THE
MATHEMATICAL PAPERS OF
ISAAC NEWTON
VOLUME II
1667-1670
The ‘solution of problems by motion’ (2, 2, §2).
TO HAROLD HARTLEY

FOR SO MUCH
PREFACE

This volume, the second both in sequence and to appear of eight projected, continues the chronological reproduction of all Newton’s mathematical papers now known still to exist, together with appropriate editorial commentary. To what was said in preface to the first volume regarding the aims underlying the present edition I have nothing to add, but I might perhaps remark, that with the exception of the ‘De Analysi’ (here edited from the original autograph manuscript retained by him), all of Newton’s papers now reproduced effectively make their first appearance in print.

For permission to reproduce documents in their custody my collective gratitude must be expressed to the Librarians and Syndics of the Bodleian, Oxford; the Royal Society, London; the Niedersächsische Landesbibliothek, Hanover; and above all the University Library, Cambridge. The efficiency and courtesy of their staffs I again gratefully acknowledge, while to Professor J. E. Hofmann and especially Dr Theo Gerardy personal acknowledgement is due for their effort in making available a transcript and photocopy of Leibniz’ notes on the ‘De Analysi’. To a private owner my continuing thanks for permitting publication of his Newtonian papers. For financial assistance during the period of preparation of this volume I am largely indebted to the good graces of what is now the Science Research Council, while certain incidental expenses continue to be met by the Royal Society. Let me note in anticipation, however, that the Sloan Foundation, the Leverhulme Trust and the Master and Fellows of Trinity College, Cambridge, have each in their way pledged themselves to be future benefactors. To Sir Harold Hartley my inadequate thanks for his omnipresent support in ways of which only he can know the full detail.

At a technical level my acknowledgement is twofold. To Mr A. Prag, who has both proof-read and indexed this volume, rectifying much that was faulty in the editorial commentary, and to Dr M. A. Hoskin, who has been all—and more—that a helper can be, I cannot begin to express my gratitude. I myself, of course, remain uniquely responsible for the deficiencies, omissions, vagaries and other imperfections of the present volume.

As before, my final word of appreciation goes to the Syndics of the Cambridge University Press for the unsparing efforts of their staff in bestowing logical consistency and typographical beauty on the longhand manuscript which was initially submitted to them.

D.T.W.

1 December 1966
EDITORIAL NOTE

For the principal printing conventions here used and their underlying raison d’être the reader is referred to pages x–xiv of the first volume. The Newtonian text reproduced is strictly faithful to the autograph manuscript used, in that contractions and suffixes appear unchanged and grammatical inconsistencies are left unaltered or their editorial correction is indicated. For clarity’s sake, however, a very few silent liberties have been taken in italicizing textual sub-heads and in inserting endpoints to sentences. Otherwise, all insertion in Newton’s text is bracketed off in square parentheses and should be accepted as extraneous, though in each instance the reader is invited to consider why insertion was made. In English translation of Latin text we have not ‘trans-literated’ existing English phrases but merely repeat them within square parentheses (as ‘editorial’ insertion in that translation). As in the first volume, two thick vertical bars in the left-hand margin alongside a piece of text denote that the section so marked off has been cancelled by Newton (being here reprinted for its intrinsic interest). This convention should not be confused with the two faint vertical parallels ‘||’ used within the text (here in 3, 1, §§1/2) to indicate a page division in the manuscript reproduced: in all cases, in the left-hand margin immediately opposite is inserted a complementary ‘[[…]]’, where the square brackets enclose the arabic number of the new page which begins at that point. A few ad hoc conventions used in reproducing particular texts are explained in an opening footnote to the piece in question. Universally, the convention ‘1, 3, 4, §3: note (5)’ refers back to note (5) of [Volume] 1, [Part] 3, [Section] 4, [Subsection] 3: specifically, to note (5) on page 544 of the first volume. For brevity of quotation portions of the notation are frequently omitted from the left when reference is made to the same volume, part, section and so on: for example in note (121) on page 500 below the full reference is [π,] 1, 3, §2, while in note (24) on page 9 it should be understood to be [π, 1,] 3, §1, 2/3.
GENERAL INTRODUCTION

This second volume of Newton’s mathematical papers reproduces that portion which, in our estimate, was composed during the years 1667 to 1670. The reason for choosing these chronological bounds is largely one of editorial convenience. On the one hand the October 1666 fluxional tract effectively terminates the thirty-month period of Newton’s first creative mathematical researches, and indeed represents his conscious attempt at that time to gather the offshoots of his thoughts on calculus into a collective unity. On the other, the lengthy 1671 tract on fluxions and infinite series (which will appear in the next volume) opens a new cycle of analytical investigation which endured, if somewhat fitfully, till the early 1860’s. The dearth of accurate documentary information relating to this period of his development, surely the least known of all the Newtonian dark ages, has not made the task of editing easy. The background to the De Analysi is now reasonably well established in consequence of the resurgence of interest in it at the time, forty years after its first circulation, of Newton’s dispute with the Leibnizians over calculus priority: even so, its date of composition can only somewhat vaguely be bounded by the appearance of Mercator’s Logarithmotechnia (in September 1668) and its communication by Barrow to Collins (in early July 1669). On the printing history of Newton’s ‘Observations’ on Kinckhuysen’s Dutch Algebra we are remarkably well informed, largely thanks to Collins’ preservation of his correspondence with Newton and others on the topic. A glimmer of light is shed on his researches into the organic construction of curves and the geometrical construction of equations by Newton’s later letters to Collins, particularly that of 20 August 1672. But for those papers which in time of composition preceede mid-1669, when Newton’s extant correspondence with his contemporaries opens,(1) editorial commentary must inevitably in large part reduce to essentially unsupported circumstantial argument.

Of Newton’s life in general during this four-year period we know very little. A century ago Joseph Edleston(2) afforded some insight into his daily routine...
at Trinity College. This, together with a little additional information to be
gleaned from Newton’s current items of expenditure as listed in one of his
pocket-books and a few off-hand remarks made by him a few years later
relating to the sequence of his optical discoveries, is the slender documentary
basis on which any reasoned account of his immediate post-graduate years in
Cambridge has to be constructed. Enough remains, however, to show up
inadequacies in the conventional picture of a nervous, wholly diffident, badly
dressed young don interested solely in the flights of his intellect. If only to stress
the normality of Newton’s social behaviour, at this period at least, and so
extirpate any lingering temptation to relate his exceptional intellectual growth
to a hypothetical (in fact, non-existent) physical immaturity, we may briefly
touch upon some biographical points.

Geographically, at the opening of the year 1667 Newton was in Lincolnshire
awaiting the reconvening of his Cambridge college. (Its fellows and students
had, we will remember, been dismissed the previous summer because of a
renewed outbreak of plague in the town.) With the ending of winter the
university sprang back to life and Newton travelled to Cambridge on 22 April.
There he remained without break till April 1671 apart from a brief visit ‘into
ye countrey’—no doubt to visit his mother—over Christmas 1667 and two
short trips to London in the summer of 1668 and the autumn of 1669, during
the latter of which John Collins met him for the first time ‘somewhat late
upon a Saturday night at his Inne’. Having satisfied his B.A. examiners in
January 1665—that he was not, in fact, to pay for his ‘Bachelors Act’ till
some days after his return to Cambridge in April 1667—Newton was now

(3) That now in the Fitzwilliam Museum, Cambridge. The expenses, listed line by line
on six and a half unpaginated 16e pages, cover the period 23 May 1665 to ‘April 1669 but
are evidently incomplete. The most significant double page is reproduced in photocopy
(facing page 52) in the illustrated version of John Taylor’s Catalogue of the Portsmouth papers
auctioned at Sotheby’s on 13/14 July 1936. Some additional material relevant to these listed
expenses is contained in a stray sheet (sold as part of Lot 201 at the 1936 sale) of about 1667, the
present whereabouts of which is not known. All unidentified financial entries in this
introduction are taken from the Fitzwilliam pocket-book.

(4) Particularly in his letter to Oldenburg on 5 February 1671/2. Compare note (15) below.

(5) The Fitzwilliam notebook lists his departure from Cambridge on 4 December 1667
and return on the following 12 February, together with an item of five shillings ‘For keeping
Christmas’.

(6) Specifically, with regard to the first Newton wrote in the Fitzwilliam notebook that
‘I went to London on Wednesday Aug 5th & returned to Cambridge on Munday Sept 28, 1668’
(and, to be sure, he signed his redit at Trinity the following day) together with ‘Spent in
my Journey...5. 10. 0. As also 4s 5e more wch my Mother gave mee in ye Country’. His
college exit and redit for the latter journey indicate that it was made between 26 November
and 8 December 1669.

(8) This may mean that Newton did not officially achieve B.A. status till April 1667.
Evidently the termination of his undergraduate days was celebrated in traditional fashion for,
General Introduction

in a position to enjoy the first pleasures and privileges of academic position. Certainly, his advancement in college status was rapid enough for any young don determined to make his mark: a minor fellow of Trinity from October 1667, he was quickly promoted to major fellow on 16 March 1668 (duly, and no doubt proudly, paying his shilling for his ‘Fellows Key’ and being allotted his fellow’s quarters).(9) His necessary elevation at university level from pupil status followed speedily in the following July when he was created M.A. (then, as now, largely a matter of satisfying a residential qualification and paying out the requisite sum of money).(10) His election, finally, to the Lucasian Professorship on 29 October 1669, upon Barrow’s retirement, gave him security, academic independence and a useful stipend at the expense of only a moderate portion of his time.(11) Socially, it is evident that Newton during his first years as a senior member of Cambridge university made a determined effort to live up to his position. During the two years 1667 and 1668, academic necessities apart, he spent over twenty pounds with his tailor ‘Mr Jeffreys’ on new clothes(12) and footwear, while for his newly decorated dining room he bought a table and chairs, paying out sixteen shillings for ‘A Table cloth’ and ‘Six Napkins’—for the use of invited guests no doubt. Not a few of his evenings were spent ‘with Mr Lusmore, Hautrey, Salter’ and ‘other Acquaintance’ or with his room-mate Wickins wining and gambling at the local tavern, playing cards—twice losing heavily—or coming out an equally expensive second-best on the college bowling green. The fifty pounds his mother contributed to supplement Newton’s income during this period were presumably quickly spent, given away in tips to his college servant Caverly or loaned—at interest

in the Fitzwilliam notebook on the line immediately beneath that where he recorded payment of ‘0. 17. 6’ for his ‘Act’, he listed a pound spent ‘At ye Taverne severall other times &c’ together with a further 12s. 6d. paid out ‘on my Couz. Ayscough’.

(9) The fellow’s room Newton received in early October 1667 was the celebrated ‘Spiritual chamber’ (Edleston’s Correspondence (note (2)): xliii), but it would appear that he himself did not occupy it for in late 1668 he ‘Received for Chamber rent 1. 11. 0’. In the spring of the previous year he had, in fact, laid out a considerable sum of money refurbishing the set of rooms he shared with Wickins, putting in new glass, making minor repairs to the fireplace, walls and woodwork, having it repainted, installing new furniture and carpets and, not least, contributing almost a pound for ‘My part of a Couch’. He would naturally be reluctant to move out of such comfortable quarters after only six months’ tenancy of them.

(10) In fact, ‘For my degree to ye Colledg 5. 10. 0. To ye Proctor 2. 0. 0. Expences caused by my Dege 0. 15. 0. 18 yards of Tammy for my M’ of Arts Gonne 1. 13. 0. Lining 0. 3. 6. Making ye & turning my Batchelors Gonne 1. 0. 6. A Hood 1. 3. 6.’ (Fitzwilliam pocketbook.)

(11) Newton’s appointment to the Lucasian Professorship and the concomitant restrictions and responsibilities it imposed upon him raise several interesting questions but we will delay our commentary on these till the next volume. See also Edleston’s Correspondence (note (2)): xlv.

(12) With his countryman’s good sense Newton bought the best cloth, lined ‘Woosted Pruncella’ and ‘Stuffe’.
we may be sure—to ‘Dr Wickins’ or other acquaintances (such as Perkins, Boucheret or Wadsley) whose names are listed by Newton for loans of between five shillings and two pounds together with a cross to signify repayment. To ensure that his garments were well washed and his rooms clean, warm and well lit he made regular payments to his ‘Laundresse’ and ‘Goodwif Powell’, buying ‘New Feathers’, and a ‘Ticken’ for his bed and calling frequently on the local chandler for ‘coales & sedge’. Altogether the picture we have is of a young man spending his income to the full in the mild pursuit of luxury and pleasure, an acceptably mature version of the cautious, money-wise young puritan who had entered Trinity half a dozen years earlier.

Enough of the worldly face which Newton presented to his fellows at this time. What of the intellectual giant within?

There can be no doubt that Newton’s scientific researches proceeded apace during these years, notably in optics but also in chemistry and to some lesser degree—as the extant manuscripts now reproduced themselves attest—in mathematics. The impressive corpus of optical theory and experiment which (in continuation of Isaac Barrow’s professorial investigations of the ‘genuine rations’ of the phenomena of white light\(^{13}\)) he began to present to his Cambridge audiences from January 1670 was evidently neither conceived nor systematized in one single, brief creative spell, while we have Newton’s own confirmation that as early as mid-1668 he was hard at work constructing a ‘small prospective’, a first version of the portable reflecting telescope of his own design and fabrication which he gave to the Royal Society in 1672.\(^{14}\) His pocket-book accounts, moreover, list purchases in summer 1668 of a ‘Lath & Table’ and ‘Iron worke for it’ together, with ‘Drills, Gravers, a Hone & Hammer & a Mandrill’ and ‘files’, all clearly destined for grinding lenses and mirrors. A few months later he listed purchases of ‘Glass bubbles 0. 4. 0’ and ‘3 Prisms 0. 3. 0’, spending a total of twenty-nine shillings on ‘Glasses’ both in Cambridge and in London.\(^{15}\) Newton’s practical interest in chemistry,
inspired no doubt by his reading of Boyle, Hooke and other mechanical philosophers of his period, began about the time of his first visit to London in August 1668. Shortly afterwards he recorded the purchase of two pounds worth of ‘Aqua Fortis, sublimate, oyle, perle, fine silver, Antimony, vinegar, Spirit of Wine, White lead, Allome, Niter, Tartar, Salt of Tartar, [Mercury]’ (from London, no doubt, since he added ‘Carriage of ye oyle 0. 2. 0’ and a charge of fifteen shillings for the building of two furnaces {one for ‘tin’}, acquiring also Ashmole’s encyclopedic ‘Theatrum Chemicum [Britannicum]’). But apart from a stray reference to his buying ‘Gunters book & sector &c’ from ‘Dr Fox’ for five shillings\(^{(16)}\) Newton’s expense lists are barren of mathematical entries, though, for example, it is certain that he bought the complete set of James Gregory’s published works before late 1670.\(^{(18)}\) The autograph texts of Newton’s mathematical investigations are themselves, however, firm testimony to the volume and quality of his geometrical and fluxional researches during the years 1667 to 1670—if, that is, our present dating of these papers is accurate. Internal evidence convinces us that their posited chronological sequence is indeed correct: the \textit{De Analysis} at one point, for example, borrows its terminology from preceding discussions of the nature of asymptotes,\(^{(19)}\) while the concluding tract on the geometrical construction of equations leans heavily in its description of the Wallisian cubic on a prior knowledge of his innovations in the organic construction of curves.\(^{(20)}\) For independent external support of our early dating of this group of mathematical papers we can call upon John Collins, who saw a representative selection of Newton’s scientific manuscripts some time in the early 1670’s and was allowed to make detailed transcripts (now in private possession) of those portions which interested him. Subsequently, towards the end of 1677, when the Oxford Savilian Professor, John Wallis, wrote to him enclosing for comment an early draft of what was to appear in 1685 as his \textit{Treatise of Algebra, both Historical and Practical} and in which bare mention was made of Newton’s researches in infinite series, Collins in reply\(^{(21)}\)--after an initial rebuke ‘in regard you lye under a censure from

\(^{(14)}\) See \textit{2, 2: note (81) below.}

\(^{(17)}\) \textit{3, 2, §1: note (14).}

\(^{(18)}\) Newton’s library copy of Gregory’s \textit{Optica Promota} (London, 1663), sold at the partial auction of his books in the early 1920’s, has now vanished but his \textit{Vera Circuli et Hyperbola Quadratura} (Padua, 1668 reissue), \textit{Geometria Pars Universalis} (Padua, 1668) and \textit{Exercitationes Geometric}e (London, 1668) are now in Trinity College, Cambridge (N.Q. 9.48, bound up with Newton’s copy of Nicolaus Mercator’s \textit{Logarithmotechnia} (London, 1668) and John Wallis’ review of it which appeared in the \textit{Philosophical Transactions} in 1670).

\(^{(19)}\) \textit{Compare 3, 2, §2: note (121).}

diverse for printing discourses that come to you in private Letters without permission or consent'—went to some trouble in elaborating for Wallis the content of some of the Newtonian papers he had earlier seen:

I...must take liberty to tell you some things concerning your intended Explanation of Mr Newton's Series. If I had been so minded I could about 9 yeares since namely at the beginning[!] of 1669 have imparted to you a full treatise of his of that Argument... In your narrative you say Mr Newton began to fall into these methods in 1669 or 1670, whereas in the larger Letter he tells you he seemed delighted hisse [in]ventis namely in Calculating Logarithmes and Van Ceulens Numbers in his retirem't from the University in the Plague yeare in 1665, and in 1666 he writ the treatise above mentioned. All the account you can give out of these Letters is but very slender in relation to his performances. He intends a full treatise of Algebra consisting of these Parts according to the best of my app's 1 an Introductory part from Kinckhuysen out of low Dutch turned by Mercator into Latin, which he bought and is so excellent, that it comprehends many of Huddens reductions, and those mentioned by Dary at the end of his tract of Interest & some others to which Mr Newton added much of his owne. 2 A discourse about bringing Problemes to an Equation with a Collection of diverse notable ones. 3 A Treatise about the Construction of Problemes and Equations which I have seen. All Solid Problems viz those of 4 and 3 Dimensions are solved by ayt of one

(22) The 'De Analyse per aequationes numero terminorum infinitas', reproduced as 2, 2 below. Collins did not, in fact, see Newton’s tract till August 1669.
(23) In his 'larger Letter' (the epistola posterior to Oldenburg for Leibniz, 24 October 1676) Newton had remarked of his 1665 retirement to Lincolnshire that 'tunc sanē nimis delectabar inventis hisce'. Collins had communicated the content of the epistola prior (of 13 June 1676) to Wallis in September 1676 (Correspondence of Isaac Newton, 2 (1920) : 101) and his transcript of the second letter was no doubt communicated soon after Oldenburg sent his own copy off to Leibniz. In an omitted portion of the present, undated letter to Wallis, Collins noted that 'M Newton last yeare sent up these Letters, you have seene with particular leave upon my importunity to print the same...if I had not [imparted the first Letter to you] I believe you had not seen either to this day'. This is evidently Collins' quick rejoinder to Wallis' letter to him of 2 October 1677 with its assertion that 'I am stil of Opinion y' Mr Newton should perfect his notions, & print them suddenly. These letters, if printed, wil need a little review by himself, for there be some slips in hasty writing them' (Correspondence, 2: 238).
(24) Collins here confuses the 'De Analyse' with the October 1666 fluxional tract, which no doubt he had likewise seen some time before. The Wickins transcript (1, 2, 7: note (1)) may indeed have already been in his possession.
(26) Michael Dary, Interest Epitomized, both Compound and Simple...Whereunto is added, A Short Appendix For the Solutions of Affected Equations in Numbers by Approachment: Performed by Logarithms (London, 1677: Newton's copy is now Trinity College, N.Q.16.62). The 'Short Appendix' (pages 32–8) is 'Laid down in Two Methods', the first of which is an adapted form of Stevin's numerical technique, the latter being Dary's own method of iteration applied to the equation $y^8 = 6y^3 + 200$. Kinckhuysen in his Algebra (see 3, 2, §1: note (108)) 'compre-
General Introduction

Constant Circle (if so desired) supposed to be intersected by Conick Sections, the description whereof is avoyded by helpe of mooveable angles, that give the severall Points of Intersection sought. Other Equations betweene the 5 and 9 degree he performs by ayd of a Cubicall Parabola that being once described in like manner remains constant, and is to be intersected by a Conick section the description whereof is avoyded as before &c. He hath also diverse tentative Constructions for Cubicks and Biquadra from Plaine Geometry.\(^{(29)}\)

4 A Discourse concerning the several kinds of infinite Series considering which kinds are most convincing and fitt for Calculation, and which for Construction and Demonstration, of this Argum\(^{4}\) and of the whole buisiness of Series he hath written a new and large treatise since that above mentioned,\(^{(28)}\) and hath performed abundantly more than is either mentioned or can be guessed from the Lettlers above mentioned.\(^{(94)}\)

5 A Treatise de Locis.\(^{(32)}\)

6 The same\(^{(29)}\) applied to Dioptriques concerning the worth of both which Dr Barrow affirmed he was not only surprized but others would thinke it incredible.\(^{(94)}\)

The first three—and the fifth also, if we identify its vague title correctly—of the unpublished Newtonian mathematical tracts here listed by Collins are reproduced for the first time in print in the present volume, while the fourth and portions of the sixth will form the centre-piece of that following. Without further previration let us hasten to the rich detail of the papers themselves and appreciate Newton’s mathematical genius in its original dress.

hends’ only the former. Writing to Newton about July 1675 Collins had already indicated a second point of resemblance between Dary’s researches into equations and Kinckhuysen’s ‘Huddenian’ reductions: ‘Mr Dary by observing the Compilcation of the Coefficients hath well performed to this Purpose without the ayd of a Cubick equation viz. Any Biquadratrick equation being proposed without a Resolvent, to break the same into two rationall quadratec equations, whose Resolvends shall be what they will happen, and consequently to give the series of all that shall rationally breake, and withall to breake with one or two Assayes as neare as may be rationally to any Resolvent offered’ (Correspondence, 1: 346–7).

(27) Mercator’s Latin version of Kinckhuysen’s Algebra Ofte Stelkonst (Haerlem, 1661) and Newton’s ‘Observationes’ upon it are reproduced below in 3, 1, §§1/2.

(28) In his letter to Collins on 27 September 1670 Newton spoke of ‘having composed somthing pretty largely about reducing problems to an equation’ (Correspondence, 1: 43) but seems merely to refer to his amplified opening to Kinckhuysen’s ‘Pars Tertia. Quomodo questio aliqua ad equationem redigatur’. Compare 3, 1, §2: note (110). In October 1676 Leibniz noted of this discourse that ‘Collins has not yet seen it’ (Correspondence of Isaac Newton, 2: 236).

(29) These ‘Problems for construing aequationes’ are reproduced in 3, 2, §2 below.

(30) The ‘De Analysis’, that is: see note (22).

(31) Newton’s 1671 tract on fluxions and infinite series (ULC. Add. 3960, 14/4), which will appear in the third volume.

(32) Perhaps the enumeration of cubics reproduced in 1, 1, §3.

(33) Collins means the 1671 tract described in the fourth part: item 5 is a late insertion.

(34) A clear reference to the later draft (ULC. Dd. 9.67) of Newton’s Lectiones Optica (note (14)), whose section on geometrical dioptrics (Book 1, Part 4) makes extensive use of limit-increment arguments and, on one occasion, a series expansion.
ANALYTICAL TABLE
OF CONTENTS

PREFACE \hspace{1cm} v
EDITORIAL NOTE \hspace{1cm} vii
GENERAL INTRODUCTION \hspace{1cm} ix
LIST OF PLATES \hspace{1cm} xxiii

PART 1
RESEARCHES IN PURE AND ANALYTICAL GEOMETRY
(1667–1668)

INTRODUCTION \hspace{1cm} 3

1. ANALYSIS OF THE PROPERTIES OF CUBIC CURVES AND THEIR CLASSIFICATION BY SPECIES \hspace{1cm} 10

§1 (ULC. Add. 3961.1: 2–30). First attempt to reduce the general cubic by co-ordinate transform. Transformation to new axes in an oblique Cartesian system: analytical theory, 10. The transform of the defining equation of a general cubic curve evaluated as a cubic of 84 terms, 12. Reduction of this to the primary canonical form of cubic, 14. The three particular reduced canonical forms, 16

§2 (ULC. Add. 3961.1: 10–13, 32–34). Distinction of the primary canonical cubic by ‘species’ and ‘forms’. The first species: construction of its three real asymptotes, 20. The diametral hyperbolas, 22. The six forms of its first ‘case’, distinguished by the nature of the meets of the cubic with a diametral hyperbola, 24. Diagrams for these, 28. The second case, when the three asymptotes are coincident: its three forms, 30. Illustrative figures, 32

§3 (ULC. Add. 3961.1: 6–9, 14–16, 22–30). First systematic enumeration of cubics and their classification into sixteen species. The four canonical forms of cubic developed as nine ‘cases’, 38. The first case (general tridiagonal), first species: its six forms, 42. General diagrams, 48. Observations on the first species, 52. First case, second species (symmetrical round a diameter): its seven forms, 54. Third species (asymptotes coincident): 58
Analytical Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>RESEARCHES INTO THE GENERAL PROPERTIES OF CURVES 90</td>
</tr>
<tr>
<td>§1</td>
<td>Preliminary investigations. [1] ‘Some Generall Theorems’ regarding curve properties: tangents, diameters, asymptotes, 90. [2] ‘Conick propertys to bee examined in other curves’, 92</td>
</tr>
<tr>
<td>3.</td>
<td>RESEARCHES IN THE ORGANIC CONSTRUCTION OF CURVES 106</td>
</tr>
<tr>
<td>§1</td>
<td>Preliminary investigations. [1] Observations on the organic construction when the describing curve is a conic: significance of the poles in determining multiplicities in the curve described, 106. [2] Improved, generalized account where the describing curve is a conic or cubic: literal and pictographic notations for multiple points are developed, 110</td>
</tr>
<tr>
<td>§2</td>
<td>First extended account of the construction. A conic constructed through five given points: observations on the method, 118. Construction of a conic through given points to touch given lines or, more generally, to intersect given curves at given angles (discussions of simple cases), 122. A cubic constructed through given points (one of which is double) to touch given lines: construction of the tangent at an assigned point on a curve organically described, 128</td>
</tr>
<tr>
<td>§3</td>
<td>‘The manner of describing conics, and cubics of the first grade’. Description of the constructing rulers: nomenclature is defined, 134. Observations on the poles, mobile angles and directrix curve: allowance for tangents and points at infinity (asymptotes), 136. Construction problems where the describing curve is a conic, 148</td>
</tr>
<tr>
<td>APPENDIX 1 (private).</td>
<td>Attempt at an analytical theory of the organic construction: difficulties inherent in Newton’s choice of co-ordinate system (largely removed when standard Cartesian co-ordinates are introduced into his model), 152</td>
</tr>
<tr>
<td>APPENDIX 2 (ULC. Add. 3977.10).</td>
<td>The organic construction as communicated by Newton to Collins in August 1672: copies by Collins and Leibniz of the original autograph, 156</td>
</tr>
</tbody>
</table>
Analytical Table of Contents

PART 2
RESEARCHES IN CALCULUS
(c. 1667–c. 1670)

INTRODUCTION

I. CURVE PROBLEMS AND FURTHER LOGARITHMIC COMPUTATIONS

§2 (private). ‘Problems of Curves’: main texts. [1] Hudde’s rule applied to constructing tangents, 176. [2] The number of meets of two algebraic curves (Euler), 177. Tangents, normals: the number which may be drawn from a given point to a given curve, 178. List of allied problems relating to curvature, area, line-length, axes and centres of gravity (draft scheme for 1671 tract), 182

§3 (ULC. Add. 4004: 80 v–81 r). Further logarithmic calculations. ‘A method whereby to square lines mechanically’ (by Mercator division), 184. Basic logarithms, computed to 37 D, are used to evaluate those of low primes: some (overzealous) attempts to make the results consistent, 186

II. MISCELLANEOUS RESEARCHES

§2 (ULC. Add. 3958.3: 68 v–69 r). Latin, augmented revise of ‘The solution of problems by motion’. Introductory lemmas, 194. Application to the construction of tangents (to ellipse and conchoid) and inflexion points (of conchoid: parallels with Huygens and Heuraet), 196

§2 (ULC. Add. 3958.3: 74 1). ‘Gravity’ in conics (examples in ellipse, parabola, and hyperbola), 202

3. THE ‘DE ANALYSI PER AEQUATIONES INFINITAS’

(Royal Society. MS LXXI, No. 2)

Preliminary quadrature rules: positive and negative areas, 206. Reduction of compound algebraic forms to infinite polynomials (by Mercator division, root-extraction and the Newtonian resolution of ‘affected’ equations, numerical and literal), 210. Precursors in
Analytical Table of Contents

the Newtonian resolution of numerical equations, 221. Observations on rounding off the quotient in resolving literal equations: allowance for complex roots (by changing the abscissa) and for fractional indices, 228. Infinite series applied to resolving problems: areas and lengths of curves (exemplified in the circle), 232. Further observations on applying infinite series: on suitably rounding off a series and on ‘continuing the sequence of its progression’, 236. Applications to mechanical curves (quadrature and rectification of the quadratrix), 238. Conclusion: this approach is ‘analytical’, 240. Two postscripts: the fundamental ‘Wallisian’ quadrature theorem justified (by an equivalent of Fermatian adequation) and some remarks on a Euclidean convergence test for infinite series expansions, 242

Appendix 1 (Hanover. L.-Hs. 33, viii, 19: 1–2*). Leibniz’ excerpts from the ‘De Analyse’ in 1676 (via Collins’ transcript). Leibniz, while not fully understanding Newton’s text, is clearly interested only in its algebraic portions: fluxional sections are ignored, 248

Appendix 2 (Acta Eruditorum, 1707: 178–81). Leibniz’ published review of ‘De Analyse’: he argues inter alia that the Newtonian fluxion differs from the Leibnizian differential only in notation, 259

Appendix 3 (ULC. Add. 3968. 32: 460–463*). Newton’s unpublished counter-reviews. [1] Leibniz has not realized that Newtonian fluxions are finite in magnitude: only the increment of the base variable and the ‘moments’ of fluxions are vanishingly small, 263. [2] The fluxional content of ‘De Analyse’ is described (the infinitesimal enters only in limit arguments): observations on the power and generality of application of its methods, 265. [3] The argument ‘by first & last ratios’ goes back to Fermat: further complaints about Leibniz’ misrepresentation of the Newtonian fluxion, 271

PART 3

RESEARCHES IN ALGEBRA
AND THE CONSTRUCTION OF EQUATIONS
(c. 1670)

Introduction

Kinchhuysen’s Algebra Ofte Stel-konst: its composition, history, aims and content, 277. Mercator’s Latin translation (commissioned by Collins): initial attempts to publish it with additions from Ferguson’s Labyrinthus, 279. Newton’s opinion is asked: he promises to ‘reweive’ the Algebra, 280. Newton’s first ‘observations’ (July 1670): comments on Ferguson’s inadequacy, 282. Collins feels that Newton should ‘take some more paines’ in amending Kinckhuysen (whose treatment of surds and higher order equations is deficient), 283. Newton’s revised ‘observations’ (autumn 1670): augmented sections on binomial roots and equations (new, geometrical examples), 287. Subsequent attempts to have the Latin Algebra published, with or without Newton’s additions: his concern not to let ‘his’ first published work be a commentary on an elementary algebra, and his intention of coupling it with the 1671 fluxional tract, 288. Newton buys the Latin Algebra but cannot find a London or Cambridge publisher: Wallis ultimately acquires the manuscript, 290. The ‘Problems for construing equations’: its transmission to Collins in 1672, 291. James Wilson’s summary of its content, 292
Analytical Table of Contents

1. KINCKHUYSEN’S ALGEBRA AND NEWTON’S ‘OBSERVATIONES’ 295

§1 (Bodleian. Savile G. 20 (4)). Mercator’s Latin version of the Algebra. Kinckhuyseyn’s preface, stressing that it is a primer for the novice: his stated debt to Descartes, 295. The fundamental operations defined for simple algebraic forms, 297. Extensions to fractions: their reduction to lower terms, 303. Algebraic surds, simple and binomial, 308. Square and cubic roots of (real) binomial surds, 312. Equations: elementary operations on their roots, 317. Descartes’ sign rule: Kinckhuyseyn’s attempted counter-example, 322. Removal of chosen terms in an equation by increasing its roots, 323. His ‘Rule’ for quadratics, 326. Multiplication and division of an equation’s roots, 329. Attempted resolution of a cubic by trial factorization, 332. Descartes’ resolution of the reduced quartic (by splitting it into two quadratics): Kinckhuyseyn’s generalization (Hudde), 333. Resolution of equations, the sum or proportion of whose roots is known: ‘Huddenian’ algorithms (independently found by Newton) for the latter case, 339. Attempted resolution of cubics and quadratics by particular factorizations, 344. Cardan’s solution of the reduced cubic: Descartes’ ‘trisection’ solution of the irreducible case, 350. Stevin’s method for resolving numerical equations, 352. Ad hoc limits to the roots of reduced cubics and quartics, 353. Reduction of problems to an equation: conventional algebraic examples (mostly from Ceulen), 354. Appendix: remarks on Descartes’ classification of curves, 362

§2 (ULC. Add. 3859.1: 2r–21v). Newton’s ‘Observations’ on the Algebra (both versions). Additions to the sections on subtraction and division (alternative examples), 364. Square root of a binomial surd: Newton’s algorithm, 372. Cube root of a real, integral binomial surd: extensions to fractional cases, 376. Newton’s improved algorithm for this, 382. Its extension to cover complex surd binomials, 392. Kinckhuyseyn’s account of equations remodelled, 396. Reduction of simultaneous equations by elimination of variables (several cases), 400. General rules for eliminating one variable between a quadratic and a quadratic or cubic, each of two, 408. Improved discussion of the nature of equations and their roots, 410. Kinckhuyseyn’s counter-example (p. 322) to Descartes’ sign rule is shown to be false: importance of allowing for complex roots in applying this rule, 412. The removal of chosen terms from an equation by root transformation: additions to Kinckhuyseyn, 416. Application of the technique for finding complex cube roots to the irreducible case of Cardan’s resolution of the cubic (where integer solutions exist), 420. The art of reducing problems to an equation: several simple examples are analysed in depth, 422. Eight geometrical problems (with solutions) to be added to Kinckhuyseyn’s algebraic ones: quadratic examples are generated by Pythagoras’ theorem applied to combinations of right triangles, 428. Schooten’s fish-pond problem algebraically generalized, 432. An Apollonian ‘verging’ problem generates a factorizable quartic, while a similar parabolic inscription yields an irreducible quartic (not resolved), 436. The theory of angular sections generates a simple sequence of higher equations, 444

Appendix: Cancelled examples of Newton’s algorithm for binomial cube-root extraction, 446

2. RESEARCHES IN THE GEOMETRICAL CONSTRUCTION OF EQUATIONS 448

§1 (private). Miscellaneous preliminary calculations, 448

Analytical Table of Contents

Elementary problems: to construct the line (plane) defined by two (three) fixed points, and to draw a circle of given centre and radius, 452. To lay off a given line-segment between two given lines so as to pass through a given point: construction of parallels, normals and other simple problems, 456. Application of these to finding two or three mean proportionals between given line-segments (no proofs given), 460. Similar application to angular sections, 464. [2] Nine problems on the geometrical construction of the (real) roots of quadratics, cubics and quartics. The quadratic constructed as the meet of a circle and straight line, 468. The reduced cubic equation constructed by an Apollonian ‘verging’ between a straight line and a straight line or circle, 470. The general cubic equation constructed as the meet of a circle and a conic (ellipse is drawn by a trammel): the generalization of this ‘in an infinity of ways’ by homothety, 468. Similar construction of the general quartic equation (solid problem), 490. Organic construction of the Wallisian cubic by a describing hyperbola (one pole at infinity), with generalization to the oblique case, 498. Its use in constructing higher equations, 504. Conclusion: the preceding cubic and quartic constructions (previously given synthetic proof only) are investigated by analytic means (elimination of one co-ordinate variable between the defining equations of two conics yields a quartic equation whose coefficients are then equated with those of the cubic or quartic to be constructed), 510

INDEX OF NAMES
LIST OF PLATES

The ‘solution of problems by motion’ (2, 2, §2)

I The general tridiametral cubic (1, 1, §3)

II Calculation of $\pm \log (1 \pm 0.2)$ to 57 places (2, 1, §3: note (10))

III ‘Observations’ on Kinckhuysen’s extraction of the square root of an algebraic binomial (3, 1, §2)

IV Geometrical construction of the general cubic as the meet of a conic with a circle (3, 2, §2)