CONTENTS

Preface

Acknowledgment

1 INTRODUCTION TO DIGITAL SYSTEMS ENGINEERING

page 1

1.1 Why Study Digital Systems Engineering?
2

1.2 An Engineering View of a Digital System

1.2.1 Feeds and Speeds
5

1.2.2 Signaling Conventions

- Signaling Speed, 7
- Signaling Power, 7
- Signal Integrity, 8
- Other Signaling Conventions, 8

1.2.3 Timing and Synchronization

- Synchronous Timing, 8
- Pipelined Timing, 9
- Closed-Loop Timing, 9
- Clock Distribution, 9
- Synchronization, 10

1.3 Technology Trends and Digital Systems Engineering

12

1.3.1 Moore’s Law
12

1.3.2 Scaling of Chip Parameters
16

1.3.3 Scaling of Wires

- Scaling of Power Distribution, 18
- Scaling of On-Chip Communication, 18
- Scaling of Off-Chip Communication, 19

1.4 High Levels of Integration Permit New Approaches

21

1.5 Digital Systems Problems and Solutions Continue to Change

21

1.6 Exercises

22

© Cambridge University Press
www.cambridge.org
Table of Contents

2 Packaging of Digital Systems

2.1 A Typical Digital System
2.2 Digital Integrated Circuits – On-Chip Wiring
2.3 Integrated Circuit Packages
 2.3.1 Wire Bonds and Solder Balls
 2.3.2 Package Types
 2.3.3 Package Manufacturing Processes
 2.3.4 Multichip Modules
 2.3.5 A Typical Package Model
 - Physical Construction, 36
 - Package Electrical Model, 37
2.4 Printed Circuit Boards
 2.4.1 PC Board Construction
 2.4.2 Electrical Properties
 2.4.3 Manufacturing Process
 2.4.4 Vias
 2.4.5 Dimensional Constraints
 2.4.6 Mounting Components: Surface-Mount and Through-Hole
 2.4.7 Sockets
2.5 Chassis and Cabinets
2.6 Backplanes and Mother Boards
 2.6.1 Daughter Cards
 2.6.2 Backplanes
2.7 Wire and Cable
 2.7.1 Wires
 2.7.2 Signaling Cables
 - Coaxial Cable, 51
 - Ribbon Cable, 52
 - Twisted Pair, 53
 - Flex-Circuit Cable, 53
 2.7.3 Bus Bars
2.8 Connectors
 2.8.1 PC Board Connectors
 2.8.2 Interposers
 2.8.3 Elastomeric Connectors
 2.8.4 Power Connectors
 2.8.5 Wire and Cable Connectors
 - Wire Harness Connectors, 58
 - Coaxial Connectors, 60
 - Ribbon-Cable Connectors, 60
 - Methods of Attachment, 61
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9 Optical Communication</td>
<td>62</td>
</tr>
<tr>
<td>2.9.1 Optical Transmitters</td>
<td>63</td>
</tr>
<tr>
<td>LEDs, 63 • Laser Diodes, 63</td>
<td></td>
</tr>
<tr>
<td>2.9.2 Optical Fiber</td>
<td>64</td>
</tr>
<tr>
<td>Multimode Fiber, 65 • Single-Mode Fiber, 66 • Optical Connectors, 66</td>
<td></td>
</tr>
<tr>
<td>2.9.3 Optical Receivers</td>
<td>67</td>
</tr>
<tr>
<td>2.9.4 Multiplexing</td>
<td>68</td>
</tr>
<tr>
<td>Wavelength-Division Multiplexing, 68 • Time-Division Multiplexing, 69</td>
<td></td>
</tr>
<tr>
<td>2.9.5 Optical Amplifiers</td>
<td>70</td>
</tr>
<tr>
<td>2.9.6 Free-Space Optical Interconnect</td>
<td>70</td>
</tr>
<tr>
<td>2.10 Radio Communication</td>
<td>71</td>
</tr>
<tr>
<td>2.10.1 A Typical Digital Radio</td>
<td>71</td>
</tr>
<tr>
<td>2.10.2 The Power Equation</td>
<td>72</td>
</tr>
<tr>
<td>2.10.3 Modulation</td>
<td>74</td>
</tr>
<tr>
<td>Amplitude Modulation, 74 • Phase Modulation (PM), 74 • Frequency Modulation, 75 • Code-Division Multiple Access (CDMA), 75</td>
<td></td>
</tr>
<tr>
<td>2.10.4 Multipath</td>
<td>76</td>
</tr>
<tr>
<td>2.11 Bibliographic Notes</td>
<td>77</td>
</tr>
<tr>
<td>2.12 Exercises</td>
<td>77</td>
</tr>
</tbody>
</table>

3 Modeling and Analysis of Wires

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Geometry and Electrical Properties</td>
<td>81</td>
</tr>
<tr>
<td>3.1.1 Resistance</td>
<td>81</td>
</tr>
<tr>
<td>3.1.2 Capacitance</td>
<td>82</td>
</tr>
<tr>
<td>3.1.3 Inductance</td>
<td>84</td>
</tr>
<tr>
<td>3.2 Electrical Models of Wires</td>
<td>84</td>
</tr>
<tr>
<td>3.2.1 The Ideal Wire</td>
<td>84</td>
</tr>
<tr>
<td>3.2.2 The Transmission Line</td>
<td>85</td>
</tr>
<tr>
<td>Partial Differential Equation, 85 • Impedance of an Infinite Line, 86 • Frequency-Domain Solution, 87 • Signal Returns, 87 • Lumped Models of Transmission Lines, 88</td>
<td></td>
</tr>
<tr>
<td>3.3 Simple Transmission Lines</td>
<td>88</td>
</tr>
<tr>
<td>3.3.1 Lumped Wires</td>
<td>88</td>
</tr>
<tr>
<td>Lumped Capacitive Loads, 88 • Lumped Resistive Lines, 89 • Lumped Inductive Lines, 90 • Lumped Models of Impedance Discontinuities, 90</td>
<td></td>
</tr>
<tr>
<td>3.3.2 RC Transmission Lines</td>
<td>90</td>
</tr>
</tbody>
</table>
Contents

Step Response of an RC Line, 91 • Low-Frequency RC Lines, 92

3.3.3 Lossless LC Transmission Lines • Traveling Waves, 92 • Impedance, 93 • Driving LC Transmission Lines, 93 • Reflections and the Telegrapher’s Equation, 95 • Some Common Terminations, 96 • Source Termination and Multiple Reflections, 97 • Arbitrary Termination, 97 • Standing Waves, 99 • Summary, 100

3.3.4 Lossy LRC Transmission Lines • Wave Attenuation, 100 • DC Attenuation, 101 • Combined Traveling Wave and Diffusive Response, 102 • The Skin Effect, 103

3.3.5 Dielectric Absorption • 105

3.4 Special Transmission Lines • 106

3.4.1 Multidrop Buses • 106

3.4.2 Balanced Transmission Lines • 108

3.4.3 Common- and Differential-Mode Impedance • 110

3.4.4 Isolated Lines • 111

AC Coupling, 112 • Optical Isolation, 113

3.5 Wire Cost Models • 113

3.5.1 Wire Area Costs • 114

3.5.2 Terminal Costs • 116

3.6 Measurement Techniques • 117

3.6.1 Time-Domain Measurements • 117

The Time-Domain Reflectometer, 117 • Rise Time and Resolution, 119 • Lumped Discontinuities, 120 • Transmission Measurements, 121 • Cross Talk Measurements, 121

3.6.2 Network Analysis • 122

3.6.3 CAD Tools for Characterizing Wires • 124

Spreadsheets, 124 • Two-Dimensional Electromagnetic Field Solvers, 124 • Signal Integrity Software Packages, 125 • 3D Electromagnetic Field Solvers, 126

3.7 Some Experimental Measurements • 126

3.7.1 Frequency-Dependent Attenuation in a PC Board Trace • 127

DC Resistance and Attenuation Calculations, 127 • High-Frequency Attenuation Factors, 128

3.7.2 Cross Talk in Coupled Lines • 131

Coupled Embedded Striplines, 131 • Coupled
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.3</td>
<td>Inductive and Capacitive Discontinuities</td>
<td>134</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Measurement of IC Package Parasitics</td>
<td>138</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Measurement Practice</td>
<td>142</td>
</tr>
<tr>
<td>3.8</td>
<td>Bibliographic Notes</td>
<td>142</td>
</tr>
<tr>
<td>3.9</td>
<td>Exercises</td>
<td>143</td>
</tr>
<tr>
<td>4</td>
<td>Circuits</td>
<td>148</td>
</tr>
<tr>
<td>4.1</td>
<td>MOS Transistors</td>
<td>149</td>
</tr>
<tr>
<td>4.1.1</td>
<td>MOS Device Structure</td>
<td>150</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Current–Voltage Characteristics</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Threshold Voltage, 151 • Resistive Region, 152 • Saturation Region, 152 • p-Channel FETs, 153 • Channel-Length Modulation, 154 • Body Effect, 155 • Velocity Saturation, 156 • Subthreshold Conduction, 156 • Typical I–V Curves, 157 • Enhancement and Depletion Devices, 158</td>
<td></td>
</tr>
<tr>
<td>4.1.3</td>
<td>Parameters for a Typical 0.35-μm CMOS Process</td>
<td>158</td>
</tr>
<tr>
<td>4.2</td>
<td>Parasitic Circuit Elements</td>
<td>159</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Parasitic Capacitors</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Gate Capacitance, 160 • Source and Drain Diodes, 162</td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Parasitic Resistance</td>
<td>162</td>
</tr>
<tr>
<td>4.2.3</td>
<td>A Typical Device</td>
<td>163</td>
</tr>
<tr>
<td>4.2.4</td>
<td>SPICE Models</td>
<td>163</td>
</tr>
<tr>
<td>4.3</td>
<td>Basic Circuit Forms</td>
<td>165</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Switch Networks</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Pass Gates, 166 • Logic with Switches, 167 • Circuits Using Switches, 167 • Transient Analysis of Switch Networks, 168</td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>The Static CMOS Gate</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Inverter DC Transfer Characteristics, 170 • Inverter Gain, 172 • Transient Response, 173 • Propagation Delay and Nonzero Rise Time, 176 • The Effect of Input Rise Time on Delay, 177 • Asymmetrical Sizing, 178 • Miller-Effect Capacitance, 179 • Gain–Bandwidth Product, 180 • The Exponential Horn, 181 • SPICE Simulations of Gates, 182</td>
<td></td>
</tr>
<tr>
<td>4.3.3</td>
<td>Dynamic Circuits</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>The Dynamic Latch, 184 • Precharged Gates, 186 • Domino Logic, 187 • Dual-Rail Domino, 189 • Bootstrap Circuits, 190</td>
<td></td>
</tr>
</tbody>
</table>
Contents

4.3.4 Source Followers and Cascodes 191
 Source Follower, 192 • Cascode, 194

4.3.5 Current Mirrors 195
 The Basic Current Mirror, 196 • The Cascode Current Mirror, 197

4.3.6 The Source-Coupled Pair 199
 V–I Characteristics of the Source-Coupled Pair, 199 •
 Differential Circuit Analysis, 200 • Differential Loads,
 201 • Mode Coupling, 202 • FET Resistors, 203 •
 A Simple Differential Amplifier, 204

4.3.7 Regenerative Circuits and Clocked Amplifiers 207

4.4 Circuit Analysis 210

4.4.1 Qualitative Circuit Analysis 210
 Qualitative Analysis of a Differential Amplifier, 210 •
 Qualitative Analysis of a Voltage-Controlled
 Oscillator, 211

4.4.2 Power Dissipation 212
 Power Dissipation of a Static CMOS Gate, 212 •
 Energy-Delay Product of a CMOS Gate, 213 • AC Versus
 DC Power, 214 • Power Dissipation of Source-Coupled
 FET Logic, 215

4.5 Bibliographic Notes 215

4.6 Exercises 216

5 Power Distribution 221

5.1 The Power Supply Network 222

5.1.1 Local Loads and Signal Loads 224
 Local Loads, 224 • Signal Loads, 224

5.1.2 Inductive Power Supply Noise 225

5.2 Local Regulation 228

5.2.1 Clamps and Shunt Regulators 228

5.2.2 Series Regulators 230
 Linear Regulator, 231 • Switching Regulator, 233

5.3 Logic Loads and On-Chip Power Supply Distribution 237

5.3.1 Logic Current Profile 237

5.3.2 IR Drops 240

5.3.3 Area Bonding 242

5.3.4 Metal Migration 243

5.3.5 On-Chip Bypass Capacitors 243

5.3.6 Symbiotic Bypass Capacitance 244
CONTENTS

5.4 Power Supply Isolation 245
 5.4.1 Supply-Supply Isolation 245
 5.4.2 Signal-Supply Isolation 246
5.5 Bypass Capacitors 247
5.6 Example Power Distribution System 249
5.7 Bibliographic Notes 256
5.8 Exercises 256

6 NOISE IN DIGITAL SYSTEMS 260
 6.1 Noise Sources in a Digital System 261
 6.2 Power Supply Noise 263
 6.2.1 Single Supply Noise 264
 6.2.2 Differential Supply Noise 266
 6.3 Cross Talk 267
 6.3.1 Cross Talk to Capacitive Lines 268
 Coupling to a Floating Line, 268 • Coupling to a Driven
 Line, 269 • Typical Capacitance Values, 270 •
 Capacitive Cross Talk Countermeasures, 271
 6.3.2 Cross Talk to Transmission Lines 272
 Capacitive and Inductive Coupling of Transmission Lines,
 272 • Lumped Inductive Coupling, 274 • Near- and
 Far-End Cross Talk, 274 • Typical Coupling Coefficients,
 276 • Transmission Line Cross Talk
 Countermeasures, 277
 6.3.3 Signal Return Cross Talk 278
 6.3.4 Power Supply Cross Talk 280
 6.4 Intersymbol Interference 280
 6.4.1 Impedance Mismatch and Reflections 281
 6.4.2 Resonant Transmitter Circuits 282
 6.4.3 Inertial Delay and Hidden State 282
 6.5 Other Noise Sources 285
 6.5.1 Alpha Particles 286
 6.5.2 Electromagnetic Interference 288
 6.5.3 Process Variation 288
 Typical Process Variations, 289 • Inverter Offset, 289 •
 Inverter Compensation, 290 • Differential Pair
 Offset, 290
 6.5.4 Thermal (Johnson) Noise 291
CONTENTS

6.5.5 Shot Noise 291

6.5.6 Flicker or 1/f Noise 292

6.6 Managing Noise 292

6.6.1 Bounded Noise and Noise Budgets 292

Proportional Noise Sources, 293 • Fixed Noise Sources, 294 • Overall Noise Budgets, 295

6.6.2 Gaussian Noise and Bit Error Rates 296

6.7 Bibliographic Notes 298

6.8 Exercises 298

7 SIGNALING CONVENTIONS 304

7.1 A Comparison of Two Transmission Systems 306

7.1.1 Signal Energy and System Power 308

7.1.2 Noise Immunity Versus Noise Margin 308

7.1.3 Delay 311

7.1.4 Discussion 312

7.2 Considerations in Transmission System Design 313

7.3 Signaling Modes for Transmission Lines 314

7.3.1 Transmitter Signaling Methods 315

Current-Mode Transmission, 315 • Voltage-Mode Transmission, 316 • Transmitter Signal-Return Cross Talk, 316 • Bipolar Versus Unipolar Signaling, 318 • Transmitter-Generated References, 319

7.3.2 Receiver Signal Detection 320

Generating the Receiver Reference, 320 • Receiver Return Cross Talk, 321 • Power Supply Noise, 322

7.3.3 Source Termination 323

Noise Considerations, 325 • Power Dissipation, 325 • Current-Mode Source Termination, 326

7.3.4 Underterminated Drivers 327

7.3.5 Differential Signaling 328

Symmetric Transmission Lines, 330

7.4 Signaling Over Lumped Transmission Media 331

7.4.1 Signaling Over a Capacitive Transmission Medium 331

Voltage-Mode Signaling, 332 • Current-Mode Signaling, 333 • Resistive Voltage Divider, 333 • Pulsed Signaling, 334 • Return-to-Zero (Precharged) Pulsed Signaling, 335 • Band-Limited Pulsed Signaling, 336 • References, 336

7.4.2 Signaling over Lumped LRC Interconnect 337

Rise-Time Control, 339 • Adding Parallel Termination, 342 • Reducing Power Supply Noise, 343

<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>7.5.1</td>
</tr>
<tr>
<td>7.5.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7.5.3</td>
</tr>
<tr>
<td>7.5.4</td>
</tr>
<tr>
<td>7.5.5</td>
</tr>
<tr>
<td>7.5.6</td>
</tr>
<tr>
<td>7.6</td>
</tr>
<tr>
<td>7.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 ADVANCED SIGNALING TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>8.1.1</td>
</tr>
<tr>
<td>8.1.2</td>
</tr>
<tr>
<td>8.1.3</td>
</tr>
<tr>
<td>8.1.4</td>
</tr>
<tr>
<td>8.2</td>
</tr>
<tr>
<td>8.2.1</td>
</tr>
<tr>
<td>8.2.2</td>
</tr>
<tr>
<td>8.3</td>
</tr>
<tr>
<td>8.3.1</td>
</tr>
<tr>
<td>8.3.2</td>
</tr>
<tr>
<td>8.3.3</td>
</tr>
<tr>
<td>8.3.4</td>
</tr>
<tr>
<td>8.3.5</td>
</tr>
<tr>
<td>8.4</td>
</tr>
<tr>
<td>8.4.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.4.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.4.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.5</td>
</tr>
<tr>
<td>8.5.1</td>
</tr>
<tr>
<td>8.5.2</td>
</tr>
<tr>
<td>8.5.3</td>
</tr>
</tbody>
</table>
9 TIMING CONVENTIONS

9.1 A Comparison of Two Timing Conventions 396
9.1.1 Skew and Jitter Analysis 398
9.1.2 Allowable Clock Rates 399
9.1.3 Discussion 400
9.2 Considerations in Timing Design 400
9.3 Timing Fundamentals 401
9.3.1 Timing Nomenclature 401
Delay and Transition Times, 401 • Periodic Signals, 401 • Maximum Absolute Value, Peak-to-Peak, and RMS, 403
9.3.2 Timing Properties of Delay Elements 403
9.3.3 Timing Properties of Combinational Logic 405
9.3.4 Timing Properties of Clocked Storage Elements 406
Edge-Triggered Flip-Flop, 406 • Level-Sensitive Latch, 407 • Double-Edge-Triggered Flip-Flop, 408
9.3.5 The Eye Diagram 409
9.4 Encoding Timing: Signals and Events 411
9.4.1 Encoding Aperiodic Events 411
Dual-Rail Signaling, 411 • Return-to-Zero (RZ)/Nonreturn-to-Zero (NRZ) Signaling, 412 • Clocked Signaling and Bundling, 412 • Ternary Signaling, 413
9.4.2 Encoding Periodic Signals 413
Required Transition Frequency, 414 • Bit Stuffing, 414 • Phase-Encoding, 414
9.5 Open-Loop Synchronous Timing 415
9.5.1 Global Clock, Edge-Triggered Timing 416
Minimum Delay Constraint, 416 • Maximum Delay Constraint, 417
9.5.2 Level-Sensitive Clocking 418
Basic Two-Phase Clocking, 418 • Borrowing Time, 419 • Effect of Skew, 420 • Qualified Clocks, 420 • Signal Labeling for Two-Phase Clocking, 421 • Single-Phase or Zero Nonoverlap Clocking, 422
9.5.3 Pipeline Timing 423
Optimum Clock Delay, 425 • Level-Sensitive Pipeline Timing, 426 • Pipelines With Feedback, 427
9.6 Closed-Loop Timing 428
 9.6.1 A Simple Timing Loop 428
 Residual Error, 429 • Loop Dynamics, 429
 9.6.2 Phase Comparators 430
 Flip-Flop Phase Comparator, 431 • Exclusive–OR (XOR)
 Phase Comparator, 433 • Sequential Phase and
 Frequency Comparator, 434
 9.6.3 Variable Delay Line 436
 9.6.4 Bundled Closed-Loop Timing 436
 Canceled and Uncanceled Sources of Timing Uncertainty,
 438 • Integrating Receivers, 438
 9.6.5 Per-Line Closed-Loop Timing 439
 9.6.6 Phase-Locked Loops 441
 Voltage-Controlled Oscillators, 442 • Frequency
 Comparator, 443 • Loop Dynamics and Loop Filter,
 444 • Reducing Jitter with a Phase-Locked
 Loop, 446
 9.6.7 Oversampling Clock Recovery 447
9.7 Clock Distribution 449
 9.7.1 Off-Chip Clock Distribution 449
 Clock Distribution Trees, 450 • Phase-Locked Clock
 Distribution Networks, 451 • Salphasic Clock
 Distribution, 452 • Round-Trip Distribution, 453
 9.7.2 On-Chip Clock Distribution 454
 On-Chip Clock Trees, 454 • Mesh Distribution, 456 •
 Jitter in On-Chip Clock Distribution, 457
9.8 Bibliographic Notes 458
9.9 Exercises 458

10 SYNCHRONIZATION 462
 10.1 A Comparison of Three Synchronization Strategies 463
 10.2 Synchronization Fundamentals 465
 10.2.1 Uses of Synchronization 466
 Arbitration of Asynchronous Signals, 466 • Sampling
 Asynchronous Signals, 466 • Crossing Clock
 Domains, 467
 10.2.2 Synchronization Failure and Metastability 468
 Synchronizer Dynamics and Synchronization Time,
 468 • Metastability, 469 • Probability of
 Synchronization Failure, 469 • Example Synchronizer
 Calculation, 470 • Completion Detection, 470 •
 Common Synchronizer Mistakes, 471
 10.2.3 Clock Domains 472
Table of Contents

10.2.4 Classification of Signal–Clock Synchronization

10.3 Synchronizer Design

10.3.1 Mesochronous Synchronizers

10.3.2 Plesiochronous Synchronizers

10.3.3 Periodic Asynchronous Synchronizers

10.3.4 General Purpose Asynchronous Synchronizers

10.4 Asynchronous Design

10.4.1 Stoppable Clocks

10.4.2 Asynchronous Signaling Protocols

10.4.3 Asynchronous Module Design Methods

10.4.4 Composition of Asynchronous Circuits

10.5 Bibliographic Notes

10.6 Exercises

11 Signaling Circuits

11.1 Terminations

11.1.1 On-Chip Versus Off-Chip Termination
Table of Contents

11.1.2 FET Terminations

516

11.1.3 Adjustable Terminators

* Digital Versus Analog Adjustment, 518 • Binary Versus Thermometer Digital Adjustment Codes, 519

517

11.1.4 Automatic Terminator Adjustment

* Automated Adjustment Controllers, 520 • Thermometer-Coded Controllers, 521 • Self-Series Termination Control, 521

519

11.2 Transmitter Circuits

522

11.2.1 Voltage-Mode Driver

* Break-Before-Make Action, 524 • Pulse-Generating Driver, 525 • Tristate Driver, 525 • Open-Drain Outputs, 526

523

11.2.2 Self-Series-Terminating Drivers

528

11.2.3 Current-Mode Drivers

* Saturated FET Driver, 529 • Current-Mirror Drivers, 530 • Differential Current-Steering Driver, 530 • Bipolar Current-Mode Drivers, 532

529

11.2.4 Rise-Time Control

* Segmented Current Driver, 533 • The Problem with RC Rise-Time Control, 533 • Segmented Voltage Driver, 534 • Segmented Self-Series Terminated Driver, 535

533

11.2.5 Drivers for Lumped Loads

* On-Chip Drivers for Capacitive Loads, 536 • Off-Chip Drivers for LRC Loads, 537

536

11.2.6 Multiplexing Transmitters

537

11.3 Receiver Circuits

540

11.3.1 Receivers Using Static Amplifiers

* The Inverter As a Receiver, 542 • Source-Coupled FET Receivers, 543

542

11.3.2 Receivers Using Clocked Differential Amplifiers

544

11.3.3 Integrating Amplifiers

* An Integrating Amplifier, 545 • Receiver Impulse Response, 545 • A Matched-Filter Receive Amplifier, 546

545

11.3.4 Demultiplexing Receivers

547

11.4 Electrostatic Discharge (ESD) Protection

548

11.4.1 ESD Failure Mechanisms

* Field-Induced Failures, 550 • Thermally Induced Failures, 551

550
11.4.2	ESD Protection Devices	552
	Primary Shunt, 552 • Series Resistor, 555 • Secondary Shunt, 556 • Protecting Output Drivers, 556 • Guard Rings, 557 • Wiring and Contacting, 558	
11.5	An Example Signaling System	559
11.5.1	Transmitter	559
	Multiphase Clock Generator, 559 • Output Driver, 560 • Bias Generator, 561 • Predisver, 562 • Latches and Pass-Gate Clocking Network, 563 • Package Model, 563 • Transmission Line Model, 564 • Simulation Results for Package and Transmission-Line Models, 564 • Termination Schemes, 565 • Effectiveness of Slew-Rate Control, 566 • Noise Modeling, 566	
11.5.2	Receiver	567
	Phase Shifter and Multiphase Clock Generator, 568 • Samplers, 569 • Retiming Latches, 569 • Clock Adjuster, 569	

| 11.6 | Bibliographic Notes | 571 |
| 11.7 | Exercises | 571 |

12 Timing Circuits

12.1	Latches and Flip-Flops	574
	Level-Sensitive Latches	574
	Dynamic Latches, 574 • CMOS Static Storage Element, 576 • CMOS Static Latches, 577	
12.1.2	Edge-Triggered Flip-Flops	579
	Auxiliary Control Inputs, 580 • True Single-Phase-Clocked (TSPC) Flip-Flops, 581 • Differential Edge-Triggered Flip-Flop, 582 • Double-Edge-Triggered Flip-Flops, 582	
12.1.3	Failure Mechanisms in Flip-Flops and Latches	583
	Race-Through, 583 • Dynamic Node Discharge, 584 • Power Supply Noise, 586 • Clock Slope, 586 • Charge Sharing, 588	

12.2	Delay Line Circuits	589
12.2.1	Inverter Delay Lines	589
	Delay Adjustment Range, 591 • Power-Supply Rejection in Inverter Delay Elements, 592 • Inverters with Regulated Supply Voltage, 593	
12.2.2	Differential Delay Elements	593
	Adjustable PFET Resistor, 594 • Replica-Biased Delay Line, 595 • Adjustment Range for Replica-Bias	
Table of Contents

Delay Lines, 595 • Static Supply Sensitivity for the Replica-Biased Delay Stage, 596 • Dynamic Supply Sensitivity, 597

12.2.3 Circuit and Layout Details
Replica Control Loop Stability, 598 • Power Routing and Bypassing, 600 • Matching and Balancing, 601 • Substrate Noise, 602

12.2.4 Other Differential Timing Components
Small-Swing to Full-Swing Buffers, 603 • Interpolators, 604 • Duty-Cycle Correctors, 606 • Clock Input Conditioning, 607

12.3 Voltage-Controlled Oscillators
12.3.1 First-Order Oscillators
Array Oscillators, 609 •
12.3.2 Second-Order Oscillators
Crystal Oscillators, 610 • Frequency Multiplication, 613 • Lumped-Element Oscillators, 613

12.4 Phase Comparators
12.4.1 XOR Comparator
12.4.2 Edge-Triggered Flip-Flop Phase Detector
12.4.3 Sequential Phase Detectors

12.5 Loop Filters
12.5.1 RC Loop Filters
12.5.2 Charge Pump Filters
Charge Pump Control Voltage Ripple, 626 • Self-Biased Loop Filters, 627
12.5.3 Delay-Locked Loop Filters
Self-Biased DLL Loop Filter, 630 • Switched-Capacitor Loop Filters, 630 • Loop Initialization, 631 • “Turbo” Mode, 632 • “Bang-Bang” Controllers, 633 • Digital Loop Controllers, 633

12.6 Clock Aligners
12.6.1 PLL Versus DLL Implementations
12.6.2 Simple DLL-Based Aligners
12.6.3 Phase-Based Aligners
12.6.4 A Hybrid Phase/Delay-Based Clock Aligner

12.7 Bibliographic Notes

12.8 Problems

Index