Dynamic Sun

Dynamic Sun presents a modern, comprehensive, and authoritative overview of the Sun, from its deep core to the outer corona, and the solar wind. Each chapter is written by eminent scientists in the field of solar physics. Chapters deal with solar models and neutrinos, seismic Sun, rotation of the solar interior, helioseismic tomography, solar dynamo, spectro-polarimetry, solar photosphere and convection, dynamics and heating of the solar chromosphere, solar transition region, solar MHD, solar activity, particle acceleration, radio observations of explosive energy releases on the Sun, coronal seismology, coronal heating, VUV solar plasma diagnostics, and the solar wind. Solar observing facilities are presented in the last chapter. With a foreword by eminent astrophysicist Eugene Parker, the twenty chapters of this book are all fully illustrated and have comprehensive reference lists. The book covers all major topics in solar physics, and is suitable for graduate students and researchers in solar physics, astrophysics, and astronomy.

BHOLA N. DWIVEDI is a Reader in Applied Physics at Banaras Hindu University, India, and a visiting scientist at the Max-Planck-Institut für Aeronomie, Germany. He has over twenty-two years teaching experience, and broad experience in Solar Physics, with involvement in almost all the major solar space experiments, including Skylab, Yohkoh, SOHO, and TRACE. His current research interests include physics and diagnostics of solar X-ray and EUV emission processes, and waves and oscillations in the solar atmosphere.

Dynamic Sun

Edited by **B. N. Dwivedi** Banaras Hindu University, India

Foreword by E. N. Parker

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521810579

© Cambridge University Press 2003

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003 This digitally printed version (with corrections) 2007

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Dynamic sun / edited by B. N. Dwivedi.
p. cm.
Includes bibliographical references and index.
ISBN 0 521 81057 4
1. Sun. I. Dwivedi, B. N., 1950–

QB521 .D96 2003 523.7-dc21 2002073928

ISBN 978-0-521-81057-9 hardback ISBN 978-0-521-03808-9 paperback

Contents

Foreword xv E.N. Parker

1 **Dynamic Sun: an introduction** 1 B.N. Dwivedi 1.1 Introduction 1 1.2 Main contents 2 1.3 Concluding remarks 7 2 Solar models: structure, neutrinos and helioseismological properties 8 J.N. Bahcall, S. Basu and M.H. Pinsonneault Introduction 8 2.1 2.2 Standard solar model 9 2.3 Variant and deviant solar models 11 2.4 Neutrino physics 14 2.4.1Standard model 16 2.4.2 Calculated uncertainties 18 2.4.3 NACRE charged particle fusion rates 20 2.4.4 Variant and deviant models 21 2.4.5 The electron number density 21 2.5 Sound speeds 24 2.6 Discussion and summary 29 2.6.1 Standard solar model: current epoch 29 2.6.2 Neutrino fluxes and related quantities 29

v

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

vi	Contents
2.6.3	Sound speeds 31
	References 32
3	Seismic Sun 36
	S.M. Chitre and H.M. Antia
3.1	Introduction 36
3.2	Structure equations and the Standard Solar Model 37
3.3	Seismology of the Sun 39
3.4	Inferences about the solar structure 41
	References 52
4	Rotation of the solar interior 55
	J. Christensen-Dalsgaard and M.J. Thompson
4.1	Introduction 55
4.2	Helioseismic probes of the solar interior 57
4.2.1	Rotational effects on the oscillation frequencies 59
4.2.2	Data on rotational splitting 60
4.2.3	Inversion for solar internal rotation 63
4.3	The solar internal rotation 64
4.3.1	Rotation of the solar convection zone 66
4.3.2	The tachocline 68
4.3.3	The radiative interior 70
4.4	Modelling solar rotation 71
4.5	Final remarks 73
	References 74
5	Helioseismic tomography 78 A.G. Kosovichev
5.1	Introduction 78
5.2	Method of helioseismic tomography 79
5.3	The ray approximation 84
5.4	The Born approximation 85
5.5	Inversion methods 87
5.6	Diagnostics of supergranulation 88
5.7	Large-scale flows 90
5.8	Meridional circulation 91
5.9	Emerging active regions 91
5.10	Structure and dynamics of sunspots 93

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

Contents vii

5.11	Imaging the far side of the Sun 97
5.12	Conclusion 99
	References 100
6	The solar dynamo as a model of the solar cycle 103 <i>A.R. Choudhuri</i>
6.1	Introduction 103
6.2	Relevant observations 104
6.3	Some basic MHD considerations 108
6.4	The turbulent dynamo and mean field MHD 110
6.5	Dynamo in the overshoot layer? 114
6.6	The Babcock–Leighton approach and advective dynamo models 117
6.7	Miscellaneous ill-understood issues 121
6.8	Conclusion 123
	References 124
7	Spectro-polarimetry 128 J.O. Stenflo
7.1	Remote sensing of the Sun's magnetic field: an introduction 128
7.2	Observational techniques and their limitations 130
7.3	Zeeman-effect diagnostics 133
7.4	The Hanle effect 138
7.5	Optical pumping 142
7.6	Concluding remarks 146
	References 146
8	Solar photosphere and convection 148 \mathring{A} . Nordlund
8.1	Introduction 148
8.2	Dynamic and thermal properties of the solar photosphere 150
8.3	Spectral line synthesis 152
8.4	P-mode diagnostics 156
8.5	Large scale velocity fields 159
8.6	Consequences for coronal and chromospheric heating 162

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter <u>More information</u>

viii	Contents
8.7	Concluding remarks 162
	References 163
9	The dynamics of the quiet solar chromosphere 165
	W. Kalkofen, S.S. Hasan and P. Ulmschneider
9.1	Introduction 165
9.2	Oscillations in the nonmagnetic chromosphere 166
9.3	Oscillations in the magnetic network 172
	References 178
10	Heating of the solar chromosphere 181
	P. Ulmschneider and W. Kalkofen
10.1	Introduction 181
10.2	Empirical chromosphere models 182
10.3	Energy balance and the necessity of mechanical heating 184
10.4	Overview of the heating mechanisms 187
10.5	Search for the important heating mechanisms 188
10.6	Summary and outlook 193
	References 195
11	The solar transition region 196
	O. Kjeldseth-Moe
11.1	Introduction 196
11.2	Emission from the transition region plasma 197
11.2.1	The emitted intensity 197
11.2.2	Underlying approximations and concepts 198
11.3	Constant conductive flux and the thin transition region 200
11.4	The extended transition region 201
11.4.1	Excess emission at temperatures below 10 ⁵ K 201
11.4.2	The EUV flash spectrum: direct observation of an
	inhomogeneous transition region 202
11.4.3	A transition region structured by the magnetic field 202
11.4.4	Spicules and the transition region 202
11.4.5	An extremely fine structured transition region? 203
11.4.6	Unresolved fine structures 204
11.4.7	Unresolved dynamic evolution? 205
11.5	The redshifted transition region 205
11.5.1	Line shifts in the transition region 205

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

Contents ix

11.5.2	Red- or blueshifts from siphon flows and spicules? 206
11.5.3	Red shifts as signatures of downward propagating waves 207
11.6	The dynamic and time dependent transition region 208
11.6.1	Morphology of transition region loops 208
11.6.2	Velocities in transition region loops 209
11.6.3	Rapid time changes in the emission 210
11.7	Conclusion – a new concept for the transition region 212
	References 214
12	Solar Magnetohydrodynamics 217 E.R. Priest
12.1	Introduction 217
12.2	Magnetohydrodynamic equations 219
12.2.1	Flux tubes 219
12.2.2	Basic equations 219
12.2.3	Induction equation 220
12.2.4	The Lorentz force 223
12.3	Magnetohydrostatics 224
12.3.1	Introduction 224
12.3.2	Potential fields 225
12.3.3	Force-free fields 226
12.3.4	Magnetic flux tubes 228
12.4	Magnetohydrodynamic waves 229
12.4.1	Sound waves 229
12.4.2	Alfvén waves 231
12.4.3	Compressional Alfvén waves 232
12.4.4	Magnetoacoustic waves 233
12.4.5	Shock waves 233
12.5	Concluding comment 237
	References 237
13	Solar activity 238 Z. Švestka
13.1	Solar cycles 238
13.2	Active regions 240
13.3	Complexes of activity and interconnecting loops 243
13.4	Surges, jets, and sprays 244
13.5	Solar flares 245

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

x Contents

13.6	Coronal mass ejections and coronal storms 249
13.7	Relation between CMEs and flares 252
13.8	Other sources of CMEs 255
13.9	Causes of instabilities 255
13.10	Accelerated particles 256
13.11	Impacts of solar activity at the Earth 257
	References 259
14	Particle acceleration262A.G. Emslie and J.A. Miller
14.1	Introduction 262
14.2	Observational constraints 263
14.2.1	Electrons 264
14.2.2	Ions 266
14.3	Direct electric field acceleration 266
14.4	Stochastic acceleration 271
14.4.1	The cascading turbulence model 276
14.4.2	Baseline case 278
14.5	Conclusions 285
	References 285
15	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White
15 15.1	Radio observations of explosive energy releases on the Sun 288
	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White
15.1	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288
15.1 15.2	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard
15.1 15.2 15.2.1	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289
15.1 15.2 15.2.1 15.2.2	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289 Time profiles of millimeter bursts 291
15.1 15.2 15.2.1 15.2.2 15.2.2	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289 Time profiles of millimeter bursts 291 Observations of millimeter and microwave bursts 293
15.1 15.2 15.2.1 15.2.2 15.2.3 15.2.4	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289 Time profiles of millimeter bursts 291 Observations of millimeter and microwave bursts 293 Simple spiky bursts in microwaves 293 Microwave and hard X-ray observations of footpoint- emission
15.1 15.2 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289 Time profiles of millimeter bursts 291 Observations of millimeter and microwave bursts 293 Simple spiky bursts in microwaves 293 Microwave and hard X-ray observations of footpoint- emission from flaring loops 294
15.1 15.2 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 15.2.6	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289 Time profiles of millimeter bursts 291 Observations of millimeter and microwave bursts 293 Simple spiky bursts in microwaves 293 Microwave and hard X-ray observations of footpoint- emission from flaring loops 294 Double loop configuration of flaring regions 295
15.1 15.2 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 15.2.6 15.2.7	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White Introduction 288 Flare studies 289 Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289 Time profiles of millimeter bursts 291 Observations of millimeter and microwave bursts 293 Simple spiky bursts in microwaves 293 Microwave and hard X-ray observations of footpoint- emission from flaring loops 294 Double loop configuration of flaring regions 295 Modeling of microwave flares 297
15.1 15.2 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 15.2.6 15.2.7 15.3	Radio observations of explosive energy releases on the Sun 288M.R. Kundu and S.M. WhiteIntroduction 288Flare studies 289Millimeter flare emission: comparison with microwave and hardX-rays/gamma rays 289Time profiles of millimeter bursts 291Observations of millimeter and microwave bursts 293Simple spiky bursts in microwaves 293Microwave and hard X-ray observations of footpoint- emissionfrom flaring loops 294Double loop configuration of flaring regions 295Modeling of microwave flares 297Small scale energy releases on the Sun 299

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

Contents xi

15.3.2	Radio observations of coronal X-ray jets 303
15.3.2.1	Meterwave observations of jets 303
15.3.2.2	A statistical study of jets in microwaves 305
15.3.3	Active region transient brightenings (ARTB's) 305
15.3.3.1	Radio (VLA) observations 306
15.3.3.2	Radio (Nobeyama) observations 307
15.3.3.3	Radio (OVRO) observations 307
15.3.3.4	Transient brightenings in quiet Sun regions 308
15.3.3.5	Implications of transients for coronal heating 308
15.4	Concluding remarks 310
	References 311
16	Coronal oscillations 314
	V.M. Nakariakov
16.1	Introduction 314
16.2	The method of MHD coronal seismology 315
16.3	Detectability of MHD waves in the corona 316
16.4	Compressive waves in polar plumes 318
16.4.1	Observations 318
16.4.2	Interpretation as slow magnetoacoustic waves 319
16.5	Search for Alfvén waves 322
16.5.1	Theoretical aspects 322
16.5.2	Observational aspects 323
16.6	Compressive waves in long loops 324
16.6.1	Observations and interpretation 324
16.6.2	Seismologic implications 327
16.7	Flare-generated oscillations of coronal loops 327
16.7.1	Observations 327
16.7.2	Determination of the magnetic field 329
16.7.3	Determination of transport coefficients 330
16.8	EIT or coronal Moreton waves 331
16.9	Conclusions 332
	References 332
17	Probing the Sun's hot corona 335
	K.J.H. Phillips and B.N. Dwivedi
17.1	The solar corona 335
17.2	The spacecraft era 338

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

xii Contents

17.3	Heating of the corona: theory 341
17.4	Observational evidence: transient brightenings 344
17.5	Physical characteristics of the corona 346
17.6	Observational evidence: wave motions 349
17.7	Conclusions 351
	References 351
18	Vacuum-ultraviolet emission line diagnostics for solar plasmas 353 B.N. Dwivedi, A. Mohan and K. Wilhelm
18.1	The Sun in the ultraviolet emission lines 353
18.1.1	SUMER spectrograph 354
18.2	Atomic processes 355
18.2.1	Emission lines 356
18.2.2	Coronal model approximation 357
18.2.3	Electron collisional excitation and de-excitation 358
18.2.4	Proton collisional excitation and de-excitation 358
18.2.5	Ionization balance 359
18.3	Plasma diagnostics 359
18.3.1	Emission measure analysis 360
18.3.2	Electron-density diagnostics 362
18.3.3	Electron-temperature diagnostics 363
18.3.4	Abundance determination 364
18.4	Some new results from SUMER 365
18.4.1	Coronal holes and the solar wind 365
18.4.2	The "red/blue" Sun 367
18.4.3	Explosive events 368
18.4.4	Sunspot transition region oscillations 369
18.4.5	Solar flare observed by SUMER 370
18.5	Conclusions 370
	References 371
19	Solar wind 374 E. Marsch, W.I. Axford and J.F. McKenzie
19.1	The solar wind 374
19.2	Basic energy considerations 375
19.2.1	Historic restrospective: Parker's model 375
19.2.2	Problems with a polytropic single-fluid model 375

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

Contents xiii

19.2.3	Energy requirements on heavy ions 376
19.3	Solar corona and wind in three dimensions 377
19.3.1	Types of solar wind 377
19.3.2	Three-dimensional solar corona 377
19.3.3	Electron density and temperature 379
19.4	Fast solar wind 379
19.4.1	Coronal and in-situ observations 379
19.4.2	Basic model equations 383
19.4.3	Heating functions 385
19.4.4	Some results from model calculations 386
19.4.5	The wave spectrum: origin, evolution and dissipation 389
19.4.6	Critical issues in the models 390
19.5	Slow solar wind 391
19.5.1	Observations of slow flows 391
19.5.2	Models of the closed corona and slow wind 392
19.6	Sources of the solar wind 394
19.6.1	Chromospheric network 394
19.6.2	Network pico-flares 395
19.6.3	Heating of the quiet corona 396
19.6.4	Some consequences of network flares 396
19.7	Problems 397
19.7.1	Problems with the observations 397
19.7.2	Problems with the theory 398
19.8	Conclusions 399
	References 400
20	Solar observing facilities 403 B. Fleck and C.U. Kelller
20.1	Introduction 403
20.2	Ground-based instruments 403
20.2.1	Present 406
20.2.1.1	General purpose telescopes 406
20.2.1.2	Synoptic telescopes 408
20.2.1.3	Synoptic networks 412
20.2.1.4	Synoptic radio telescopes 413
20.2.2	Future plans 414
20.2.2.1	General purpose telescopes 414
20.2.2.2	Synoptic telescopes 415

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

xiv Contents

20.2.2.3	Radio telescopes 416
20.3	Current and planned suborbital missions 416
20.4	Space missions 417
20.4.1	In operation 417
20.4.1.1	Ulysses 417
20.4.1.2	Yohkoh 418
20.4.1.3	Wind 419
20.4.1.4	SOHO 420
20.4.1.5	ACE 423
20.4.1.6	TRACE 423
20.4.1.7	GOES/Solar X-ray imager 424
20.4.1.8	CORONAS-F 424
20.4.1.9	Genesis 425
20.4.1.10	HESSI 425
20.4.2	In development and under study 426
20.4.2.1	Solar-B 426
20.4.2.2	STEREO 427
20.4.2.3	Space Solar Telescope–SST 428
20.4.2.4	SDO 428
20.4.2.5	Solar Orbiter 429
20.4.2.6	Solar probe 430
20.4.2.7	Solar sentinels 432
20.5	Conclusions 432
	References 432
	Index 435

Foreword

The Sun has posed a challenge to science since the telescope was first turned on it by Galileo, Schreiner, and others around 1610, and the Sun is no less mysterious today for all of our extensive knowledge of its structure. For the improving sensitivity and resolution of the observations, aimed at understanding the old mysteries, have led to the discovery of new mysteries. We have come a long way since 1610, with the overall static structure of the Sun evidently now firmly established. On the other hand, we have a long way to go to understand solar variability and magnetic activity in terms of the basic principles of physics. Observations and theory have progressed to a detailed description of the surface activity down to scales of the order of a hundred km. Unfortunately much of the action lies at still smaller scales, and the magnetic activity deep under the surface cannot be observed directly, so that inference replaces direct observation. Much of what we see at the surface defies theoretical explanation, e.g. the intense fibril structure of the magnetic field, the formation of sunspots, the remarkable penumbral structure of the sunspot, etc. We can describe these phenomena, but we cannot show yet why the Sun is compelled by the basic laws of physics (Newton, Maxwell, Boltzmann, Lorentz, et al) to produce them.

The review articles that collectively make up this book are intended as a survey of existing knowledge, which is substantial. It is the starting point for addressing the formidable scientific tasks that lie ahead. We should take heart, then, from the formidable scientific challenges that have already been overcome. For instance, a hundred years after Newton propounded the theory of mechanics and gravitation, the laboratory measurement of the gravitational constant G by Cavendish in 1797 provided the mass of the Sun. Avogadro's number was determined only in 1811. Then, followed by the development of thermodynamics and the kinetic theory of

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter More information

xvi Foreword

gases, the first self - gravitating polytropic models of the Sun were constructed in the late 19th century, indicating multi-million degree temperatures in the central region.

It must be appreciated that the elemental composition of the Sun was baffling for several decades, with the solar spectrum dominated by the lines of C,O,Ca,Na,Si,Fe, etc. on the one hand, while the theoretical models of the Sun required a molecular weight closer to H on the other. Theory of atomic physics and radiative transfer eventually made it clear that the Sun is mostly hydrogen and helium, with a photosphere too cool to excite their emission. The theoretical recognition of the negative hydrogen ion in the period 1940 - 1950 then explained the high photospheric opacity.

The advent of nuclear physics in the 1930's led to the realization that the thermal energy of the Sun is supplied by thermonuclear reactions in the core, dominated by the proton-proton chain and the carbon cycle. This laid to rest the traditional speculations that the energy was supplied by continuing gravitational contraction or by the infall of comets and asteroids.

Thus by 1950 the essential physics was in hand and theoretical models of the internal structure of the Sun could move forward, with continuing improvement in the calculation of the opacity of the solar gas as a function of density and temperature. Fortunately the recognition of helioseismology by 1980 provided a comprehensive precision test of the theoretical models of the solar interior. With the inclusion of such subtleties as the gravitational settling of the heavier ions, and the accumulation of He in the thermonuclear core, the theoretical model of the solar interior now provides the speed of sound as a function of radial distance that agrees everywhere with the speed of sound inferred from helioseismology to within the observational uncertainties of about one part in 500. So in the last decade we have achieved a firm standard model for the solar interior, based on the simple assumption that the original Sun was chemically homogeneous.

This state of affairs has proved essential in pursuing the observed solar neutrino emission from the thermonuclear core, the observed flux being only 0.3 - 0.5 of the theoretical value. Given that the internal structure of the Sun is now known accurately, it would appear that the discrepancy lies with the physics of the neutrino, initially assumed to be a stable particle. Neutrino oscillations between the e, μ , τ neutrino states are presently under intense experimental and observational study, with the rest mass of the neutrino already established experimentally as nonvanishing.

This brief but heroic history of solar physics is the platform from which we attack the contemporary array of mysteries of the Sun, originating in the vigorous and erratic generation of magnetic field in the convective zone. The convective zone is an unavoidable feature of a star like the Sun. It constitutes the outer 2/7 of the solar radius, across which the temperature falls from $2x10^6$ K to $5.6x10^3$ K (at the visible surface). The convection arises from the fact that below $2x10^6$ K the radiation cannot handle the outward heat flux without the temperature declining outward so fast that the hot gas below continually changes places with the cool gas above.

Cambridge University Press 978-0-521-03808-9 - Dynamic Sun Edited by B. N. Dwivedi and E. N. Parker Frontmatter <u>More information</u>

Foreword xvii

The hydrodynamic antics of the convection have yet to be fully understood. Presumably the convection is responsible for the nonuniform rotation of the Sun, with a rotation period of 25 days at the equator and something in excess of 30 days at the poles. However, helioseismology shows the surprising fact that the surface rotation extends vertically downward to the bottom of the convective zone, with the radiative interior rotating approximately rigidly with an intermediate period of about 27 days. The best numerical hydrodynamic models of the convection have yet to duplicate this peculiar internal rotation profile, showing instead an angular velocity that is primarily a function of distance from the spin axis of the Sun.

The convective hydrodynamics becomes vastly more complicated and baffling when the magnetic fields are included. The essential point is that the gas is ionized and, therefore, on the large scale of the Sun, the gas cannot support any significant electric field in its own moving frame of reference. Consequently on all but the smallest scales the magnetic field is obliged to move bodily with the convecting gas, becoming enormously stretched and tangled. The magnetic fields appear to be sustained by stretching and winding in the nonuniform rotation and the convective cells.

One of the first puzzles to confront the theoretician is the very small resistive diffusion provided by the resistivity of the gas (~ $10^4 \text{ cm}^2/\text{sec}$) and the rapid diffusion (~ $10^{11} \text{ cm}^2/\text{sec}$) required to understand the generation of magnetic fields over dimensions greater than 10^{10} cm in only a few years. One turns to the concept of turbulent diffusion, of the order of $0.1\lambda v$ for eddies with scale λ and velocity v. This automatically supplies diffusivities of the desired order of magnitude. However, with present estimates of the mean azimuthal magnetic field of $3x10^3$ Gauss or more in the lower convective zone, it appears that the magnetic field is far too strong to be carried about at random by the turbulent convection. Further it appears that the general magnetic field of the Sun is in an intensely fibril state throughout the convective zone. Estimates of the fibril intensity range from $1.5x10^3$ Gauss at the visible surface to thirty or more times as much at the base of the convective zone. The fibril form of the field implies an enhanced magnetic energy for a given total magnetic flux, and the question is why the field exists in this elevated energy state.

The vigorous interaction of neighboring fibrils in the tenuous atmosphere above the visible surface involves rapid reconnection and dissipation of magnetic energy in that tenuous atmosphere. Million degree temperatures are the rule at coronal levels and fast particle populations, occasionally up to 10¹⁰eV per particle, are created in the larger flares. The background population of microflares and nanoflares generates an ambient and rapidly varying suprathermal particle population. The solar X-ray corona is one manifestation of this magnetic dissipation, while coronal holes and the fast solar wind streams are another. Coronal mass ejections and large flares arise from the large-scale convective distortion of the magnetic fields arching above the visible surface.

To reiterate the present state of solar physics, we understand enough of the basic principles of magnetohydrodynamics and plasma physics to describe the gross

xviii Foreword

features of the observed magnetic activity. However, we do not understand enough to show how the activity follows from first principles. So we do the best we can, using magnetohydrodynamics in the large and more complicated plasma physical processes in the small, which can be very complex indeed in the intense thin current sheets of a flare, large or small. This volume provides a brief review of the intellectual properties presently in hand.

> E.N. Parker 30 October 2001