, which amounts to transmitting the
same information over multiple channels which fade independently of each other.
Some common diversity techniques include time diversity and frequency diversity,
where the same information is transmitted at different time instants or in different
frequency bands, as well as antenna diversity, where one exploits the fact that the
fading is (at least partly) independent between different points in space.

One way of exploiting antenna diversity is to equip a communication system
with multiple antennas at the receiver. Doing so usually leads to a considerable
performance gain, both in terms of a better link budget and in terms of toler-
ance to co-channel interference. The signals from the multiple receive antennas
are typically combined in digital hardware, and the so-obtained performance gain
is related to the diversity effect obtained from the independence of the fading of
the signal paths corresponding to the different antennas. Many established com-
munication systems today use receive diversity at the base station. For instance,
a base station in the Global System for Mobile communications (GSM) [Mouly
and Pautet, 1992] typically has two receive antennas. Clearly, a base station
that employs receive diversity can improve the quality of the uplink (from the
mobile to the base station) without adding any cost, size or power consumption
to the mobile. See, for example, [Winters et al., 1994] for a general discussion
on the use of receive diversity in cellular systems and its impacts on the system
capacity.

In recent years it has been realized that many of the benefits as well as a sub-
stantial amount of the performance gain of receive diversity can be reproduced
by using multiple antennas at the transmitter to achieve transmit diversity. The
development of transmit diversity techniques started in the early 1990’s and since
then the interest in the topic has grown in a rapid fashion. In fact, the potential in-
crease in data rates and performance of wireless links offered by transmit diversity
and MIMO technology has proven to be so promising that we can expect MIMO
technology to be a cornerstone of many future wireless communication systems.
The use of transmit diversity at the base stations in a cellular or wireless local
area network has attracted a special interest; this is so primarily because a perfor-
mance increase is possible without adding extra antennas, power consumption or
significant complexity to the mobile. Also, the cost of the extra transmit antenna
at the base station can be shared among all users.
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Section 1.2. Space-Time Coding 3

1.2 Space-Time Coding

Perhaps one of the first forms of transmit diversity was antenna hopping. In a sys-
tem using antenna hopping, two or more transmit antennas are used interchange-
ably to achieve a diversity effect. For instance, in a burst or packet-based system
with coding across the bursts, every other burst can be transmitted via the first
antenna and the remaining bursts through the second antenna. Antenna hopping
attracted some attention during the early 1990’s as a comparatively inexpensive
way of achieving a transmit diversity gain in systems such as GSM. More recently
there has been a strong interest in systematic transmission techniques that can use
multiple transmit antennas in an optimal manner. See [Paulraj and Kailath,
1993], [Wittneben, 1991], [Alamouti, 1998], [Foschini, Jr., 1996], [Yang
and Roy, 1993], [Telatar, 1999], [Raleigh and Cioffi, 1998], [Tarokh
et al., 1998], [Guey et al., 1999] for some articles that are often cited as
pioneering work or that present fundamental contributions. The review papers
[Ottersten, 1996], [Paulraj and Papadias, 1997], [Naguib et al., 2000],
[Liu et al., 2001b], [Liew and Hanzo, 2002] also contain a large number of
relevant references to earlier work (both on space-time coding and antenna array
processing for wireless communications in general). However, despite the rather
large body of literature on space-time coding, the current knowledge on optimal
signal processing and coding for MIMO systems is probably still only the tip of
the iceberg.

Space-time coding finds its applications in cellular communications as well as
in wireless local area networks. Some of the work on space-time coding focuses on
explicitly improving the performance of existing systems (in terms of the proba-
bility of incorrectly detected data packets) by employing extra transmit antennas,
and other research capitalizes on the promises of information theory to use the
extra antennas for increasing the throughput. Speaking in very general terms, the
design of space-time codes amounts to finding a constellation of matrices that sat-
isfy certain optimality criteria. In particular, the construction of space-time coding
schemes is to a large extent a trade-off between the three conflicting goals of main-
taining a simple decoding (i.e., limit the complexity of the receiver), maximizing
the error performance, and maximizing the information rate.

1.3 An Introductory Example

The purpose of this book is to explain the concepts of antenna diversity and space-
time coding in a systematic way. However, before we introduce the necessary
formalism and notation for doing so, we will illustrate the fundamentals of receive
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4 Introduction Chapter 1

and transmit diversity by studying a simple example.

1.3.1 One Transmit Antenna and Two Receive Antennas

Let us consider a communication system with one transmit antenna and two receive
antennas (see Figure 1.1), and suppose that a complex symbol s is transmitted. If
the fading is frequency flat, the two received samples can then be written:

y1 = h1s + e1

y2 = h2s + e2
(1.3.1)

where h1 and h2 are the channel gains between the transmit antenna and the two
receive antennas, and e1, e2 are mutually uncorrelated noise terms. Suppose that
given y1 and y2, we attempt to recover s by the following linear combination:

ŝ = w∗
1y1 + w∗

2y2 = (w∗
1h1 + w∗

2h2)s + w∗
1e1 + w∗

2e2 (1.3.2)

where w1 and w2 are weights (to be chosen appropriately). The SNR in ŝ is given
by:

SNR =
|w∗

1h1 + w∗
2h2|2

(|w1|2 + |w2|2) · σ2
· E [|s|2] (1.3.3)

where σ2 is the power of the noise. We can choose w1 and w2 that maximize this
SNR. A useful tool towards this end is the Cauchy-Schwarz inequality [Horn and
Johnson, 1985, Th. 5.1.4], the application of which yields:

SNR =
|w∗

1h1 + w∗
2h2|2

(|w1|2 + |w2|2) · σ2
· E [|s|2] ≤ |h1|2 + |h2|2

σ2
· E [|s|2] (1.3.4)

where equality holds whenever w1 and w2 are chosen proportional to h1 and h2:

w1 =α · h1

w2 =α · h2
(1.3.5)

for some (complex) scalar α. The resulting SNR in (1.3.4) is proportional to
|h1|2 + |h2|2. Therefore, loosely speaking, even if one of h1 or h2 is equal to
zero, s can still be detected from ŝ. More precisely, if the fading is Rayleigh,
then |h1|2 + |h2|2 is χ2-distributed, and we can show that the error probability
of detecting s decays as SNR−2

a when SNRa → ∞ (by SNRa here we mean the
average channel SNR). This must be contrasted to the error rate for transmission
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RX

TX

Figure 1.1. A system with one transmit antenna and two receive antennas.

and reception with a single antenna in Rayleigh fading, which typically behaves
as SNR−1

a .
In loose words, the diversity order of a system is the slope of the BER curve if

plotted versus the average SNR on a log-log scale (a more formal definition is given
in Chapter 4). Hence, we can say that the above considered system, provided that
w1 and w2 are chosen optimally, achieves a diversity of order two.

1.3.2 Two Transmit Antennas and One Receive Antenna

Let us now study the “dual” case, namely a system with two transmit antennas
and one receive antenna (see Figure 1.2). At a given time instant, let us transmit
a symbol s, that is pre-weighted with two weights w1 and w2. The received sample
can be written:

y = h1w1s + h2w2s + e (1.3.6)

where e is a noise sample and h1, h2 are the channel gains. The SNR in y is:

SNR =
|h1w1 + h2w2|2

σ2
· E [|s|2] (1.3.7)

If w1 and w2 are fixed, this SNR has the same statistical distribution (to within
a scaling factor) as |h1|2 (or |h2|2). Therefore, if the weights w1 and w2 are not
allowed to depend on h1 and h2 it is impossible to achieve a diversity of order two.
However, it turns out that if we assume that the transmitter knows the channel,
and w1 and w2 are chosen to be functions of h1 and h2, it is possible to achieve
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6 Introduction Chapter 1

RX

TX

Figure 1.2. A system with two transmit antennas and one receive antenna.

an error probability that behaves as SNR−2
a . We defer a deeper discussion of this

aspect to Section 6.1.
We have seen that without channel knowledge at the transmitter, diversity

cannot be achieved. However, if we are allowed to use more than one time interval
for the transmission, we can achieve a diversity of order two rather easily. To
illustrate this, suppose that we use two time intervals to transmit a single symbol
s, where in the first interval only the first antenna is used and where during the
second time interval only the second antenna is used. We get the following two
received samples:

y1 =h1s + e1

y2 =h2s + e2
(1.3.8)

Equation (1.3.8) is of the same form as (1.3.1) and hence the error rate associated
with this method is equal to that for the case where we had one transmit and two
receive antennas. However, the data rate is halved.

This simple example shows that transmit diversity is easy to achieve, if a
sacrifice in information rate is acceptable. Space-time coding is concerned with
the harder and more interesting topic: how can we maximize the transmitted
information rate, at the same time as the error probability is minimized? This book
will present some of the major ideas and results from the last decade’s research on
this topic.
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1.4 Outline of the Book

Our book is organized as follows. We begin in Chapter 2 by introducing a formal
model for the MIMO channel, along with appropriate notation. In Chapter 3, we
study the promises of the MIMO channels from an information theoretical point
of view. Chapter 4 is devoted to the analysis of error probabilities for transmission
over a fading MIMO channel. In Chapter 5, we study a “classical” receive diversity
system with an arbitrary number of receive antennas. This discussion sets, in some
sense, the goal for transmit diversity techniques. In Chapter 6, we go on to discuss
how transmit diversity can be achieved and also review some space-time coding
methods that achieve such diversity. Chapter 7 studies a large and interesting class
of space-time coding methods, namely linear space-time block coding (STBC) for
the case of frequency flat fading. The case of frequency selective fading is treated
in the subsequent Chapter 8. In Chapter 9 we discuss receiver structures for linear
STBC, both for the coherent and the noncoherent case. Finally, Chapters 10 and
11 treat two special topics: space-time coding for transmitters with partial channel
knowledge, and space-time coding in a multiuser environment.

1.5 Problems

1. Prove (1.3.3).

2. In (1.3.5), find the value of α such that

ŝ = s + e (1.5.1)

where e is a zero-mean noise term. What is the variance of e? Can you
interpret the quantity ŝ?

3. In Section 1.3.2, suppose that the transmitter knows the channel and that it
can use this knowledge to choose w1 and w2 in an “adaptive” fashion. What is
the SNR-optimal choice of w1 and w2 (as a function of h1 and h2)? Prove that
by a proper choice of w1 and w2, we can achieve an error rate that behaves
as SNR−2

a .

4. In Section 1.3.2, can you suggest a method to transmit two symbols during
two time intervals such that transmit diversity is achieved, without knowledge
of h1 and h2 at the transmitter, and without sacrificing the transmission rate?
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Chapter 2

THE TIME-INVARIANT LINEAR

MIMO CHANNEL

If we adopt the standard complex baseband representation of narrowband sig-
nals (see Appendix A), the input-output relation associated with a linear and
time-invariant MIMO communication channel can easily be expressed in a matrix-
algebraic framework. In this chapter, we will discuss both the frequency flat and
the frequency-selective case. Models for single-input single-output (SISO), single-
input multiple-output (SIMO) and multiple-input single-output (MISO) channels
follow as special cases.

2.1 The Frequency Flat MIMO Channel

We consider a system where the transmitter has nt antennas, and the receiver
has nr antennas (see Figure 2.1). In the current section we also assume that the
bandwidth of the transmitted signal is so small that no intersymbol interference
(ISI) occurs, or equivalently, that each signal path can be represented by a complex
gain factor. For practical purposes, it is common to model the channel as frequency
flat whenever the bandwidth of the system is smaller than the inverse of the delay
spread of the channel; hence a wideband system operating where the delay spread is
fairly small (for instance, indoors) may sometimes also be considered as frequency
flat. Models for frequency-selective multiantenna channels, i.e., MIMO channels
with non-negligible ISI, will be presented in Section 2.2.

Let hm,n be a complex number corresponding to the channel gain between
transmit antenna n and receive antenna m. If at a certain time instant the complex
signals {x1, . . . , xnt} are transmitted via the nt antennas, respectively, the received
signal at antenna m can be expressed as

ym =
nt∑

n=1

hm,nxn + em (2.1.1)
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TX RX

nrnt

11

Figure 2.1. A MIMO channel with nt transmit and nr receive antennas.

where em is a noise term (to be discussed later). The relation (2.1.1) is easily
expressed in a matrix framework. Let x and y be nt and nr vectors containing the
transmitted and received data, respectively. Define the following nr × nt channel
gain matrix:

H =

⎡

⎢
⎣

h1,1 · · · h1,nt

...
...

hnr,1 · · · hnr ,nt

⎤

⎥
⎦ (2.1.2)

Then we have

y = Hx + e (2.1.3)

where e = [e1 · · · enr ]T is a vector of noise samples. If several consecutive vectors
{x1, . . . ,xN} are transmitted, the corresponding received data can be arranged in
a matrix

Y = [y1 · · · yN ] (2.1.4)

and written as follows:

Y = HX + E (2.1.5)

where
X = [x1 · · · xN ] (2.1.6)

and
E = [e1 · · · eN ] (2.1.7)
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10 The Time-Invariant Linear MIMO Channel Chapter 2

Note that vectorization of (2.1.5) yields the following equivalent model:

y =
(
XT ⊗ I

)
h + e (2.1.8)

where y = vec(Y ), h = vec(H) and e = vec(E). This expression will be useful
for performance analysis purposes.

2.1.1 The Noise Term

In this text, the noise vectors {en} will, unless otherwise stated, be assumed to be
spatially white circular Gaussian random variables with zero mean and variance
σ2:

en ∼ NC(0, σ2I) (2.1.9)

Such noise is called additive white Gaussian noise (AWGN).
The Gaussian assumption is customary, as there are at least two strong reasons

for making it. First, Gaussian distributions tend to yield mathematical expres-
sions that are relatively easy to deal with. Second, a Gaussian distribution of a
disturbance term can often be motivated via the central limit theorem.

Unless otherwise stated we will also assume throughout this book that the
noise is temporally white. Although such an assumption is customary, it is clearly
an approximation. In particular, the E term may contain interference consisting
of modulated signals that are not perfectly white.

To summarize, the set of complex Gaussian vectors {en} has the following
statistical properties:

E[eneH
n ] = σ2I

E[eneH
k ] = 0, n �= k

E[eneT
k ] = 0, for all n, k

(2.1.10)

2.1.2 Fading Assumptions

The elements of the matrix H correspond to the (complex) channel gains between
the transmit and receive antennas. For the purpose of assessing and predicting the
performance of a communication system, it is necessary to postulate a statistical
distribution of these elements. This is true to some degree also for receiver design,
in the sense that knowledge of the statistical behavior of H could potentially be
used to improve the performance of the receiver.
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