INDEX OF PEOPLE

References to notes are given as 340n4b for the second note numbered 4 on page 340.

Agassiz, L. 41, 339n3, 340n12
Alexander, A. B. 270
Allard, D. C. 44, 47–8
Allen, E. J. 117, 133–4, 174
Allen, K. R. 265
Allman, scientist 51
Alward, G. L. 102, 104–6, 341n14
Amieux, L. 16
Archer, W. E. 342n1
Argyle, Duke of 56, 58
Asimov, I. 338n17
Atwater, W. O. 10, 16, 338n7, 338n8
Audubon, J. 44
Aurivillius, C. W. S. 111

Babcock, J. P. 32–3
Baels, H. 234, 350n1
Baerends, G. 297, 300, 350n4b
Baranov, F. I. 196–7, 201–2, 307–9, 313, 315, 322, 325, 347n4, 347n5, 347n7, 350n7b, 351n8, 351n9

Bastedo, Commissioner 177
Bell, R. H. xi, 205, 209–14 passim, 231, 254, 302–12 passim, 348n15, 350n6b
Benjamin, J. F. Representative 47
Ber, K. 35, 339n1a, 349n1a
Bertalanffy, L. von 316, 322, 326, 347n11, 352n22, 352n1
Bertram, J. G. 9, 21–2, 93, 338n13, 338n14
Beverton, R. J. H. xi, 214, 276, 287–93 passim, 311–28, 344n24, 350n3, 351n11, 351n14, 351n18, 351n20, 352n22, 352n23, 353n3, 353n4
Birdseye, C. 184, 268–9, 346n12
Birkbeck, E. 51–2, 56, 72, 339n6
Boeck, A. 12
Boriso, P. G. 115, 197, 343n11, 349n1a, 350n7b
Borley, J. O. 158–61, 342n1, 345n26
Bowers, G. M. 66, 177–8

Boyd, T. J. 60
Bramwell, A. 349n25
Brandt, K. 174
Brice, J. J. 66, 341n18
Buckland, F. 52–4, 339n6, 340n9
Bullen, G. E. 174
Burd, A. 353n6
Burkenroad, M. D. 275–6, 284, 349n2b
Busch, B. C. 345n6
Byrd, A. xi

Cameron, A. T. 277
Carpenter, W. B. 58–9
Cart, T. W. 349n3b
Chapman, D. G. xi, 265–6
Cittadino, E. 5
Clark, F. N. 180
Cleghorn, J. A. 9, 71, 117, 200
Clemens, W. A. 278
Cleve, P. T. 111
Cole, L. C. 287, 350n7a
Collins, J. W. 202
Coste, J. J. 25
Crisp, treasurer MBA 59
Crowcroft, P. 216
Cunningham, J. T. 3, 70, 74–5, 85–7, 93–4, 100–1, 113, 152, 341n1
Cushing, D. H. xi, 2, 231, 308, 337n3, 341n9, 342n14, 342n15, 343n12, 350n7b, 353n9

Dahl, K. 95, 125–7, 343n17, 344n18
Dalhousie, Earl of 59–62, 92
Dall, W. H. 44, 47
Damas, D. 125–6, 343n16
Dana, J. 44
D’Anconna, U. 197–9, 347n12
Danilevskii, N. 35, 339n1a
Dannevig, G. M. 67, 94–5, 125–6, 343n17, 344n18
Dannevig, H. 94
Darré, R. W. 235, 349n25
Darwin, C. 57
Index of people

Davidson, M. 347n11
Davis, F. M. 231
Dawes, H., Representative 46
De Molon, industrialist 16–7, 240, 338n7
Deacon, M. 4, 340n16
DeLury, D. B. 348n22
Derzhavin, A. N. 348n22
Dobson, A. T. A. 294–6, 300–1
Doi, T. 351n15
Dupree, A. H. 45
Dyrenforth, R. G. 53
Edmunds, G. P., Senator 46
Edser, T. 154–5, 196
Ehrenbaum, E. 178–9
Ekman, G. 111, 115, 342n4
Elton, C. S. 216, 218, 267, 287
Engblom, B. 345n28
Esmehayer, R. W. 340n10
Esselmont, P. 89
Ewart, J. C. 62, 88, 94, 341n16
Fabre-Dormegue, M. 178
Feller, W. 218
Foerster, R. E. 278–9, 284–6
Ford, E. 317
Føyn, S. 26, 220–1, 338n7
Friele, M. 11
Fry, F. E. J. 348n22
Fulton, T. W. 24, 62, 68, 73–4, 77–8, 88–99
passim, 105, 112–17 passim, 123–4, 205, 337n1b, 341n11, 341n11
Galtsoff, P. 184–5, 346n14
Garrod, D. xi
Gedge, inventor 53
Gerhardsen, G. M. 353n7
Gilbert, C. H. 28–33 passim, 267, 278, 282, 285
Gilchrist, J. D. F. 92
Girard, C. 45
Goede, G. B. 63–5, 176, 202, 337n3, 338n11
Goodeve, C. 326, 353n3
Goodrich, scientist 216
Goodsir, scientist 52
Gordon, H. S. 324, 333–5, 343n14, 353n8
Graham, M. 158–61, 171, 205, 229–34, 252, 256, 265, 296–7, 298, 303, 305–6, 310–12, 314–15, 328–9, 333–5, 340n9, 345n26, 345n27, 350n1, 351n12, 351n14, 353n6
Gran, H. H. 174, 345n5
Greene, B. D. M. 241
Greer, inventor 53
Gulland, J. A. xi, 265, 337n2a, 353n6
Hacquebord, L. 26, 220
Haddow, A. C. 74
Haldane, J. B. S. 216
Hamsun, K. 1, 337n1a
Hardy, A. C. 128
Hart, P. J. B. 2
Hatch, T. 41
Hedé, N. 81
Hedström, G. 138
Heinecke, F. 143, 153–7, 178–9, 194–5, 205, 248, 341n6, 341n8, 343n10, 344n22, 344n23, 344n24
Heinič, C. 235, 294
Helland, A. 221–5, 348n20, 348n22
Helland-Hansen, B. 125–6
Henking, H. 116–17, 153
Hennemann, R. xi
Henry, J. 44–5, 339n2
Hensen, V. 83–5, 113, 123, 127, 147, 150–2, 341n9, 341n10
Herber, E. C. 339n3
Herbert, D. 52
Herrington, W. C. xi, 203, 268–76, 284, 291–2, 348n23, 349n1b
Herwig, W. 112, 342n5
Hettich, W. 287
Hickling, C. F. 175–6, 189, 297, 298, 300
Higgins, E. 4, 183–4, 243, 346n11, 346n13
Hilborn, R. 2
Hjort, J. iv, 12–17 passim, 80, 111, 114, 124–38, 163–74 passim, 179–80, 185–6, 192, 202, 205, 214–29, 231–2, 234–47, 252, 256–6, 264–5, 269, 292–301 passim, 325, 338n6, 342n4, 343n16, 345n1, 345n5, 346n8, 348n17, 348n20, 348n22, 350n1
Hodgson, W. C. 83, 170–3, 345n4
Hoek, P. P. C. 73, 114–17, 123–4
Hoffbauer, C. 80–1, 129, 131
Hoffman, R. C. 340n10
Holland, M. 183
Holt, E. W. L. 72–6 passim, 85, 96, 117, 145, 152, 345n29, 352n20
Holt, S. J. xi, 265, 276, 288–91, 297–8, 311–28, 351n11, 351n18, 352n22, 352n23, 353n3
Hoover, H., President 28
Hornell, J. 348n19
Hulme, H. R. 310–14, 322, 351n16
Huntsman, A. G. 205–9, 214, 231, 275, 334
Huxley, J. 216
Innis, G. 9, 268, 337n1b
Jahn, G. 220, 227
Jefferies, G. 48
Johnsen, A. O. 26, 220–1, 338n7
Johnstone, J. 101, 124, 341n13
Johnstone, K. D. 278
Jones, R. 352n24
Jordan, D. S. 28–30, 177, 180, 230n12
Kekés, G. 19, 279–81
Kesteven, G. L. 312–13, 330, 351n13, 353n6
Kingsland, S. E. 4, 5, 217, 347n2, 347n8, 348n18
374 Index of people

Kipling, R. 110, 342n2
Klem, A. 218, 226, 229
Knauss, J. xi
Knipowitz, N. 115–16, 197
Knudsen, M. 111
Kofoid, C. A. 14, 25, 76, 338n5, 339n1a, 340n15, 343n11
Kostitzin, V. A. 352n20
Kyle, H. M. 119–22, 153, 324, 333, 343n15

Laws, R. M. 349n10
Lee, E. 131–7, 170, 172
Lee, A. J. xi, 3, 52, 138, 339n6, 340n15, 341n19, 342n1, 342n4, 342n6, 344n21, 344n22, 345n26, 347n3, 351n12
Lee, R. 138, 344n20
Lenz, W. 344n25
Lewis, chemist 16
Ljungman, A. 173, 216, 286
Lotka, A. J. 199–202, 226, 287, 327, 333, 347n11, 352n20, 352n1
Lucretius 316
Lurie, E. 339n3
Lussenhop, J. 341n10
Lyman, T. 40–3, 48–51, 339n1b

Macdonald, Colonel 66, 176
MacDonald, R. M. E. 346n9
Maienschein, J. 340n12
Mallock, MP 76
Margareff, R. 8, 33
Margetts, A. R. 297–9
Marr, J. 249
Marsh, G. P. 44, 62–3, 341n17
Marshall, A. 121–2, 333, 343n14
Massey, A. 135
Maurice, H. G. 162, 234–5, 293, 348n24
McEvoy, A. F. 349n3a
McHugh, J. 31–2, 282
Meek, A. 352n21
Miller, H. 8, 348n21
Millman, L. 346n12
Mills, E. 4, 5, 111, 341n10
Miner, J. R. 217
Mitchell, J. 23, 338n13
Möbius, K. 27–8, 54–5
Moore, J. P. 67
Moran, P. A. P. 287
Morphy, O. 352n2
Murray, J. 62, 111, 179, 341n16, 341n2, 346n8

Nebbitt, R. A. 348n23
Nicolas II, Tsar of Russia 110–11, 342n2
Nilsson, scientist 22
Nyrop, K. 17
O’Malley, H. 183–4, 231, 268, 346n13

Oscar II, King of Sweden 36, 110–12
Ottestad, P. 218, 220, 226–9 passim, 264, 315, 349n10, 352n19
Pålsson, G. 1
Parrish, B. B. 352n24, 353n6
Paulik, G. 349n7
Pearl, R. J. 216–21 passim, 226, 229, 246–52 passim, 259, 287, 350n2
Pearson, E. S. 198, 347n12
Pella, J. J. 349n9
Perrir, E. 25–6
Pétard, H. xi, 352n2
Peterson, C. G. J. 76–80, 111–24 passim, 145, 147, 153, 189, 196, 202, 205, 341n4, 343n12, 343n13
Pettersson, O. 111, 115, 179
Peyrer, C. 38
Phinney, A. 41–2
Pitcher, T. J. 2
Platou, brewer 218
Playfair, Sir Lyon 51, 58, 60, 65
Porter, T. M. 341n5
Prescott, R. B. 349n6

Quetelet, statistician 82, 341n5
Radcliffe, L. 338n15, 348n14
Radovich, J. 180, 244, 247, 253, 349n4
Ravenel, W. C. 66
Redeker, H. C. 83, 115–16
Reed, L. 216
Reibisch J. 81, 129
Reingold, N. 46
Rich, E. E. 337n1b
Rich, S. 6
Richards, O. W. 218
Ricker, W. E. xi, 2, 79, 278, 283–91 passim, 304, 322–7 passim, 333, 341n4, 346n15, 347n4, 347n5, 347n6, 347n7, 348n22, 350n4a, 350n5a, 350n7b, 351n10
Robertson, T. B. 217
Rollefson, G. 13, 215, 335, 343n16
Ross, R. 194–5, 229, 347n2, 352n3
Rousenfels, G. A. 19, 279–81, 288
Rowan, W. 530n7a
Rutter, C. 28
Ruu, J. T. 215, 348n17
Samuel, A. N. 9
Sars, G. O. 1, 11–12, 17, 23, 63, 70, 95–6, 113, 132–3, 163, 179, 324, 335–6, 337n4, 338n14, 345n1
Sars, M. 1
Savage, R. E. 173
Schaefer, M. B. 240, 249–64, 307, 324, 328–35 passim, 349n2a, 349n5, 349n6, 353n4, 353n5
Schlee, S. 4
Index of people

<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmidt, J.</td>
<td>115, 342n9</td>
</tr>
<tr>
<td>Schultman, J. A.</td>
<td>338n17</td>
</tr>
<tr>
<td>Schwach, V.</td>
<td>xi</td>
</tr>
<tr>
<td>Schweder, T.</td>
<td>264, 349n10</td>
</tr>
<tr>
<td>Scofield, N. B.</td>
<td>180, 184, 242-4</td>
</tr>
<tr>
<td>Scofield, W. L.</td>
<td>244</td>
</tr>
<tr>
<td>Scudo, F. M.</td>
<td>200, 347n8</td>
</tr>
<tr>
<td>Sette, O. E.</td>
<td>181-5 passim, 239, 243-51, 256, 261, 268, 307, 346n14</td>
</tr>
<tr>
<td>Sherriff, C.</td>
<td>135, 138, 344n20</td>
</tr>
<tr>
<td>Silliman, R.</td>
<td>248-9, 307, 327</td>
</tr>
<tr>
<td>Sim, G.</td>
<td>338n13, 339n18</td>
</tr>
<tr>
<td>Sinclair, M.</td>
<td>xi, 35, 81, 83, 338n10, 338n12, 331n6, 341n8, 343n10</td>
</tr>
<tr>
<td>Skud, B. E.</td>
<td>349n2b</td>
</tr>
<tr>
<td>Smed, J.</td>
<td>111, 342n4, 342n5</td>
</tr>
<tr>
<td>Smiley, C. W.</td>
<td>94</td>
</tr>
<tr>
<td>Smith, H. M.</td>
<td>177-8, 239, 346n9</td>
</tr>
<tr>
<td>Smith, T. D.</td>
<td>337n2a</td>
</tr>
<tr>
<td>Smithson, J.</td>
<td>43</td>
</tr>
<tr>
<td>Solemdal, P.</td>
<td>xi, 35, 67, 81, 83, 126, 338n10, 338n12, 341n6, 341n8, 343n10, 343n17, 343n18</td>
</tr>
<tr>
<td>Steinbeck, J.</td>
<td>237</td>
</tr>
<tr>
<td>Summer, F. B.</td>
<td>340n15</td>
</tr>
<tr>
<td>Sund, O.</td>
<td>174</td>
</tr>
<tr>
<td>Talbot, L.</td>
<td>265</td>
</tr>
<tr>
<td>Thiercelin, M. L.</td>
<td>348n19</td>
</tr>
<tr>
<td>Thompson, D. W.</td>
<td>62, 115-16, 123, 131, 134-9, 147, 148, 164-7, 178, 194, 345n2, 347n1</td>
</tr>
<tr>
<td>Thompson, H.</td>
<td>163, 166-70</td>
</tr>
<tr>
<td>Thompson, R.</td>
<td>137-8</td>
</tr>
<tr>
<td>Thompson, W. F.</td>
<td>180-5, 203-5, 208-14, 231, 240-2, 246, 254, 263, 268, 275, 277-85, 302-12 passim, 329, 346n10, 348n16, 349n2b, 350n6a</td>
</tr>
<tr>
<td>Thomson, V.</td>
<td>58</td>
</tr>
<tr>
<td>Thomson, W.</td>
<td>340n16</td>
</tr>
<tr>
<td>Tomasevich, J.</td>
<td>277</td>
</tr>
<tr>
<td>Tomlinson, P.</td>
<td>349n9</td>
</tr>
<tr>
<td>Tonnessen, J. N.</td>
<td>26, 220-1, 338n7</td>
</tr>
<tr>
<td>Trybom, P.</td>
<td>115-16</td>
</tr>
<tr>
<td>Tuchman, B. W.</td>
<td>101, 341n13, 342n2, 342n3</td>
</tr>
<tr>
<td>Tucker, A.</td>
<td>352n2</td>
</tr>
<tr>
<td>Tukey, J.</td>
<td>352n2</td>
</tr>
<tr>
<td>Uda, M.</td>
<td>351n15</td>
</tr>
<tr>
<td>Verhulst, P.</td>
<td>217</td>
</tr>
<tr>
<td>Verrill, A. E.</td>
<td>48</td>
</tr>
<tr>
<td>Volterra, V.</td>
<td>197-202, 212-13, 225-6, 285, 327, 347n8, 347n9, 347n10, 347n12, 352n20</td>
</tr>
<tr>
<td>Walford, L.</td>
<td>317</td>
</tr>
<tr>
<td>Wallace, F. W., Captain</td>
<td>184</td>
</tr>
<tr>
<td>Wallace, W.</td>
<td>57, 81, 345n26</td>
</tr>
<tr>
<td>Wapole, S.</td>
<td>52-4</td>
</tr>
<tr>
<td>Walters, C.</td>
<td>2</td>
</tr>
<tr>
<td>Watt, K. E. F.</td>
<td>332</td>
</tr>
<tr>
<td>Went, H. E. J.</td>
<td>293, 341n3, 342n6, 348n24</td>
</tr>
<tr>
<td>Weymouth, F. W.</td>
<td>243, 249-52, 316, 349n5</td>
</tr>
<tr>
<td>Whymper, F.</td>
<td>53, 339n7</td>
</tr>
<tr>
<td>Willoch, brewer</td>
<td>218</td>
</tr>
<tr>
<td>Wilson, C. H.</td>
<td>337n1b</td>
</tr>
<tr>
<td>Wimpenny, R. S.</td>
<td>105, 142</td>
</tr>
<tr>
<td>Younger, M.</td>
<td>294</td>
</tr>
<tr>
<td>Zeigler, J. R.</td>
<td>200</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

References to notes are given as 340n4b for the second note numbered 4 on page 340.

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a priori method</td>
<td>194–6, 287–8, 347n2</td>
</tr>
<tr>
<td>Aberdeen Bay, Scotland</td>
<td>61, 88</td>
</tr>
<tr>
<td>Abundance, fluctuations in</td>
<td>see Fluctuations in abundance</td>
</tr>
<tr>
<td>Accumulated stock</td>
<td>119, 300 (see also Equilibrium population size)</td>
</tr>
<tr>
<td>size determined by rate of removal</td>
<td>300</td>
</tr>
<tr>
<td>Actuarial science</td>
<td>5, 8, 37, 128, 196</td>
</tr>
<tr>
<td>Adriatic Sea</td>
<td>197–8</td>
</tr>
<tr>
<td>Age composition, see Age distribution</td>
<td></td>
</tr>
<tr>
<td>Age determination</td>
<td>78–81, 85, 94, 131, 196, 203, 255, 341n4</td>
</tr>
<tr>
<td>method of measurements</td>
<td>78–80</td>
</tr>
<tr>
<td>methods checked for different areas</td>
<td>170</td>
</tr>
<tr>
<td>statistical ages</td>
<td>79</td>
</tr>
<tr>
<td>using otoliths</td>
<td>81, 124, 129</td>
</tr>
<tr>
<td>using scales</td>
<td>124, 129, 131–8, 166</td>
</tr>
<tr>
<td>using vertebrae</td>
<td>81</td>
</tr>
<tr>
<td>variability in rings in oyster shells</td>
<td>135–6</td>
</tr>
<tr>
<td>Age distribution</td>
<td>128, 130, 255 (see also Predicting catches)</td>
</tr>
<tr>
<td>changed by fishing</td>
<td>132, 202–14, 248, 300</td>
</tr>
<tr>
<td>changes modeled for Pacific halibut</td>
<td>202–14</td>
</tr>
<tr>
<td>monitoring of changes over time</td>
<td>132, 134, 163, 170–3</td>
</tr>
<tr>
<td>need for large sample size</td>
<td>132</td>
</tr>
<tr>
<td>pyramidal diagrams</td>
<td>206–9</td>
</tr>
<tr>
<td>schools of fish</td>
<td>135, 137</td>
</tr>
<tr>
<td>Age of entry to fishery</td>
<td>330</td>
</tr>
<tr>
<td>Age structure, see Age distribution</td>
<td></td>
</tr>
<tr>
<td>Agriculture, analogy to fishery production</td>
<td>53–4, 333</td>
</tr>
<tr>
<td>Alewives</td>
<td>39–43</td>
</tr>
<tr>
<td>Alosa, see shad</td>
<td></td>
</tr>
<tr>
<td>American Progressive Fish Culture</td>
<td>63</td>
</tr>
<tr>
<td>Association</td>
<td></td>
</tr>
<tr>
<td>Anabolism, see Growth of individuals</td>
<td>178</td>
</tr>
<tr>
<td>Anchovy</td>
<td></td>
</tr>
<tr>
<td>Annual group of fish, see Year class</td>
<td></td>
</tr>
<tr>
<td>Annual or finite mortality rates</td>
<td>301–10 (see also Mortality rate)</td>
</tr>
<tr>
<td>Aquarium, public (see also Marine laboratories)</td>
<td></td>
</tr>
<tr>
<td>Cleethropes Aquarium, England</td>
<td>75</td>
</tr>
<tr>
<td>inadequacy for scientific work</td>
<td>58</td>
</tr>
<tr>
<td>Artificial spawning</td>
<td>55, 67 (see also Fish hatching)</td>
</tr>
<tr>
<td>Asterias, see Starfish</td>
<td></td>
</tr>
<tr>
<td>At-sea sampling, see Sea sampling</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>38</td>
</tr>
<tr>
<td>Bait fishery</td>
<td>40, 48, 254–7</td>
</tr>
<tr>
<td>Balance of nature</td>
<td>43</td>
</tr>
<tr>
<td>Barents Sea</td>
<td>12, 26, 35, 115, 220, 338n7, 342n15</td>
</tr>
<tr>
<td>Bear, that walks like a man</td>
<td>110, 342n2</td>
</tr>
<tr>
<td>Bears, Norwegian</td>
<td>221–5</td>
</tr>
<tr>
<td>Beasts of prey, see Predators</td>
<td></td>
</tr>
<tr>
<td>Behavior of fish</td>
<td></td>
</tr>
<tr>
<td>burrowing to avoid trawls</td>
<td>143</td>
</tr>
<tr>
<td>unusual in weir</td>
<td>50</td>
</tr>
<tr>
<td>Belgium</td>
<td>154</td>
</tr>
<tr>
<td>Biological size limits</td>
<td>75, 117 (see also Trade size limits)</td>
</tr>
<tr>
<td>compared to survival</td>
<td>78</td>
</tr>
<tr>
<td>larger than trade size limits</td>
<td>75, 85</td>
</tr>
<tr>
<td>relevance to management questioned</td>
<td>76, 78, 109</td>
</tr>
<tr>
<td>vary by area</td>
<td>75</td>
</tr>
<tr>
<td>Bionomic characteristics of fishing industry, poorly known</td>
<td>335</td>
</tr>
<tr>
<td>Bionomic ecosystem</td>
<td>524, 332–5</td>
</tr>
<tr>
<td>Birth rate</td>
<td>128</td>
</tr>
<tr>
<td>Black Sea</td>
<td>35</td>
</tr>
<tr>
<td>Blenny</td>
<td>79</td>
</tr>
<tr>
<td>Blockages of rivers</td>
<td>9, 31–2 (see also Pollution)</td>
</tr>
<tr>
<td>Bluefish</td>
<td>42–3, 48–51</td>
</tr>
<tr>
<td>Board of Trade, England</td>
<td>72, 75, 86, 100–6 passim, 113, 341n13</td>
</tr>
<tr>
<td>Brill</td>
<td>72, 104</td>
</tr>
<tr>
<td>British Columbia, Canada</td>
<td>28–33</td>
</tr>
<tr>
<td>British Columbia Department of Fisheries</td>
<td>28, 31, 277</td>
</tr>
<tr>
<td>reliance on Stanford University</td>
<td>28</td>
</tr>
<tr>
<td>Brittany, France</td>
<td>14–18</td>
</tr>
<tr>
<td>Brown University, Rhode Island</td>
<td>218</td>
</tr>
<tr>
<td>Bughunters</td>
<td>184, 346n13 (see also Natural history)</td>
</tr>
</tbody>
</table>
Subject index

Butler University, Indiana 28

California Fish and Game Commission 180, 203, 237, 257, 268, 277
claims limit of sardine production reached 243–4
focus on protecting resource 247
given management control of production of fish meal 241
reliance on Stanford University 180
staff hired by other agencies 183–4, 202
Cambridge University, England 121, 215, 311
Canada 3, 10, 177, 182–3, 277
Canadian Biological Board 177
Canadian Fisheries Research Board 275, 277–8
Committee on Depletion 275
staff hired by other agencies 277–8
Cannibalism 267
reducing recruitment at high population sizes 288
Capacity of environment 216 (see also Equilibrium population size)
Cape Cod, Massachusetts 39–51, 178
Capetown, South Africa 92
Carp 27–8, 54–5, 65–6, 80–1, 131, 340n10
Carrying capacity, see Equilibrium population size
Catabolism, see Growth of individuals
Catch curves 154–6
California sardines 248
mathematical description 155, 308
place 155–6
Catch equation, Baranov’s 309, 313 (see also Mathematical models)
Catch per smack unit, see Catch rate
Catch per unit effort 102–7, 256–7 (see also Catch rate)
Catch quota 242, 333
Catch rate (catch per unit of fishing effort) declines under fishing 117
fluctuation in smallest market categories 164
increases during war 158
Catch statistics 12, 14, 36, 40, 60–1, 71, 75, 113–17 passim, 121–2, 256–7
easier to collect in weight than in numbers 152
economic value 60, 86–7, 113, 118
length measurements within market categories 153, 159–61
monatly catches needed for place 153
needed for smallest market categories 153, 164
Catchability coefficient 262
Catches, fluctuations in, see Fluctuations in catches
Catching power, see Fishing power
Catfish 66, 104
Chedabucto Bay, Nova Scotia 207
Civil Service Reform Act, see US Congress
Clam, razor 316
Climate fluctuations 9
Clupea, see Herring, Sardine, Sprat
Cod 3, 36, 40, 53, 104, 115, 151, 163, 166, 170, 179, 221, 232, 238, 324, 337n1b
age determination by method of measurements 79–80, 129, 131–2
Lofoten Island fishery 10–14, 21–4, 324
migration of 114
reported success of fish hatching in US 58, 65–6
year class strength correlated to weather 174
Cod wars, see Fisheries disputes
Cohort of fish, see Year class
Commission cod 58, 65 (see also Fish hatching)
Committee A, see International Council for the Exploration of the Sea, Migration Committee
Committee B, see International Council for the Exploration of the Sea, Overfishing Committee
Compensatory mechanisms complexity implies no universal mechanism 246, 288
restricting population growth 287
wide variety possible for young fish 287–9
Competition between adults and juveniles 196, 267, 274
between similar species 99
within population determines equilibrium size 245–6
Complex interactions 54–5, 196–7, 267, 329 (see also Ecological interactions)
Conception of instantaneity 310–23
Coryphaena, see Dolphin fish
Costa Rica 254
Critical period 247 (see also Key early period)
Crustaceans, as prey 23, 52
Cultus Lake, British Columbia 278, 285–6, 288
Currents, ocean, fluctuations in, see Fluctuations
Cyprinus, see Carp
Dab 104
Long rough 91–2, 97–9, 119
Death-curve 156, 248 (see also Catch curves)
Death-rattles 254, 349n7
Delaying tactics committee to develop regulations 295
external scientific review 237
more data 124, 128
more data analysis 153
more research 253, 349n10
Demography, see Vital statistics
Denmark 70, 76, 111–12, 125, 154, 294
Depletion, used in US to mean overfishing 241–2, 249–52 (see also Overfishing)
 Destruction of immature fish 116
Diatoms 246
Diminishing returns, law of 122, 333 (see also Economic science)
Discarding effect on population 268
fate of discarded fish 270
fish not in market statistics 160
rate of, estimated 269–70

© Cambridge University Press www.cambridge.org
Subject index

Discarding continued
- sea samplers to measure 161
- small fish 71–2, 119, 147, 157, 268
- wastefulness of 270

Dispersal
- of adults greater than for young 203
- indiscriminate or irregular 143
- of young fish 141, 143, 203

Dogger Bank, North Sea 139, 141, 161

Dolphin fish 338n15

Dolphins, mammals 21, 24–7, 338n15, 338n16
- species of 338n15, 338n16

Drift
- of eggs away from sperm 67
- of prey species 23
- of young fish 24, 148–9, 151, 166–7, 174, 176, 186, 192

Drifters, see Fishing gear, herring drift net

Ear stone, see Age determination, using otoliths

Ecological equilibrium 5, 43, 54–5, 340n11

Ecological niche 245

Ecological research
- idealization of 331–2
- versus single species research 331

Ecology, relationship to fisheries biology 4, 347n13

Economic forces
- determining research focus 2–3
- important in developing fisheries 337n1a
- strong evidence required to counter 180
- value causing change in amount of fishing 121
- value of whaling greater than fishing 221

Economic goals
- employment 300
- maximizing total catch agreed in New World 329
- short versus long term 6, 162, 323

Economic investment 10, 12, 16, 20, 26, 178, 230, 337n1a, 339n6
- affected by fluctuations in year class strength 256
- increased to meet political goals 164–5

Economic overfishing, see Overfishing, economic

Economic science
- economics must be addressed 333, 346n11
- fiction of stationary fish prices 122
- large number of fishermen permit behavioral generalizations 334
- Law of Diminishing Returns misinterpreted 121, 333, 343n14
- unprepared to address overfishing problem 121

Economics of fishing 1, 8, 85, 93

Antarctic whaling 264, 346n6

competition between fleets 164

decrease in profitability is usual pattern 230

determining size of fishery 252

economic overfishing 300

effect of changes in confounded interpretation of

fishery statistics 279

fisherman versus consumer 87

fluctuations in price of fish 119, 121–2, 165

freedom needed 38

Great Law of Fishing 229–37, 333

hunger 1, 337n1a

immature fish defined by market expediency 73

investment in fishing gear to offset declining catch rates 230

issues perceived by biologists 334

overfishing rooted in economic organization of industry 324

profitability of allowing young fish to grow larger 117

profits from common species affects less common species 200

shift to smaller fish to maintain profits 157

unregulated fisheries achieve balance unfavorable to man 323

Economy of nature 63

Ecosystem fluctuations, see Fluctuations

Eel, European 115, 343n9

Effects of fishing 33, 35, 54–5, 60, 89, 147, 196, 234

assume no effect if any doubt 59–60

bottom trawling 60–2, 89, 269–70

changes in age structure 202–14, 248

changes in length distribution 161, 271

decline in average size 202, 207

decline in catch rates 117, 202, 269

decline in whale catches, recognizable pattern 221–2, 226, 229

discarding by trawlers 268

ecological 1, 99, 329–32

discrimination of range or abundance of unished species 99, 119

First World War 158–62, 196–8

full impact not seen in age distribution immediately 207

increase in average size and age when fishing reduced 300

increase in effort followed by reduced catch later 204–14

increase in intensity to detriment of fish and fishermen 213–14

initial decline in abundance, or ‘fishing up’ 120, 156–7, 207

management as an experiment 276

none in open seas because of man’s lack of proximity 92

offsetting 55

on a common and a rarer species 199–200

on a population and its food supply 197, 202

on whales 221

Petersen identifies four 118–19

predicted for different levels of harvest 229

reduction in abundance of older fish 156, 207, 248

reversible 161–2, 196

war 158–62, 196–8, 294–301

Efficient exploitation, see Rational exploitation
Subject index

Egg and larval surveys 147–52, 186–92, 196
monitoring total egg production 151–2, 187–8
quantitative surveys 123–4, 147–52, 186–92
reveal location of spawning 115–16

Eggs and larvae
classifying into developmental stages 153
cod eggs artificially hatched 12
cod eggs float 24
difficulty in determining species 84, 123
eggs of Pacific halibut not abundant 203
estimating number of eggs produced 83–5, 94, 187–8
herring eggs attached to bottom 51
large numbers not superfluous 53–4
Elemental rates, modeling approach, see Mathematical models
Embryology, need for marine laboratories to study 57, 340n15
England 1, 3, 5, 70, 125, 154
Environment
 correlations with year class strength 173–6
 effect of cyclic changes 173, 216, 275–6
Equilibrium conditions
 fiction of stationary fish prices 122
 needed for application of logistic model 256, 261
Equilibrium of nature 119, 340n11
Equilibrium population size 63, 118, 211, 226, 229, 232, 245, 256 (see also Accumulated stock)
after fishing up 120, 256
balance of restrictive and promotive factors 43, 226
determined by capacity of environment 216
dynamic versus static 352n1
Esox, see Pike
Evolution, need for marine laboratories to study 57
Exhaustibility of the sea 89, 108
Experiments, fishing, see Fishing experiments
Fecundity, high level offers protection from man 53–4, 92
Feeding frenzy 254
Fertilizer, agricultural
 338n7
 from bird guano 16
 from fish waste 16, 26
 improper use of fresh fish 241
Finland 112
change in catch rates exactly at beginning 164
effect of subsequent recession on California Fish and Game Commission research program 182
informal scientific discussions between Canada and US stopped by 179
stimulates search for new fish resources 205, 347n14
Firth of Forth, Scotland 61, 75, 88, 90–1, 97–8
Fish canning, see Fish processing
Fish culture (see also Fish hatching)
cost effectiveness for more valuable species 66
public versus private 64–5
Fish dealers, see Fish processing
Fish distribution 255, 272
different by species 105
sensitive near extremes of range 175
Fish guano, see Fertilizer, agricultural
Fish hatching 3, 39, 55, 62–8, 94–6, 177–8, 269, 341n19
as part of fisheries research programs 1, 58
carried forward by US Bureau of Fisheries 177, 269
closure of Loch Fyne hatchery in Scotland 95
closure of salmon hatcheries in Canada 277–8, 349n3b
different interpretations of experimental results 126, 343n17
economic value claimed 66
experimental tests of value needed 64, 72, 94–6, 125–7
failure of US hatcheries admitted 178, 344n19
ICES concludes no proof of utility 127
inhibited by supply of eggs 177
large numbers of larvae would be required 65, 95, 269, 334n19
need for analysis of economic value 94
need for scientific methods 64
primary hypothesis 64, 95–6, 274
release of larvae versus young fish 95–6
unsolicited testimony supporting 64–7, 94–5
versus artificial fertilization at sea 67
Fish ladders, constructed by International Pacific Salmon Fisheries Commission 283
Fish meal 240–1 (see also Fertilizer, agricultural)
Fish processing 10, 14–20, 180
advances increases market demand 268
canning and fish meal operations combined 241
conflict among different types of processors 243
fillets versus whole fish 268
freezing 184, 268, 346n12
reduction to fish meal or agricultural fertilizer 16, 26, 241, 338n7
resistance to reduction of fresh fish to meal 241, 349n1a
value of catch predictions for 172
Fish purchase agreement, Norway and UK 215
Fisheries described
 Antarctic whale 214–5, 264–6
 Barents Sea Arctic cod 335, 342n15
 Bôhsulan herring 22, 342n4
 California sardine 239–40, 307, 349n3a
 East Anglia herring 170–3, 345n4
 Fraser River salmon 19–21, 28–33, 276–85
 French sardine 14–18
 Georges Bank haddock 267–75
 Lofoten Islands cod 10–14, 324
 New England mackerel 177, 185–6
 North Atlantic whaling 26, 219–22

© Cambridge University Press

www.cambridge.org
Subject index

Fisheries described continued
North Pacific halibut 202–13, 275–6, 349n2b
North Sea demersal 85–7, 100–8, 152–62, 232–5
North Sea haddock 164–70
North Sea hake 175–6, 298, 300
North Sea plaice 297–9, 320–3
Fisheries disputes
Cod wars 1
inter-state in US 39, 51
Fisheries exhibitions, series of 1862–1883 52
Fisheries expansion
due to discovery of North American fishing grounds 9, 337n1b
due to specific changes in gear or economics 204, 252
fluctuations affecting investment in vessels 256
post-war 158–9, 312
well defined periods 204–5, 249–52
Fisheries, fluctuations in, see Fluctuations in fisheries
Fisheries management (see also Regulation of fisheries)
Antarctic whaling too profitable to be regulated effectively 264, 346n6
approaches debated 231
as controlled experiment required to test effects of fishing 276
attempted by League of Nations for whaling 231
avoided if there is any doubt of necessity 59–60
catch rate increases may attract more fishermen 322
catch rate of common species, effect on less common 200
concern about wasteful practices 165
difficulty waiting for scientific results 99–100, 154
difficulty when employment is needed 300
equivalence of management restrictions needed 315, 320
estimates of the effects of proposals needed 301, 311, 314
evidence must satisfy everyone 243
fear of loss of momentum during Second World War 294, 359n1
fish hatching fails in US 178, 344n19
fisheries cannot regulate themselves 323
goal not agreed in Old World 329
goal of adequate stock and economical use 234
goal of maximum catch challenged 333
goal of maximum yield in New World 329
goal of optimum being substituted for maximum 329
gradual reduction in catch limits 264
increases in catches may depress prices 322
information needed for international regulation 124
information needed for whaling 225
lack of, causing deterioration of US fisheries 184
legal challenge to California Fish and Game Commission’s management 242
limited by political boundary lines 242
need for debated 33, 38, 52–6
need for international approach 56, 71–3, 81, 202, 341n1
needed for whaling to counter usual declines 225
political pressure to avoid 33, 242
political will needed to balance long and short term goals 33, 323
predictions of optimum yield provide goals 229, 264
public resistance to 63–4
restrictions allowed only due to fishery collapse 265
weakened by difficulty of enforcing regulations 242
Fisheries research laboratories, see Marine laboratories
Fishermen
agree informally to avoid small fish 270
as a component of the ecosystem 334
complaints changing research plans 61
conflict among those using different gear 39–40, 48, 59, 243, 269–70
not included in fisheries research programs 332
rejection of innovation 18, 269–70
resist increases in mesh size 270
study of behavior needed as basis for management 333–4
Fishery biology, interdisciplinary science 3, 183, 346n11

Fishery Board for Scotland 35, 39, 59–62, 68–9, 74, 86–95, 113, 115–16, 341n11, 345n2

Fishery Board for Scotland 35, 39, 59–62, 68–9, 74, 86–95, 113, 115–16, 341n11, 345n2
criticism by McIntosh 88–93 passim, 347n3
relationship to Royal Commission of 1883 60–1
sampling aboard fishing vessels 161
subsumed by Scottish Department of the International Council for the Exploration of the Sea 115
Fishery statistics
36, 71, 86–7, 94, 96, 100–9, 113, 152, 246, 272, 279, 300, 341n13
changes in area confound interpretation 158
collected for economic rather than biological purposes 101
fishing capacity 86, 158
fishing effort 86, 158, 164, 256–7
fishing-journals 116
individual records versus summaries 101
lack of standardization delays analysis 154
more representative than research data 100
number of fishing vessels 86

© Cambridge University Press www.cambridge.org
Subject index

- spatial detail needed 128
- standardization desirable but not feasible 123
- use of fisherman's and scientific logbooks 116, 203

Fishing effort 12, 71, 222
- alternate measures of 279
- difficulty of accounting for all changes 100, 279-80
- effect of vessel and gear changes 100-7
- efficiency of vessels related to registered tonnage 106
- seasonal distribution 30
- smack as standard vessel 100
- standardized vessel definition 100-9
- time searching for and catching whales 221

Fishing experiments
- effect of changes in design 88, 93
- experimental design 61, 88
- Fishery Board for Scotland's, see Scottish trawling experiment
- INPHC season limits seen as 214, 231, 275-6
- long due to variability in catch rates 61
- naturally occurring would test theory 50
- need for 61, 71, 94, 119-20, 162
- politically difficult 61
- potential for being confounded by environmental changes 275-6
- size limit experiment recommended by ICES 157
- unlikeliness of temporal coincidence with changes in environment 276
- use of closed areas 61, 87-93

Fishing for bait, see Bait fishery

- Fishing gear 10, 18, 20, 26, 32, 53, 204
 - beach seine 125
 - beam trawl 53
 - bottom trawl 53, 59-61, 72, 79
 - damage to by predators 26
 - eel seine 79
 - effect of changing size of mesh 231, 318
 - efficiency depends on species 104
 - explosive harpoon 26, 220, 338n7
 - gill nets 10, 32, 170
 - herring drift net 170
 - hooks 45, 53, 79, 102, 268
 - increase number or size of nets to offset declines in catch rates 230
 - increasing use of otter trawls 102, 268
 - investment in new, to offset declines in catch rates 230
 - line trawling 268
 - lines 10, 39-40, 59, 100-7
 - long line 203, 349n2b
 - machine guns 300
 - opinions on relative efficiency 104
 - otter trawls required steam powered vessels 102
 - patent net, bobbins, bridges, ticklers 230
 - poison, for whaling 348n19
 - pole and line using bait fish 254
 - purse seine 178
 - salmon nets 329
- seine-net 39
- seine-net for dolphins 25
- size selectivity of 315, 318-20
- use of less efficient 52, 269
- weirs or traps 20, 39-43, 45-6, 48-9

Fishing grounds 24, 300
- different patterns by species 105
- expanding as catch rates decline 100, 105, 208, 271, 342n15

Fishing mortality 185, 196, 201, 226, 313
- higher than expected 145
- Fishing mortality rate 208, 248, 302-10
- clarification from Baranov’s 1918 paper 308, 347n4, 350n7b
- estimated from mark and recapture data 145, 302, 344n23
- Graham’s two definitions 303
- relationship between annual and instantaneous 302-10, 327
- Thompson and Bell’s definition 302
- Fishing out 169 (see also Overfishing)
- Fishing power 118
- necessity of measuring 121, 327
- of research vessels 143
- Fishing up 120, 207 (see also Effects of fishing)
- Fishing vessels
 - floating factories for whaling 214-15, 220-1
 - increases in size over time 86, 100-6, 230
 - mothership and dorries 268
 - sailing smack 53, 100-7
 - steam and diesel engines replace sail 10, 53, 100-7, 203, 220, 230
 - supplemental power equipment 203

Flour beetle 332

Fluctuations
- in climate 9
- in ecosystems and populations 8
- in fish price, short versus long-term 122
- in ocean currents 9, 24, 174
- in the essence of ecosystems 8-10

Fluctuations in abundance 8, 113, 126, 344n18
- independent of man’s activities 93, 123, 127, 286-7
- need to determine extent due to natural causes 123
- of mammal populations 218
- of young fish reflected in commercial catches 127
- reality of apparent cycles 286-7

Fluctuations in catches
- causes of 9, 21-34, 41, 68, 70, 279
- described 1-2, 5, 8-9, 12-20, 57
- early scientific studies 21-34
- four causes suggested 21
- related to lunar cycle 173
- three patterns described 10-21

Fluctuations in fisheries
- caused by fluctuations in year classes 133-4, 163, 169
- caused by food 48-51
- caused by pollution, 43, 63
- caused by predation 48-51
382 Subject index

Fluctuations in fisheries continued
caused by weirs 39-43, 48-51
eyear scientific studies of 21-34
fisheries structured in response to 16-7, 337n1b
the great fisheries 124-38
increase in catches of small fish 164
natural fluctuations versus overfishing 335, 349n2b
revealed by varying age composition 132
three patterns described 10-21
Fluctuations in year class strength
correlated with sunshine 174
correlated with wind direction 192
correlations with environment fail 176
disturb equilibrium conditions 256, 261
haddock 164-70, 269
hake 175-6
herring 133-4, 170-3
mackerel 174, 185-92
obscure understanding of reproductive
process 290-2
scup 50
treated as random variability 325
Food supply 196, 205
Four-year cycle of salmon catches 20, 281
France 14-18, 178, 183, 234
Fraser River, British Columbia 19-20, 28-33, 177, 202, 238, 267, 276-85 (see also Hell’s Gate)
Fuel flies 246, 324
Frydlund Brewery, Oslo 218
Fur bearing animals 216

Gadus, see Cod, Whiting
Garland experiment, see Scottish trawling experiment
Garland, see Research vessels
Garstang’s spawning migration hypothesis 143-52 (see also Heinke’s Law)
Gauntlet, fish running a 20, 32, 280
Genetic selection 5
Geographic Congress, Sixth International 111-12
Georges Bank 238, 267
German Fishery Association 27
German-Dutch proposal, for international scientific study of fisheries 112-13
Germany 5, 27, 39, 70, 111-12, 125, 155, 235, 294
Goldfish 66
Great Fishing Experiments 158-62, 294-301, 307, 310, 322, 325, 332, 345n29 (see also War Experiments)
results ignored 162
Great International Fisheries Exhibition of 1883 38, 51-67 passion, 76, 93, 108, 117, 216, 267, 272, 332, 339n7, 339n8
Great Law of Fishing 229-37, 333
Grimsby, England 75, 85
Growth of fisheries
cycles of geometric 249-52
described using logistic equation 252-3, 261
examined for fourteen fisheries for indicators of depletion 249-52
Growth of individuals 85, 94, 119, 121, 201-2, 208, 226, 347n1
balance of additive (anabolic) and subtractive (catabolic) processes 316
compared to losses by natural mortality 85, 157
decreased by competition 196, 285, 288
depends on food supply 76, 196, 327
effect of starvation 76
estimating maximum length 317
faster for transplanted fish 78, 117
faster for warmer temperatures 175
increased predation if slower 288
increment in length proportional to
length 317
length modeled as linear with age 309
logarithms of rate decrease with age 316
mathemathical models developed 315-19
modeled by cumulative normal
distribution 315, 352n19
modeled by Gompertz equation 316
modeled by logistic equation 217
modeled by von Bertalanffy equation 316-19
processes relate to surface area and volume 317
rapid and flexible 76
rate changed by War Experiment 196, 296, 325
rates vary by area 81-2, 168, 205
weight modeled as linear with age 309, 314-15
Guano, see Fertilizer, agricultural
Gulf of Mexico 22
Gulf of St Lawrence 178, 205-7
Gulf Stream 48
Gurnet 104
Habitat, population spreads to marginal 246
Haddock 3, 36, 104, 163, 179, 193, 232, 238, 288, 324, 327
distribution in North Sea 105
fluctuations in abundance of young
haddock 127, 164-70
Georges Bank fishery 267-75
ICES fails to address 116-17, 124
North Sea fishery 164-70
spawner and recruit relationships 288-91
Hake 163, 175-6, 189
Halibut
Atlantic 202
Pacific 3, 37, 202-14, 231, 254, 263, 302, 312, 333
Harvard University, Massachusetts 41, 45
Heinke’s Law 143 (see also Garstang’s spawning migration hypothesis)
Helgoland Island, Germany 83, 341n7
Hell’s Gate 19-20, 30-3, 282-3 (see also Fraser River)
Subject index

principal cause of sockeye salmon depletion 283
Hensen net 83–4, 113, 115–16, 147
Herring 8–9, 36, 53, 163–6 passim, 170, 179, 193, 221, 239, 295, 324, 337n1a, 338n14, 339n18
basis for Heincke’s racial theory 81–3, 115–6
Bohsulan fishery 22, 342n4
decline in catch rate basis for overfishing 71
East Anglian fishery 170–3, 345n4
effects of whaling on herring catches 26
fluctuations demonstrated in year class strength 129–37 passim
fluctuations in Norwegian catches 21–6 passim
fluctuations in year class strength demonstrated 170–3
migrations of 114
Royal Commission investigates 51–2
Hessian flies 92
High seas fishing 219
Home stream theory 28–30
Homing instinct, salmon 24
Hudson Bay Company 19, 216
Hydrography 111, 125, 139, 174
correlation to year class strength 175
relationship to study of fisheries 4, 111, 174, 181
research plans better developed than biologists at beginning of ICES 113

IAITC, see Inter-American Tropical Tuna Commission
Iceland 1, 80, 220
ICES, see International Council for the Exploration of the Sea
Immature fish (see also Trade size limits; Young fish)
connection to small plaice problem 72
destruction of 56
varying definitions of 73–4
Immoderate fishing, see Overfishing
Impoverishment of the sea 96–100, 117–18, 139
Index of reproductive success 281
Industrialization of fisheries 52–3, 100–8, 122, 339n6 (see also Economics of fishing)
Inexhaustibility of fisheries 53–4, 108, 145, 272, 350n2
Huxley’s qualifications ignored 54, 108
INPFC, see International North Pacific Halibut Commission
Insects 246
Instantaneity, the conception of 301–10, 313
Instantaneous mortality rates 301–10, 348n16
Insurance, mutual plan to protect fishermen against dolphin depredations 26
Inter-American Tropical Tuna Commission 257, 263
to study effects of fishing on tunas and on bait fish 254

International Convention for the Regulation of Whaling, see International Whaling Commission
International Council for the Exploration of the Sea 36, 110–62, 196, 254, 264, 267, 342n4, 342n8
1899 conference, Stockholm 112–13, 152
1901 conference, Oslo 113, 152
1902 meeting, Copenhagen 113
1945 meeting, first post-war 293–4
addresses value of fishery predictions 172, 345n3
analysis of War Experiments 158–62, 267
Baltic Sea Committee 114
charged to advise the London Fisheries Convention 234–5
charged to advise the Permanent International Commission 296
charged to focus on ‘problems of economical value’ 114
committee structure reorganized 131, 345n3
consensus approach to advice adopted 154
establishes Central Laboratory, Oslo 114
establishes Committee on Whaling, 1927 215
Garstang analyzes research trawl data 138–43, 344n21, 344n22
gives management advice 157, 234
goals of biological research defined 114
goals of journal Annales biologiques defined 293
Hydrographic and Biological Programs seen as interacting 114
Hydrographic Commission 113, 139
International cooperation contrasted to war 235, 294
International Programme begun 1901 114
lack of concrete results in 1905 124
Migration Committee 114–17, 124–38
Overfishing Committee 114, 116–18, 138–58
Overfishing Committee concludes plaice overfished, 1913 157, 344n24
Overfishing Committee proposes fishing experiment 138–58
Overfishing Committee tries to define its name 117, 122
Place Committee 156–58, 162 (see also Overfishing Committee above)
Special Ichthyometric and Biological Statistics 131–2
staff continued work during Second World War 293
US and France interested in joining, 1910 178, 344n25, 346n7
US joins and withdraws 178–9
International Fisheries Congress, 1909 177
International North Pacific Halibut Commission 184, 208, 268, 277
established by US and Canada treaty 202
hired research staff 202–3
384 Subject index

International North Pacific Halibut Commission continued
seasonal fishing restrictions seen as an experiment 214, 231, 275, 277
visited by Huntsman 207
International oceanography and fisheries classes, Hjort hosts in Bergen 343n16
International Overfishing Conference and Convention, 1946 295, 301, 327
International Pacific Salmon Fisheries Commission 277–8, 282–3
International Program, see International Council for the Exploration of the Sea
International research schemes proposed 73, 81, 110–11, 341n1
International Whaling Commission 264–6
lacks political will to regulate whaling 264, 349n10
restricts catches of blue whales 265
Scientific Committee advises 264–6
IWC, see International Whaling Commission

Jellyfish 278
Johns Hopkins University, Maryland 216, 350n2
Juan de Fuca, Straits of 282
Juvenile fish, see Young fish

Key early period, determining year class strength 186–7, 247
Knife-edged mesh selectivity 319

La crise sardinière 14–18
Labrador Current 48
Lake Quesnel, British Columbia 283
Law of Diminishing Returns, see Economic science

Lazzaroni, Scientific 45
League of Nations 231
Leman-Hanks Line 141
Lemmings 216
Length distributions, change with changes in fishing intensity 161, 271
Leptocephalus, see Eel
Leuciscus, see Vobla
Life history strategy
evolutionary interpretation of 5 whales different from fish 219
Life history studies
dolphins 25
primary value for fish in guiding other research 181
Life insurance 128–32 (see also Actuarial science)

Limfjord, Denmark 78
Linguistic claims, sardine 17, 239
Lobster 65–6
Loch Fyne, Scotland 94–5
Lofoten Islands, Norway 1, 10–14, 338n7
Logbooks, fisherman’s logs and scientific logbooks valuable 116, 203 (see also under Fishery statistics)

Logistic equation 37, 216–19, 229, 256, 259
as a first approximation to population dynamics 232
as a model of industrial growth 251–3
as a fundamental law of population growth 216–17
incapable of showing population cycles 287
used in assessment of Antarctic blue whale fishery 264–66
used in assessment of North Sea fisheries 232–4
Logistic theory, see Surplus production theory

Loktaform 83
London Fisheries Convention 234, 294–5, 301

Mackerel 3, 6, 40, 53, 66–7, 164, 177–9, 183, 247, 268
Maelstrom 10–11, 337n4

Management advice
California Fish and Game Commission recommends restricting sardine catches, 1936 243–4
Gilbert recommends letting more salmon spawn, 1918 33
ICES recommends limiting fishing intensity, 1946 295
ICES recommends minimum mesh and fish sizes, 1937 234
ICES recommends protecting nursery grounds, 1921 162
ICES recommends size limits, 1913 157
ICES Whaling Committee recommends restricting fishing, 1937 264
INPHC recommends installing fish ladders, 1943 283
IWC Scientific Committee recommends limits to blue whale catches, 1964 265
Overfishing Convention recommends larger minimum mesh and fish sizes, 1946 295
Overfishing Convention recommends limiting fishing intensity, 1946 295
Overfishing Convention recommends scientific body to study need for further restrictions, 1946 202
scientific advice needed 183, 231
scientific basis in group-prepared report 155
scientific basis needed in near legal proof 241
that of Beverton and Holt in 1953 similar to Place Committee, 1913 322–3
UK committee concluded North Sea overfished, 1946 294
UK recommends reducing size of fishing fleets, 1946 294
US Bureau of Fisheries goal to develop methods for 184

Marine Biological Association 35, 39, 56–9, 74–5, 96, 340n14, 340n16, 342n7
Marine laboratories
Atlantic Biological Station, St Johns, New Brunswick 205
Danish Biological Station, Denmark 76, 115
Danish Deep-Sea Commission, Denmark 115
Subject index

- Dutch Biological Station, Helder, Netherlands 115
- Flødevigen Fish Hatchery, Norway 67
- Laboratoire Maritime, Concarneau, France 14, 25, 338n5
- Laboratoire Maritime, Tatihou, France 26
- Lowestoft Fisheries Laboratory, England 115, 147, 159, 200, 288, 294, 296, 301, 311, 350n2
- Marine Biological Association Laboratory, Plymouth, England 74, 86, 115, 117
- Naples Zoological Station, Italy 56, 338n5
- Netherlands Institute for the Exploration of the Sea 115
- Pacific Biological Station, Nanaimo, British Columbia 278
- Pennisuke Island, Massachusetts 47, 340n12
- Royal Prussian Biological Station, Helgoland, Germany 114–16, 178, 341n7
- Scottish Department of the International Council for the Exploration of the Sea 115
- Scottish Marine Station, Firth of Forth, Scotland 74, 341n2
- Swedish Hydrographic Station, Bornö, Sweden 115
- Trachenberg Pond-Culture Station, Germany 81
- US Fish Commission, Woods Hole Fisheries Laboratory 39, 43–8, 55, 58, 62–3, 67
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 187
- Zoological Museum, St Petersburg, Russia 115
- Marine laboratory facilities 1, 44–7, 56–8, 340n12, 340n15
- effect of source of support on research directions 58–9
- not same as public aquaria 58
- Market categories 159–60 (see also Fishery statistics)
- Marking fish 113, 124, 143–6, 196, 203, 255, 268, 279
- characteristics of ideal mark 77
- disinclination of fishermen to assist with experiments 78
- effect of 283–4
- large numbers required 124
- to test migration hypotheses for placæ 143–6
- Massachusetts Inland Fisheries and Game Commission 39–43, 340n11
- Mathematical methods (see also Statistical methods; Mathematical models)
- application to biology debated 194, 197, 301, 350n7a
- back-calculation of year class strength 169
- benefit of doubt, giving 106
- biologists insufficiently trained 194, 301–2
- calculus required 198, 268, 308–13 passim
- cohort and virtual population analysis 348n22
- constant of proportionality 262
- deriving equations on the back of envelopes 311, 351n11
- determining sensitivity to violations of assumptions 261–3
- different from statistical methods 194
- examine deviations from fit of model 318
- fitting equilibrium model using non-equilibrium data 261, 349n9
- generating smooth curves using polynomials and Taylor's series 150
- Helland’s method for estimating population size 221–4
- instantaneous rates 257, 301–6
- need for standardization 150
- needed to determine if overfishing occurring 119, 121, 297
- ratio diagram 249
- trial and error solutions to equations 249
- use of logarithms 155, 190, 249
- Mathematical models 5
- approximate, but not necessarily incorrect 302
- Baranov’s catch equation 309
- biologically interpretable versus empirical description 316
- comparison of model predictions and data 195, 198–200, 213–14, 218
- elemental rates 254
- fish do not follow 302
- focus in fisheries studies too limited 302
- general relationships useful as first approximation to steady states 312, 313, 320
- Gompertz equation 316
- linear catchability coefficient 262
- logarithmic growth rate 232
- logistic equation 210, 216, 218, 232, 252–3, 256, 328
- need for simplifying assumptions 198
- of gear selectivity 319
- tabular calculations versus more elaborate mathematics 212–13, 301–2
- unsatisfactory if parameters can not be measured directly 312
- von Bertalanffy growth curve 316–19
- Mathematical statistics 196
- Maturity, see Sexual maturity
- Maximum output of fisheries 200, 225, 231 (see also Population productivity)
- Maximum population size (see also Population size) estimated for North Sea fisheries 232
- theoretical determined by capacity of environment 216
- Maximum sustainable yield (see also Population productivity; Sustainable yield)
- corollary to surplus production theory 237
- institutionalized concept 265, 329
- Inter-American Tropical Tuna Commission goal 254
- International Whaling Commission goal 264
- used to define overfishing 264
- MBA, see Marine Biological Association
- Measurers, see Sea sampling
386 Subject index

Melanogrammus, see Haddock
Menhaden, see Alewives
Merluccius, see Hake
Mesh size, effects of changing 270 (see also Fishing gear)
Methods, see a priori method; Mathematical methods; Research methods developed
Mexico 254–5
Middling in size, for maximum population increase 239, 256, 266
Migration 113, 128, 338n10, 338n11, 338n14 causes of fluctuations in catches 21–4 explanation for seasonal development of fisheries 22–4
military models 22
modern theory 22–4, 28, 82
of lemmings 216
polar sea theory 21–4, 82
variability in 8, 11
Migration Committee, see International Council for the Exploration of the Sea
Monitoring abundance 32, 36, 272
Moratorium on fishing, as a management measure 26, 220–1 (see also Regulation of fisheries)
Morone, see Striped bass
Morphology
development 194, 200
differences as basis for population differences 28–30
differences, genetic or environmentally induced 83
history of study 200
mechanism versus vitalism 200
Mortality rate 301–10 (see also Fishing mortality rate; Natural mortality rate)
average 130
estimated from size composition 155–6, 302
finite or annual versus instantaneous 306
instantaneous rates 301–10, 348n16
linear logarithmic equation 155
losses compared to gains from growth 157
mathematical approaches to defining 302–5
MSY, see Maximum sustainable yield
Multispecies interactions (see also Competition; Predator-prey relationships)
Lankester argues for 54–5
mathematical models 195, 199–200
whales herding prey species 220
Murman Scientific–Commercial Expedition 115–16
NACFI, see North American Council on Fishery Investigation
National Academy of Science, US 45
National Research Council, US, reviews need for applying science to fisheries 183
National Sea Fisheries Protection Association 72, 75, 85, 110
annual conferences 72, 110, 112
Natural history, expansion of science planned by Baird 44
Natural mortality 185, 201, 226, 313
Natural mortality rate 118, 121, 208, 249, 302–10
higher due to starvation 288
lower for faster growing fish 175, 189, 285, 288
measure for eggs and larvae 187–92
Natural reserves 196 (see also Equilibrium population size)
Netherlands 68–70, 112, 125, 154
Newfoundland 16, 182–3
Niche, see Ecological niche
Nicoya, Gulf of, Nicaragua 255
Normandy, France 26
North American Council on Fishery Investigation 187
cooperative study of mackerel 183–5, 267–8
formed in 1920 182
involving Canada, Newfoundland, US and France 182–3
North Sea Investigation 75, 85, 96, 116
Norway 1, 10–14, 17–18, 39, 68, 70, 111–12, 125, 154, 215, 324
NSFPA, see National Sea Fisheries Protection Association
Nursery grounds 166–7, 274
ICES proposes to restrict fishing on 162
overlap with spawning areas 147
overrun by large spawning population 274
Ocean currents, fluctuations in, see Fluctuations
Oceanography, relationship to fisheries biology 4, 351n15
Oncorhynchus, see Salmon, sockeye
Open systems, self-maintaining 316, 352n1
Operations research, source of mathematical methods 326
Optimum catch 214–29, 231–2, 256, 264, 329
Organismic biology 200
Otoliths, see Age determination
Overfishing 9, 21, 28–33, 43, 56, 63, 71, 93, 117–34, 200–7 passim, 234, 241–2, 343n13
advance warning possible from catches in other areas 243
concluded by UK committee during Second World War 294
defined as fishing so that sustainable yield declines 264
definition difficult 117, 121
determination sensitive to price of fish 121
economic, too much fishing effort 300
growth versus recruitment 343n12
ICES claims for placæ 157
indicated by decrease in catch rates 117
information required to determine 122, 297
limited to single species effects 119
not indicated by changes in age distribution during fishing 207
of California sardines 247–54
of rarer species due to profits on more common species 200
Subject index

of sardines claimed by California Fish and Game Commission 247
Petersen’s illustration of 118–20
possible for marine fish 180
possible to measure 121
profitable to allow young fish to grow larger 117
relationship to small plaice and to supply of fish problems 120
rooted in economic organization of industry 324
strong evidence required for each fishery 180
Overfishing Committee, see International Council for the Exploration of the Sea
Overfishing Conference, London, see International Overfishing Conference
Oxford University, England 216
Oyster 135–6, 184

Panama 254
Papal Brief, anathematizing dolphins 24–5
Parasites, more abundant at higher population densities 288
Passamaquoddy Bay, New Brunswick 205–7
Pelagic fisheries 219
Permanent International Commission, under International Overfishing Convention 234, 295, 301
Petersen’s disc tag 78, 124, 144–6
Petersen’s method of measurements for age determination 78–80, 129, 189
Petersen’s young fish net 147
Pike 27–8, 65–6, 81, 340n10
Pilchard 53
Pisciculture, see Fish hatching
Plaice 36, 123, 161, 168, 179, 196, 232, 238, 267, 288, 312, 327, 332
age composition differences explained 205–7
age determination from otoliths 81
analyses of effects of War Experiments on 158–62, 296–9
catch curves defined for 155–6, 248
differences in fishing gear efficiency for 104
distribution of in North Sea 105
fishery statistics collected by ICES 152–4
ICES analyzes research vessel catches of 137–42
ICES recommends higher minimum size limit 157–8
migration patterns shown by tagging 143–6
Petersen used as example to define overfishing 117–19
results of Garland experiment for 90–1, 96–9
small plaice problem 72, 94, 108, 120
spawning locations revealed by egg and larvae surveys 147–51
spawning population size estimated 152
tagging 78, 124
transplantation 78–9
von Bertalanffy growth curve fitted to 317–19
Plaice Committee, see International Council for the Exploration of the Sea
Plankton 23, 173
correlated with year class strength 173–4
relationship to fisheries questions 4, 181
Poland 235
Polar sea theory of migration, see Migration
Political forces
determining fishing investment 164
determining marketing agreements 215
determining research focus 2, 3, 33, 61, 63, 69, 242–6
fishermen complain to US Congress 39–43, 47, 178, 243
Pollution 9, 21, 28–33, 184, 302
Pomar trade, contributes to Norway supporting scientific studies 12
Pomolobus, see Alewives
Pond culture of fish 27–8, 340n10
Population biology and ecology, see Population dynamics
Population differences (see also Racial differences)
based on different growth rates 82
based on geographic separation 82, 203
based on number of vertebrae 82
based on scale morphology 28–30
defined by racial characteristics 116
implications for management 70–1
multivariate statistical methods required 85
Population dynamics 2–6 passim, 36, 194, 237–8, 264–6, 274, 325, 330
average death rate useful to understanding 130
balance of restrictive and promotive factors 226
Belgian population modeled 217
built from study of population biology 215
density dependence of vital rates 5, 325–6
differences between fish and whales 219
effects of decreased food and increased pollution 218
generality of theories limited by available data 328
generalized theory premature 324–6
mathematics needed 215
mechanisms controlling 5, 8, 216–20
of small mammals 216
three partial theories developed 237–323
three partial theories useful for short term advice 325
Population growth, see Population dynamics
Population models
logistic equation 348n18
range of behavior examined 287–8
self-regenerating 324–8
spawner and recruit 285–92
surplus production 254–66
time lags produce cycles 287
yield per recruit 310–23
Population productivity (see also Maximum output of fisheries)
388 Subject index

Population productivity continued
Baranov argues due to thinning out of population 196
maximum for North Sea demersal fishery 233
maximum predicted for Antarctic blue whales 265–6
maximum predicted for California sardines 254–61
net rate of 256, 259
Population regulation, see Population dynamics
Population size (see also Equilibrium population size; Maximum population size; Relative population size)
Antarctic blue whales 265–6
California sardines 254–61
Iceland whales 225
mature 119
New England mackerel 188
Norwegian bears 224, 348n21
plaice estimated 152
US maximum predicted 216
Porpoise, see Dolphins
Port sampling 160, 164, 185, 196–7 (see also Fishery statistics)
several types of data collected 75, 185
Portugal 17–18
Pré, Sea of 25
Pre-exploitation population size, see Equilibrium population size
Predator–prey relationships 27–8, 54–5, 202, 340n11
modeled 198–200, 286–8
Volterra’s laws 198–9, 347n10
Predators 21, 24–8, 245, 285
amount of food consumed by 27
as vermin 25
control of 24–8, 55, 62, 340n11
controlling effect of 26–7, 55, 245, 286
fishermen considered as 199, 226
herding prey fish 26, 220
proportion of total catch 197–8
response to War Experiment 332
terrestrial 221
Predicting catches 2, 20, 36, 163–93, 195
failed because fish caught at younger than expected age 185
for East Anglia herring fishery 172–3
for North Sea haddock fishery 169–70
from age distributions 134, 163, 170–3
from observation of eggs and larval survival 163, 186–92
from varying environmental factors 163, 173–6
from year class strength 50, 168, 185, 195
gaining credibility with fishermen 173
value to fishermen and processors 172
within season 172
Primitive abundance, see Equilibrium population size
Problem of rational fishing 120, 333
not a scientific problem 121
Problem of the decrease of fish
Subject index

North Sea demersal fishes 233
primary focus of research program 181
Renewal of a population (see also Population
dynamics) 134, 219–20
different for mammals and fish 134, 219–20
Reproduction curves 288
data cannot be used to distinguish among
models 291
decreasing versus asymptotic at high
population levels 288–92
Reproductive success; index of 281
Research administration
danger of administrators becoming out of
date 215
difficulties with bureaucracies 311, 345n26,
351n12
effect of changing pay scales 182
international hampered by differences in fiscal
years 277
organizational approaches 68–9, 95, 235, 278,
342n19
support by tax on fishery 180, 182, 253
Research methods developed
a priori methods 194–236
basic approaches 1855–1890 38–69
international collaboration 1900–1920 110–62
measuring effect of fishing 1890–1900 70–109
spawner and recruit theory 267–92
surplus production theory 239–66
yield per recruit theory 293–523
Research program
autecology on big scale 330
behavior of fishermen must be addressed 333
conflict in priority between fishery statistics and
biological studies 184
control by political events 69, 235
cooperative program developed by
diplomacy 244, 247
Cultus Lake study 278–9, 285–6
danger of constraining 58
economics must be addressed 333, 346n11
focus depends on agency orientation 247
focus on groups of species with similar
characteristics 178
focusing on changes from the normal 182
goals to relate fishing intensity with quality and
quantity of catch 245–6
ICES envisions expanding geographic scope to
west 179
importance of setting priorities 61–2, 88
insufficient balance between biological and
population studies 312
limited focus required for generating
management advice 181–2, 246, 330
need for data on catches and abundance 181,
185
need to balance emphasis on overfishing versus
natural variability 181
need to be a missionary about fishery
statistics 185, 346n14, 346n15
need to develop independent of short term
needs 324, 336
of California Fish and Game
Commission 180–2, 241, 246, 346n10
of Fishery Board for Scotland 61
of ICES 113–23, 152, 179
of Inter-American Tropical Tuna
Commission 254–66
of International North Pacific Halibut
Commission 202–3
of International Pacific Salmon Fisheries
Commission 279
of US Fish Commission 46, 61, 68, 179,
244–6, 335n3, 346n9
oversight by external board 62, 69
Schafer's Rome Conference plan 329–32
single species versus multispecies 99
study of cycles of growth of fisheries
advocated 251
synecology is exception 330
US shifts from systematic ichthyology to fishery
biology 184
Research trawling surveys 115–16, 123, 196,
344n21
data can be combined 143
optimum net design not clear 123, 343n15
standardization and calibration 123, 139,
143
Research vessel data
affected by behavioral differences 143
ages of fish 125
egg distribution and abundance data 125
length measurements of fish 125, 140
number of fish caught 96–9
Research vessels
Albatross 47
Albatross II 187, 191
Andrei Pervoizvanny 116, 343n11
Atlantic 191
Biologen Ark 76, 115
Challenger 62, 340n16
Explorer 166–8
Garland 62, 74, 88–99 passim, 113, 116, 143
Goldseeker 140
Huxley 138–40
Mazeppa 47
Michael Sars 179, 346n8
Moccasin 46–7
Poseidon 139
Wodan 116, 138, 140
Resources of the sea 36, 92–3
Rome Conference, 1955 328–32
agenda addressed international fisheries
management issues 328
comprehensive research plan presented
329–32
Ross's a priori method, see a priori method
Royal Commission of 1863, UK 51–2
Royal Commission of 1883, UK 59–61, 86–9, 92
relationship to Fishery Board for
Scotland 60–1
Royal Dublin Society, Ireland 74, 341n3
Royal Fisheries Society, funded in lieu of Marine
Biological Association 58
Index

Royal Ontario Museum of Zoology, Ontario 274
Royal Prussian Commission 27, 81–4
Russell’s theory of fishing 200–2
Russia 12, 35, 39, 70, 110–12, 114
Salaries (see also Research administration) limiting research programs 179–80, 277–8
staff turnover resulting from limitations useful 277–8
Salmon
Atlantic 39, 65, 339n18
Pacific 3, 65
sockeye 10, 19–20, 177, 202, 238, 267, 276–85, 288, 290, 307, 324
Sardina, see Sardine
Sardine
California 2, 180–2, 239–63
French 10, 14–18, 24, 178, 239
Sardinoops, see Sardine
Sargasso Sea 115
Scales (see also Age determination) determining individual growth patterns 131 determining population differences from morphology 28–30
interpreting meaning of rings 28–30, 131–8, 166
raising fish in tanks to determine how to interpret rings 166
School of fish
age composition of 135, 137
migration in 22
‘one great family-party’ 135–7
Scientific studies of fisheries, need for 1, 24, 46, 52, 57–8, 60, 70, 99
Scotland 8, 51, 70, 111, 125, 154
Scottish trawling experiment 36, 87–93, 96–100, 113, 116–17, 123, 138
alternative hypotheses generated 91, 99
analyzed by Fulton 89–91, 97
changes in design required 88–9, 93
conclusions drawn from 90, 99
criticized by Mcintosh 89, 92–3, 96, 99
designed 60–2
effect of size of vessel 88
priority versus other research 88
reanalyzed by Garsang and praised 96–9
Soup 39–43, 48–51, 66
Sea sampling
early use of by Scottish and English 160–1
instructions for sampling and data recording 160–1
used to confirm changes in average size seen in port sampling 160
Seals 26, 345n6
Second Great Fishing Experiment, see Great Fishing Experiments
Second World War 235, 238, 254, 263, 293–4, 347n14
Self-compensation, property of populations and of population models 326
Self-regenerating population models 324–8 (see also Population models)
Sensitivity analyses, see Mathematical methods
Sexual maturity 71, 85, 94
variations in 75
Shad, Atlantic 22, 65–6, 338n11
Shark 42
dogfish 272, 340n11
Shoal of fish, see School of fish
Siliqua, see Clam, razor
Simplifying assumptions 106, 122, 206, 209, 226, 256–7, 263, 287, 309
Skate, fish 27, 42, 104
Skates, of long line gear, see Fishing gear
Skrei, see Cod
Slumped 97, 341n12 (see also Statistical methods)
Small fish question, see Small plaice problem
Small plaice problem 70–85, 94, 108, 117, 128
relationship to overfishing 120
Smithsonian Institution, Washington, DC 43–4
Sole 72, 104, 117
Spain 16–17
Spawner and recruit theory 227–38, 275, 285–92,
324–7 passim
relationship to yield per recruit theory shown 328
Spawning 10, 24, 51–2 (see also Eggs and larvae)
duration of period 84
effect of trawling on grounds 59, 99
grounds 28–30, 141, 143, 166, 203
grounds overlap with nursery grounds 147
number of fish 151–2, 238, 267
seasons 24, 203
Sport fishing, see Recreational fishing
Sprat 239
Squid 42, 239
St Andrews Bay, Scotland 61, 88–92 passim,
97–8
Stanford University, California 28, 180, 182,
203, 243, 268, 316
Starfish 276, 324
Starvation, of young fish at higher population sizes 288
Stationary fish prices, fiction of 122
Statistical methods (see also Mathematical methods)
basic concepts in 1800s 82
bounding size of possible error 224
card catalogue for stratified analyses 138
continuous contours of equal value 142,
147–51, 167–8
correlation 173–6, 195, 216, 286
distinguishing cycles from random numbers 287
estimating model parameters 327
evaluating fit of mathematical model 291
Gaussian distributions 82, 84, 135–6
inadequate for high variability sampling 84
intuitive adjustments to continuous contours 151

© Cambridge University Press www.cambridge.org
Subject index

migration 23
spawning 23
Tench 66
Thinning out a population (see also Fishing up) 118–20, 196
Total yield limited 231
Trade categories, see Market categories
Trade size limits 75, 85 (see also Biological size limits)
less than biological limits 75
vary due to economic conditions 85
vary by localities 76
Transplantation of fish 64, 78, 255
Tribolium, see Flour beetle
Trout 65, 286, 340n10
Tuna 254, 257
albacore 180, 182, 239, 346n10
yellowfin 263
Turbot 72, 104

Uncertainty, used to delay management 197
(see also Delaying tactics)
Unexploited population size, see Equilibrium population size
United Kingdom 39, 51–2, 70, 112–14, 235, 294–5
United States 3, 5, 39, 176–9, 182–3, 254, 277
University Biological Station, Bergen, Norway 125
University of British Columbia 278
University of Cambridge, see Cambridge University
University of Copenhagen, Denmark 17, 111
University of Edinburgh, Scotland 120, 340n16
University of Harvard, see Harvard University
University of Indiana, Indiana 28, 350n4a
University of Leeds, England 138, 196
University of Oslo, Norway 111, 215, 315
University of Oxford, see Oxford University
University of Reading, see Reading University
University of St Andrews, Scotland 55, 62
University of Stanford, see Stanford University
University of Stockholm, Sweden 111
University of Toronto, Ontario 278
University of Upsala, Sweden 111
University of Yale, see Yale University
US Bureau of Fisheries 36, 176, 203, 237, 243, 268, 279, 307 (see also US Fish Commission)
Divisional Conference of 1927 184, 346n16
drawn into California sardine fishery research 243
focus on developing US industry 247
hatchery program a failure 178, 184
hatchery program carried over from US Fish Commission 177
informal scientific discussions with Canada, 1915–1916 179
lacks scientific staff for international studies 177–9
research not management agency 243, 247
392 Subject index

US Bureau of Fisheries continued
sees similarity between US and European fishery problems 178
US Congress
created US Fish Commission 44–6
effect on US Bureau of Fisheries of Civil Service Reform Act of 1924 182–3
fails to take action on California sardine fishery 243
failures and delays in ratifying negotiated treaties 177, 277
fishermen complain to 39–43, 178, 243
US Fish Commission 3, 35, 39, 43–51, 62, 94–5, 176, 239, 339n5, 339n6, 340n15 (see also US Bureau of Fisheries)
created as no-cost agency at Baird’s instigation, 1871 44–6
reorganized as US Bureau of Fisheries, 1903 176

Virgin population size, see Equilibrium population size
Vital statistics (see also Fishery statistics)
referring to demographic and life history studies 128–9
referring to fishery statistics 246–7
Vobla 196
Von Bertalanffy growth curve, see Mathematical models

War Experiments 163, 196–7, 200, 214, 296–300 (see also Great Fish Experiments)
change in size distribution 158–62, 297–9
changes in ecological relationships 196–7, 325, 332
decrease in growth rate 196, 296, 325, 327
demonstrated that effect of fishing is reversible 162
disagreement over interpreting effects 196–8
increase in catch rate 159, 296–9
Wasteful fishing practices 165
Weather data, correlate with year class strength 175
Whales 2, 26, 202, 214–15, 219–22, 225–9, 246, 338n7
 blue 225, 265–6
 fin 220, 225
 gray 92

White Sea 115
Whitefish 65–6
Whiting 127, 151
Winter flounder 66

Yale University, Connecticut 48, 218
Year class (see also Fluctuations in year class strength)
affected by adverse currents 192
affected by food abundance during larval period 192
affected by variations in drift of larvae 186
defined as ‘annual group’ 118
determined by conditions at moment of hatching 186, 192
economically important 166
fluctuations in 50, 132–3, 163, 169, 196, 202, 292, 325
less variable for whales than for fish 219–20
monitoring 164–73 (see also Predicting catches)
not correlated with eggs produced 169, 186–7, 191–2
special food during key early period 186–7
track in age distributions 132–3
Yeast, brewer’s 218–19
Yellow perch 66
Yield per recruit theory 237–8, 310–24
applied to North Sea plaice 323
counts of equal yield or isopleths 320–3
relationship to surplus production theory not apparent 328
Young fish (see also Immature fish)
destruction of 59, 119
differently distributed by area 73
growth and mortality rates 176–93
large numbers 76
number dependent on number of spawning fish 238
protection of 55, 117
slower growth when crowded 78
surveys 147
value to knowing distribution of 115–16

Zoares, see Benny
Zones of dominance 142