ANALYTICAL TABLE OF CONTENTS

PREFACE vii
EDITORIAL NOTE viii
GENERAL INTRODUCTION ix
LIST OF PLATES xxiii

PART 1
RESEARCHES IN PURE AND ANALYTICAL GEOMETRY (1667–1668)

INTRODUCTION 3

I. ANALYSIS OF THE PROPERTIES OF CUBIC CURVES AND THEIR CLASSIFICATION BY SPECIES 10

§1 (ULC. Add. 3961.1: 2r–3r). First attempt to reduce the general cubic by co-ordinate transform. Transformation to new axes in an oblique Cartesian system: analytical theory, 10. The transform of the defining equation of a general cubic curve evaluated as a cubic of 84 terms, 12. Reduction of this to the primary canonical form of cubic, 14. The three particular reduced canonical forms, 16

§2 (ULC. Add. 3961.1: 10r–13r, 32r–34r). Distinction of the primary canonical cubic by 'species' and 'forms'. The first species: construction of its three real asymptotes, 20. The diametral hyperbolas, 22. The six forms of its first 'case', distinguished by the nature of the meets of the cubic with a diametral hyperbola, 24. Diagrams for these, 28. The second case, when the three asymptotes are coincident: its three forms, 30. Illustrative figures, 32

§3 (ULC. Add. 3961.1: 6r–9r, 14r–16r, 22r–30r). First systematic enumeration of cubics and their classification into sixteen species. The four canonical forms of cubic developed as nine 'cases', 38. The first case (general tridiametral), first species: its six forms, 42. General diagrams, 48. Observations on the first species, 52. First case, second species (symmetrical round a diameter): its seven forms, 54. Third species (asymptotes coincident): 58
Analytical Table of Contents

one form only, 56. Second case (unique asymptote) comprising two species: the fourth (of four forms) and fifth (symmetrical round a diameter, five forms), 58. Third case (parabolic point) comprising two species: the sixth (of six forms), and seventh (symmetrical round a diameter, four forms), 62. Fourth case (two asymptotes parallel): its component eighth and ninth (symmetrical) species, 64. Fifth case (conchoidal): tenth and eleventh (symmetrical) species. Sixth case (parabolic cusp): twelfth and thirteenth (symmetrical) species, 68, Seventh case/fourteenth species (divergent parabolas). Eighth case/fifteenth species (Cartesian trident). Ninth case/sixteenth species (Wallis’ cubic), 70. Illustrative figures (correspondingly ordered), 72

2. Researches into the General Properties of Curves 90

3. Researches in the Organic Construction of Curves 106
§1 (private). Preliminary investigations. [1] Observations on the organic construction when the describing curve is a conic: significance of the poles in determining multiplicities in the curve described, 106. [2] Improved, generalized account where the describing curve is a conic or cubic: literal and pictographic notations for multiple points are developed, 110

§2 (private). First extended account of the construction. A conic constructed through five given points: observations on the method, 118. Construction of a conic through given points to touch given lines or, more generally, to intersect given curves at given angles (discussions of simple cases), 122. A cubic constructed through given points (one of which is double) to touch given lines: construction of the tangent at an assigned point on a curve organically described, 128

§3 (private). ‘The manner of describing conics, and cubics of the first grade’. Description of the constructing rulers: nomenclature is defined, 134. Observations on the poles, mobile angles and directrix curve: allowance for tangents and points at infinity (asymptotes), 136. Construction problems where the describing curve is a conic, 148

Appendix 1 (private). Attempt at an analytical theory of the organic construction: difficulties inherent in Newton’s choice of co-ordinate system (largely removed when standard Cartesian co-ordinates are introduced into his model), 152

Appendix 2 (ULC. Add. 3977.10). The organic construction as communicated by Newton to Collins in August 1672: copies by Collins and Leibniz of the original autograph, 156
PART 2
RESEARCHES IN CALCULUS
(c. 1667–c. 1670)

INTRODUCTION

I. CURVE PROBLEMS AND FURTHER LOGARITHMIC COMPUTATIONS
§2 (private). ‘Problems of Curves’: main texts. [1] Hudde’s rule applied to constructing tangents, 176. [2] The number of mets of two algebraic curves (Euler), 177. Tangents, normals: the number which may be drawn from a given point to a given curve, 178. List of allied problems relating to curvature, area, line-length, axes and centres of gravity (draft scheme for 1671 tract), 182
§3 (ULC. Add. 4004: 80v–81v). Further logarithmic calculations. ‘A method whereby to square lines mechanically’ (by Mercator division), 184. Basic logarithms, computed to 37 D, are used to evaluate those of low primes: some (overzealous) attempts to make the results consistent, 186

2. MISCELLANEOUS RESEARCHES
§2 (ULC. Add. 3958.3: 68v–69r). Latin, augmented revise of ‘The solution of problems by motion’. Introductory lemmas, 194. Application to the construction of tangents (to ellipse and conchoid) and inflexion points (of conchoid: parallels with Huygens and Heuraet), 196
§2 (ULC. Add. 3958.3: 74v). ‘Gravity’ in conics (examples in ellipse, parabola, and hyperbola), 202

3. THE ‘DE ANALYSi PER EQUATIONES INFINITAS’
(Royal Society, MS lxxxi, No. 2)
Preliminary quadrature rules: positive and negative areas, 206. Reduction of compound algebraic forms to infinite polynomials (by Mercator division, root-extraction and the Newtonian resolution of ‘affected’ equations, numerical and literal), 210. Precursors in
Analytical Table of Contents

the Newtonian resolution of numerical equations, 221. Observations on rounding off the quotient in resolving literal equations: allowance for complex roots (by changing the abscissa) and for fractional indices, 228. Infinite series applied to resolving problems: areas and lengths of curves (exemplified in the circle), 232. Further observations on applying infinite series: on suitably rounding off a series and on ‘continuing the sequence of its progression’, 238. Applications to mechanical curves (quadrature and rectification of the quadratrix), 238. Conclusion: this approach is ‘analytical’, 240. Two postscripts: the fundamental ‘Wallisian’ quadrature theorem justified (by an equivalent of Fermatian adequation) and some remarks on a Euclidean convergence test for infinite series expansions, 242

Appendix 1 (Hanover. L.-Hs. 33, VIII, 19: 1c−2r). Leibniz’ excerpts from the ‘De Analyse’ in 1676 (via Collins’ transcript). Leibniz, while not fully understanding Newton’s text, is clearly interested only in its algebraic portions: fluxional sections are ignored, 248

Appendix 2 (Acta Eruditorum, 1707: 178–81). Leibniz’ published review of ‘De Analyse’: he argues *inter alia* that the Newtonian fluxion differs from the Leibnizian differential only in notation, 259

Appendix 3 (ULC. Add. 3968. 32: 400r–463v). Newton’s unpublished counter-reviews. [1] Leibniz has not realized that Newtonian fluxions are finite in magnitude: only the increment of the base variable and the ‘moments’ of fluxions are vanishingly small, 263. [2] The fluxional content of ‘De Analyse’ is described (the infinitesimal enters only in limit arguments): observations on the power and generality of application of its methods, 265. [3] The argument ‘by first & last ratios’ goes back to Fermat: further complaints about Leibniz’ misrepresentation of the Newtonian fluxion, 271

PART 3
RESEARCHES IN ALGEBRA
AND THE CONSTRUCTION OF EQUATIONS
(c. 1670)

Introduction

Kinkelhuyzen’s *Algebra Oofe Stel-konst*: its composition, history, aims and content, 277. Mercator’s Latin translation (commissioned by Collins): initial attempts to publish it with additions from Ferguson’s *Labyrinthus*, 279. Newton’s opinion is asked: he promises to ‘receive’ the Algebra, 280. Newton’s first ‘observations’ (July 1670): comments on Ferguson’s inadequacy, 282. Collins feels that Newton should ‘take some more pains’ in amending Kinkelhuyzen (whose treatment of surds and higher order equations is deficient), 283. Newton’s revised ‘observations’ (autumn 1670): augmented sections on binomial roots and equations (new, geometrical examples), 287. Subsequent attempts to have the Latin Algebra published, with or without Newton’s additions: his concern not to let ‘his’ first published work be a commentary on an elementary algebra, and his intention of coupling it with the 1671 fluxional tract, 288. Newton buys the Latin Algebra but cannot find a London or Cambridge publisher: Wallis ultimately acquires the manuscript, 290. The ‘Problems for construing equations’: its transmission to Collins in 1672, 291. James Wilson’s summary of its content, 292
Analytical Table of Contents

1. **KINCKHUYSSEN’S ALGEBRA AND NEWTON’S ‘OBSERVATIONES’**

 §1 (Bodleian. Savile G. 20 (4)). Mercator’s Latin version of the *Algebra*. Kinckhuysen’s preface, stressing that it is a primer for the novice: his stated debt to Descartes, 295. The fundamental operations defined for simple algebraic forms, 297. Extensions to fractions: their reduction to lower terms, 303. Algebraic surds, simple and binomial, 308. Square and cube roots of (real) binomial surds, 312. Equations: elementary operations on their roots, 317. Descartes’ sign rule: Kinckhuysen’s attempted counter-example, 322. Removal of chosen terms in an equation by increasing its roots, 323. His ‘Rule’ for quadratics, 326. Multiplication and division of an equation’s roots, 329. Attempted resolution of a cubic by trial factorization, 332. Descartes’ resolution of the reduced quartic (by splitting it into two quadratics): Kinckhuysen’s generalization (Hudde), 333. Resolution of equations, the sum or proportion of whose roots is known: ‘Huddenian’ algorithms (independently found by Newton) for the latter case, 339. Attempted resolution of cubics and quartics by particular factorizations, 344. Cardan’s solution of the reduced cubic: Descartes’ ‘trisection’ solution of the irreducible case, 350. Stevin’s method for resolving numerical equations, 352. *Ad hoc* limits to the roots of reduced cubics and quartics, 353. Reduction of problems to an equation: conventional algebraic examples (mostly from Ceulen), 354. Appendix: remarks on Descartes’ classification of curves, 362

 §2 (ULC. Add. 3859.1: 2r–21r). Newton’s ‘Observations’ on the *Algebra* (both versions). Additions to the sections on subtraction and division (alternative examples), 364. Square root of a binomial surd: Newton’s algorithm, 372. Cube root of a real, integral binomial surd: extensions to fractional cases, 376. Newton’s improved algorithm for this, 382. Its extension to cover complex surd binomials, 392. Kinckhuysen’s account of equations remodelled, 396. Reduction of simultaneous equations by elimination of variables (several cases), 400. General rules for eliminating one variable between a quadratic and a quadratic or cubic, each of two, 408. Improved discussion of the nature of equations and their roots, 410. Kinckhuysen’s counter-example (p. 322) to Descartes’ sign rule is shown to be false: importance of allowing for complex roots in applying this rule, 412. The removal of chosen terms from an equation by root transformation: additions to Kinckhuysen, 416. Application of the technique for finding complex cube roots to the irreducible case of Cardan’s resolution of the cubic (where integer solutions exist), 420. The art of reducing problems to an equation: several simple examples are analysed in depth, 422. Eight geometrical problems (with solutions) to be added to Kinckhuysen’s algebraic ones: quadratic examples are generated by Pythagoras’ theorem applied to combinations of right triangles, 428. Schooten’s fish-pond problem algebraically generalized, 432. An Apollonian ‘verging’ problem generates a factorizable quartic, while a similar parabolic inscription yields an irreducible quartic (not resolved), 436. The theory of angular sections generates a simple sequence of higher equations, 444

 Appendix: Cancelled examples of Newton’s algorithm for binomial cube-root extraction, 446

2. **RESEARCHES IN THE GEOMETRICAL CONSTRUCTION OF EQUATIONS**

 §1 (private). Miscellaneous preliminary calculations, 448

fmt.bib: Analytical Table of Contents

Elementary problems: to construct the line (plane) defined by two (three) fixed points, and to draw a circle of given centre and radius, 452. To lay off a given line-segment between two given lines so as to pass through a given point: construction of parallels, normals and other simple problems, 456. Application of these to finding two or three mean proportionals between given line-segments (no proofs given), 460. Similar application to angular sections, 464. [2] Nine problems on the geometrical construction of the (real) roots of quadratics, cubics and quartics. The quadratic constructed as the meet of a circle and straight line, 468. The reduced cubic equation constructed by an Apollonian ‘verging’ between a straight line and a straight line or circle, 470. The general cubic equation constructed as the meet of a circle and a conic (ellipse is drawn by a trammel): the generalization of this ‘in an infinity of ways’ by homothety, 468. Similar construction of the general quartic equation (solid problem), 490. Organic construction of the Wallisian cubic by a describing hyperbola (one pole at infinity), with generalization to the oblique case, 498. Its use in constructing higher equations, 504. Conclusion: the preceding cubic and quartic constructions (previously given synthetic proof only) are investigated by analytic means (elimination of one co-ordinate variable between the defining equations of two conics yields a quartic equation whose coefficients are then equated with those of the cubic or quartic to be constructed), 510

INDEX OF NAMES 518