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Prologue

Wavelets are everywhere nowadays. Be it in signal or image processing, in astronomy,
in fluid dynamics (turbulence), in condensed matter physics, wavelets have found ap-
plications in almost every corner of physics. In addition, wavelet methods have become
standard in applied mathematics, numerical analysis, approximation theory, etc. It is
hardly possible to attend a conference on any of these fields without encountering
several contributions dealing with them. Correspondingly, hundreds of papers appear
every year and new books on the topic get published at a sustained pace, with pub-
lishers strongly competing with each other. So, why bother to publish an additional
one?

The answer lies in the finer distinction between various types of wavelet transforms.
There is, indeed, a crucial difference between two approaches, namely, the continuous
wavelet transform (CWT) and the discrete wavelet transform (DWT). Furthermore, one
has to distinguish between problems in one dimension (signal analysis) and problems
in two dimensions (image processing), since the status of the literature is very different
in the two cases.

Take first the one-dimensional case. Beginning with the classic textbook of
Ingrid Daubechies [Dau92], several books, such as those of M. Holschneider [Hol95],
B. Torrésani [Tor95] or A. Arnéodo et al. [Arn95], cover the continuous wavelet trans-
form, in a more or less mathematically oriented approach. On the other hand, the
discrete wavelet transform is treated in many textbooks, more in the signal process-
ing style, such as M. V. Wickerhauser [Wic94], M. Vetterli and J. Kovačević [Vet95],
P. Wojtaszczyk [Woj97], or S. G. Mallat [Mal99], whereas others emphasize the algo-
rithmic aspects, sometimes in a rather abstract way, for example, C. K. Chui [Chu92]
or Y. Meyer [Mey94] (of course, there are many more on the market). Altogether these
books tell a fascinating story, that is ideally depicted in the highly popular volume of
B. Burke Hubbard [Bur98], which is based on interviews by the author with all the
founding “fathers” of the theory (J. Morlet, A. Grossmann, I. Daubechies, Y. Meyer,
etc.).

It is a fact that DWT-inspired methods (multiresolution, lifting scheme, etc., that we
shall describe in due time) constitute the overwhelming majority among the wavelet
community, under the joint influence of electrical engineering (signal processing with

ix
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x Prologue

filters and subband coding) and applied mathematics (numerical and algorithmic
methods). Yet the CWT and, more generally, redundant representations of signals,
offer distinct advantages in certain cases, as we shall see later.

In two dimensions, that is, application to image processing, the situation is clearer.
Discrete methods are somewhat trivial, since the basic structure is that of a tensor
product, 2-D = 1-D ⊗ 1-D, enforcing a Cartesian geometry (x and y coordinates).
Thus most textbooks on the DWT will cover, although briefly in general, the 2-D case
as a straightforward extension of the 1-D setup. As for the 2-D CWT, it receives at best
a cursory treatment in most cases. The raison d’être of the present volume is precisely
to fill this gap in the literature and give a thorough treatment of the 2-D CWT and
some of its applications in image processing and in various branches of physics. As
a byproduct, we will also discuss in detail several extensions, such as 3-D wavelets,
wavelets on the sphere or wavelets in space-time.

A historical note

Before entering the subject proper, it may not be uninteresting to give some details on
its origin, without pretension to completeness, of course; we are not historians. The
first extension of the wavelet transform to imaging is due to Mallat [259,260], who
developed systematically a 2-D discrete (but redundant) WT, combining the traditional
concept of filter bank and the analogy with human vision. In fact, most of the concepts
are indeed already present in the pioneering work of Marr [Mar82] on vision modeling,
in particular the idea of multiresolution. Indeed, when we look at an object, our visual
system works by registering first a global, low-resolution, image and then focusing
systematically to finer and finer details. Thus, contrary to the 1-D case, the 2-D discrete
WT preceded the continuous version.

The 2-D continuous WT was born in a quite different way. The story starts in the
coffee room of the Institut de Physique Théorique in UCL, Louvain-la-Neuve (LLN), in
Spring 1987. Alex Grossmann from Marseille, one of the founding fathers of wavelets,
was visiting J.-P. A., indeed they had already started to collaborate on the application
of 1-D wavelets in NMR spectroscopy. Thus the two were discussing a possible Ph.D.
topic for a young African student, called Romain Murenzi (R.M.). The latter had just
concluded a Master’s thesis on five-dimensional quantum field theory, a subject hardly
practical for a developing country! So the idea came up, why not try to do in two dimen-
sions what had been so successful in 1-D, namely, wavelet analysis? The topic seemed
tractable, involving moderate amounts of mathematics and some simple computing
technology, and if it worked out, there could be very interesting practical applications.
The problem was that nobody knew how to do it! The next summer, R.M. went down to
Marseille and started to work with Grossmann and Ingrid Daubechies who happened
to be there too. And when he came back 3 months later, the solution was clear. The key

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-06519-1 - Two-Dimensional Wavelets and their Relatives
Jean-Pierre Antoine, Romain Murenzi, Pierre Vandergheynst and Syed Twareque Ali
Frontmatter
More information

http://www.cambridge.org/0521065194
http://www.cambridge.org
http://www.cambridge.org


xi Prologue

is to start from the operations that one wants to apply to an image, namely, translations
in the image plane, rotations for choosing a direction of sight, and global magnification
(zooming in and out). The problem is to combine these three elements in such a way
that the wavelet machine could start rolling (there are mathematical conditions to sat-
isfy here). The result of R.M. was that the so-called similitude group yields a solution
(actually, the only one). There remained to put it all together, to turn the mathematical
crank and to apply the resulting formalism to a real problem, namely, 2-D fractals
(the outcome of a visit of R.M. to Arnéodo in Bordeaux), and the Ph.D. thesis was
within reach [Mur90]. Several papers followed [12,13], more M.Sc. or Ph.D. students
got involved over the years. We may cite Pierre Carrette, Stéphane Maes, Canisius
Cishahayo, Pierre Vandergheynst, Yébéni B. Kouagou, Laurent Jacques, Laurent De-
manet. Each of them has brought his contribution to the edifice, small or big, but always
useful.

This is probably a good place for asking, why wavelets? After all, there are plenty
of methods available for processing images. What is new here? A key fact is probably
that wavelets are somehow a byproduct of quantum thinking. More precisely, it is an
application of the quantum idea of a probe for testing an object, the result being given
by the scalar product of the two functions (indeed the framework is a Hilbert space,
that of finite energy signals). To get the transform, the probe is translated and scaled
(zoom), and turned around in the 2-D case, and the result is plotted as a function of
the corresponding parameters. (Actually the same could be said of the so-called Gabor
or Windowed Fourier transform.) One gets in this way a highly flexible and efficient
tool for signal/image processing, that sheds a different light and offers an alternative
approach to many standard problems, in particular those involving the detection of
singularities or discontinuities in signals. As somebody once remarked, wavelets do
not solve all the problems, but they often help asking the right questions.

Another sign of the quantum influence is the crucial role played by a unitary group
representation, a tool largely absent in classical physics – and thus from signal process-
ing as well. And it is no accident, in our opinion, that the crucial steps in developing
wavelets were made by Alex Grossmann and Ingrid Daubechies, both educated as
theoretical (quantum) physicists. Otherwise, it might have taken much longer for elec-
trical engineers and mathematicians to meet!

About the contents of the book

Now it is time to give some indications on the contents of the book. One can divide
it into several stages. In a first part (Chapters 1–3), we develop systematically the
continuous wavelet transform, first in one dimension (briefly), then in two dimensions.
The emphasis here is on the practical use of the tool, with a minimum of mathematics.
Then we devote two long chapters, 4 and 5, to applications. Three short chapters, 6–8,
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xii Prologue

set the general mathematical scene. This allows us, in Chapters 9 and 10, to describe
wavelets in more general settings (3-D, sphere, space–time). In Chapter 11, finally,
we discuss some recent developments that actually go beyond wavelets. This gradual
structure is one of the original aspects of the book, in comparison with those on the
market.

Let us go into more details. As a warming up exercise, we begin, in Chapter 1, with
a rather concise overview of the 1-D WT. This allows the reader to develop a feeling
about the wavelet transform and to understand its success in signal processing. All
aspects will be touched upon: the continuous WT, multiresolution and the discrete WT,
various generalizations of the latter, some applications. One of the leitmotives is the
role of redundancy, especially with respect to stability of the representation.

Chapter 2, which forms the hard core of the first part, presents in a systematical
way the theory of the 2-D CWT. As said above already, the starting point is to decide
which elementary operations one wants to apply to an image. Choosing translations in
the image plane, rotations (direction of sight), and global magnification (zooming in
and out), together with the probe idea, leads uniquely to the 2-D CWT. We study in
detail its basic properties: energy conservation, reconstruction formula, reproducing
property, covariance under the chosen operations. Then we describe the interpretation
of the WT as a singularity scanner and as a phase space representation of signals.
Since the WT of a 2-D image is a function of four variables, visualizing it inevitably
becomes problematic. Hence the need to reduce the number of parameters, either by
fixing some of them, or integrating over them. This introduces a tool that will prove
very useful in the applications, namely, the various partial energy densities, that is, the
function obtained by integrating the squared modulus of the CWT over a subset of the
parameters. In other words, various types of wavelet spectra, the analogs of the familiar
power spectrum of a signal.

As is well known in 1-D, the CWT is highly redundant, as one can expect from
a transform that doubles the number of variables: one to two in 1-D, two to four in
2-D. This fact may be exploited in two ways. Either one limits oneself to a small
subset of the transform, where most of the energy is concentrated, and thus one is led
to the notions of local maxima, ridges and skeleton; or one discretizes the CWT and
obtains wavelet frames. Such a representation is still redundant, but much less than
the full CWT, and in many instances is a good substitute for a genuine orthonormal
basis. An alternative is the so-called dyadic WT, originally due to Mallat, in which only
the scale variable is discretized. Together with the latter, we also describe briefly the
standard DWT, based on the multiresolution idea, and several generalizations, mostly
the so-called lifting scheme. We conclude the chapter with a thorough discussion of a
different scheme, called directional dyadic wavelet frames. Here, as in 1-D, there are
two conflicting requirements: redundancy of the transform, which brings stability, and
computing economy, that seeks fast algorithms. The formalism described here offers a
good compromise.
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xiii Prologue

When it comes to treating a precise problem, the first question to ask is, which wavelet
should one use? Thus there is a need for a sizable collection of them, well documented
and calibrated. The aim of Chapter 3 is to provide this. The crucial distinction here is
whether directions in the image are relevant or not. If they are not, a pointwise analysis
suffices, and one can use rotation invariant (isotropic, radial) wavelets, the best known
being the Mexican hat or LOG wavelet (already introduced by Marr [Mar82]). On the
contrary, if directions must be detected, one needs a wavelet with a good orientation
selectivity. The most efficient result is obtained with the so-called directional wavelets.
These are filters living in a convex cone, with apex at the origin, in Fourier space.
Examples are the 2-D Morlet wavelet and the family of conical wavelets. All these
wavelets, and some more, are discussed in detail in Chapter 3, and their performances
determined quantitatively.

At this stage, the tool is ready and we turn to applications. Many of them are not easy
to find, because they have appeared only in conference proceedings or in (unpublished)
Ph.D. theses. For that reason, we have decided to present them in a rather detailed
fashion, always giving original references, including personal websites when available.
In each case, we emphasize the rationale for using wavelets in the particular problem
at hand, rather than go into the technicalities.

It is convenient (although not always unambiguous) to distinguish between two
different fields of applications, image processing and physics. To the first type, the
subject matter of Chapter 4, belong contour detection and character recognition; auto-
matic target detection and recognition (for instance, in infrared radar imagery); image
retrieval from data banks; medical imaging; detection of symmetries in patterns, in
particular quasicrystals and other quasiperiodic patterns; and image denoising. The
chapter concludes with two nonlinear extensions of the CWT, which both have impor-
tant applications. The first one is contrast enhancement in images through an adaptive
normalization. This technique, based on analogy with our visual system, may be of
interest in medical imaging. Indeed typical images, such as those obtained by radiogra-
phy or by NMR imaging, have rather weak contrast, which makes their interpretation
sometimes difficult. The other problem we deal with is watermarking of images, which
consists in adding an invisible “signature” (the watermark) to an image, that only the
owner can recognize and is robust to manipulations. Clearly the field of image copyright
offers a good market for such techniques. The novel method we present is based on the
contrast analysis described previously, exploiting directional wavelets, and it turns out
to be particularly efficient.

The second class of applications, described in Chapter 5, concerns various fields of
physics. Characteristically, they all belong to classical physics, as opposed to quantum
physics, because the former relies much more on images. Indeed, there are very few
applications of wavelet analysis in quantum problems.

The first domain on which 2-D wavelets have made a substantial impact is astronomy
and astrophysics, for several reasons. The Universe has a marked hierarchical structure.
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xiv Prologue

Nearby stars, galaxies, quasars, galaxy clusters and superclusters have very different
sizes and live at very different distances. Thus the scale variable is essential and a mul-
tiscale analysis is in order. This, of course, suggests wavelet analysis, and indeed many
authors have used it in problems such as determination of the large-scale structure of the
Universe, galaxy or void counting, or analysis of the cosmic background radiation. In
addition, we describe more in depth two applications of our own, namely, the detection
of various magnetic features of the Sun, from satellite images, and the detection of dis-
tant gamma-ray sources in the Universe. In the latter case, difficult statistics problems
arise, because of the extreme weakness of the signal (such a source emits very few high
energy photons).

The next topic is Earth physics: fault detection in geophysics, seismology, climatol-
ogy (notably, thunderstorm prevision). A number of successful applications pertain to
fluid dynamics, from the detection of coherent strucures in fully developed 2-D tur-
bulence (a domain pioneered forcefully by Marie Farge [164]) to the measurement of
the velocity field in a turbulent fluid, or the disentangling of a 2-D (or 3-D) wave train.
Next comes the world of fractals. These are structures that are solely characterized
by their behavior under a scaling transformation: ideal ground for wavelets! However,
the self-reproducing properties of physical fractals are in general only approximate,
so that methods from statistical mechanics are needed. Thus, a thermodynamical for-
malism has been designed by Arnéodo and his group in Bordeaux for treating such
problems, and we give a brief account of it. Finally we touch upon the problem of
shape recognition, where wavelet descriptors have proven useful too.

At this point, the book undergoes a sort of phase transition. Up to here, everything
was done by hand, so to speak. The properties of the CWT have been derived by explicit
calculations and very few mathematical prerequisites have been asked for. But now it is
time to look over the hill and notice that the whole theory is firmly grounded in group
theory. Indeed the wavelet transform and all its properties may be entirely derived from
an appropriate representation of the affine group, both in one and in two dimensions.
A mathematical condition, called square integrability of the representation, ensures the
validity of the derivation, in particular the possibility of inverting the wavelet transform,
that is, of obtaining reconstruction formulas. We devote two rather short chapters, 6 and
7 to these developments, with a double benefit. First, on the pedagogical level, we want
to convince the reader that the group-theoretical approach is not only mathematically
correct and pleasant, it is also natural and easy. It allows us indeed to understand in
a simple and unified language the deeper mathematical structures involved. It is also
quite efficient, in that it yields a general formalism (in fact, a special case of the coherent
state formalism, well known in quantum physics, in particular, in quantum optics) that
permits us to extend the CWT to more general manifolds, such as R

3, the two-sphere,
or space–time, all generalizations that will be discussed in later chapters. Of course, we
do not expect our reader to be fully conversant with group theory, and we will define all
the needed ingredients along the way. Actually we will essentially restrict our treatment
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xv Prologue

to 2 × 2 or 3 × 3 matrices, without resort to abstract notions. Nevertheless, we found
it convenient to gather all the group-theoretical information in a separate appendix.

We begin, in Chapter 6, by revisiting the 1-D CWT in the light of the so-called ax + b
or restricted affine group of the line, that is, the set of all translations and positive dila-
tions. It turns out that the CWT may also be interpreted as a phase space representation
of signals, in the sense of Hamiltonian mechanics, and the group-theoretical language
makes this evident. The same treatment is then applied to the Gabor transform, also
called Short Time or Windowed Fourier transform, simply replacing the affine group
by the Weyl–Heisenberg group, that is, the group of phase space translations (this point
of view has also been emphasized by Daubechies [Dau92]). Next, in Chapter 7, we
repeat the procedure in two dimensions. Here the relevant group is the similitude group
SIM(2), which consists of translations, rotations and dilations of the plane, that is,
precisely all the transformations we have chosen to apply to images. Here, as in the
1-D case, the basic tool is a representation of the group by unitary operators acting in
the space of finite energy signals, a natural representation that possesses the property
of square integrability, meaning roughly that its matrix elements are square integrable
functions of the group parameters. Here too, the CWT is a phase space realization of
signals, and we spend some time exploring the consequences of this fact.

In a third chapter with a mathematical flavor, Chapter 8, we discuss two less known
properties of wavelets. First, some of them have minimal uncertainty, in the sense
that they saturate some uncertainty relations linked to the Lie algebra of the wavelet
group, exactly as Gaussians saturate those associated to the canonical commutation
relations. Then we explore the relationship between wavelet transforms and the Wigner
transform, well–known in physics and in radar theory (under the name of the closely
related ambiguity function).

The next two chapters are devoted to various extensions of the standard CWT, that
can be derived with help of the general formalism just developed. First we treat, in
Chapter 9, the higher dimensional cases. We begin with the 3-D CWT, which is a
straightforward extension of the 2-D case. Then we examine in depth the CWT over
the 2-sphere. Here, of course, there is a strong motivation from several domains, from
geophysics to astrophysics. The former is clear. As for the latter, when one considers
the whole Universe, as in the problem of gamma source detection mentioned above, it
is necessary to take the curvature into account.

However, there is an equally appealing aspect in the mathematics of the subject.
Indeed, the group to consider here is the conformal group of the sphere S2, which is
nothing but the proper Lorentz group SOo(3, 1). The same group is also the conformal
group of the plane R

2, for instance, the tangent plane at the North Pole. The sphere and its
tangent plane are mapped onto each other by the stereographic projection from the South
Pole and its inverse. This operation is in fact the key to the construction of a spherical
CWT. Indeed, the operations to be performed on spherical signals are motions on the
sphere, given by rotations, and local dilations around a given point. In order to define
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these, one first defines dilations around the North Pole by lifting the corresponding
ones in the tangent plane by inverse stereographic projection. Then, dilations around
any other point of the sphere are obtained by combining the previous ones with an
appropriate rotation. As a consequence, the parameter space of the spherical CWT is
not the Lorentz group itself, but a homogeneous space of it, containing only rotations
and the dilations just defined, that is, the quotient of SOo(3, 1) by a certain subgroup.
Therefore, one needs the general formalism described in Chapter 7 in order to get a
genuine spherical CWT. As an additional benefit, one recovers the natural link between
the sphere and its tangent plane: the spherical CWT tends to the usual plane CWT
when the radius of the sphere increases to infinity (the so-called Euclidean limit). It is
gratifying that this aspect too is entirely described by the group-theoretical machinery, in
terms of an operation called group contraction. Another byproduct of our spherical CWT
is the possibility of designing good wavelet approximations of integrable functions on
the sphere, another result previously known in the plane case. Here again practical
applications are at hand, in the context of the so-called Geomathematics advertised by
Freeden and his school [Fre97].

Then we turn, in Chapter 10, to the extension of the CWT to space–time. The problem
of interest here is, of course, motion estimation, more precisely, detection, tracking,
and identification of objects in (relative) motion. Examples include traffic monitoring,
autonomous vehicle navigation, and tracking of ballistic missile warheads. This is a
difficult problem, since the data is huge and often very noisy. As a consequence, most
algorithms tend to lose track of the targets after a while, particularly if the latter changes
its appearance (e.g., a maneuvering aeroplane) or in the case of an occlusion (one moving
object hides another one). From the wavelet point of view, one designs a spatio-temporal
CWT, whose parameters are space and time translations, rotations, global space–time
dilations, that catch the size of the target, and a speed tuning parameter that measures
its speed. The usual formalism goes through almost verbatim and allows one to design
an efficient algorithm for motion estimation. One key ingredient again is the successive
use of several partial energy densities.

In the final Chapter 11, we turn to another kind of generalizations, namely, trans-
forms specially adapted to the detection and modeling of lines and curves, called the
ridgelet and the curvelet transforms. The motivation for these new transforms, and
their superiority over standard wavelets, is that they take much better into account the
geometry of the object to be analyzed. A curve in the plane is more 1-D than 2-D,
and the conventional 2-D CWT simply ignores this fact – hence it is unnecessarily
costly. Here, of course, one experiences the much bigger richness of the 2-D world,
in particular, concerning singularities of functions. These transforms naturally lead to
new approaches to image compression and various nonlinear approximations, that we
also describe.

We conclude the chapter and the book with a topic called ‘algebraic wavelets’.
These are wavelets adapted to self-similar tilings on the line or the plane obtained by
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replacing the usual natural numbers by a different system of numeration, for instance,
the golden mean τ = 1

2 (1 + √
5). This is actually a generalization of the discrete WT,

but it provides another example of wavelets adapted to a specific geometry, hence it is
not out of place in this volume, and we found it interesting to give a short account of
it, both in 1-D and in 2-D. In the latter case, typical examples are the famous Penrose
tilings of the plane, with pentagonal symmetry, and this brings us back to the study of
aperiodic patterns and to quasicrystals!

The conclusion of the whole story is definitely optimistic. Wavelets, and in particular
the continuous WT, have proven to be a versatile and extremely efficient tool for image
processing, provided one uses the right wavelet on the right problem. Their future is
undoubtly bright, in many fields of science and technology.

Before concluding this introduction, several technical remarks are in or-
der. First, most examples that are not reproduced from original papers have
been computed using our own wavelet toolbox, called the YAW (Yet Another
Wavelet) Toolbox, and freely accessible on the Louvain-la-Neuve website
<http://www.fyma.ucl.ac.be/projects/yawtb/> .

Next, we have found it useful to split the references into two sections, devoted to
books and Ph.D. theses, and regular journal articles (with a different presentation,
viz. [Ald96] and [2], respectively). As we have already said, theses are an extremely
rich source of information, although they are often only accessible on the web. In
general, we have tried to trace most of the results to the original papers. Of course,
there are omissions and misrepresentations, due to our ignorance and prejudices. We
take responsibility for this and apologize in advance to those authors whose work we
might have mistreated.
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