Understanding the physics of heavy quarks gives physicists the unique opportunity to test the predictions of Quantum Chromodynamics and the Standard Model. This is the first introductory text to this exciting new area of high-energy physics.

The book begins with a review of the standard model, followed by the basics of heavy quark spin-flavor symmetry and how it can be applied to the classification of states, decays, and fragmentation. Heavy quark effective theory is then developed, including the radiative and $1/m_Q$ corrections, and applied to the study of hadron masses, form factors, and inclusive decay rates. The authors also discuss the application of chiral perturbation theory to heavy hadrons.

Written by two world leaders, the presentation is clear, original, and thoroughly modern. To aid the reader, many of the key calculations are performed step by step, and problems and a concise review of the literature are provided at the end of each chapter. This lucid volume provides graduate students with an ideal introduction to the physics of heavy quarks, and more experienced researchers with an authoritative reference to the subject.

Aneesh Manohar is Professor of Physics at the University of California, San Diego. After receiving his Ph.D. from Harvard University, Professor Manohar held positions at Harvard and the Massachusetts Institute of Technology before moving to the University of California, San Diego, where he has been since 1989. He has been a Scientific Associate at CERN, Geneva, a Visiting Fellow at Princeton University, and Iberdrola Visiting Professor at the University of Valencia. He was also awarded the A. P. Sloan Fellowship from 1987 to 1990.

Mark Wise is the John A. McCone Professor of High Energy Physics at the California Institute of Technology. After receiving his Ph.D. from Stanford, he was a Junior Fellow at Harvard University before moving to the California Institute of Technology in 1983. Professor Wise also held the A. P. Sloan Fellowship from 1984 to 1987.
CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS,
NUCLEAR PHYSICS AND COSMOLOGY
10

General Editors: T. Ericson, P. V. Landshoff

1. K. Winter (ed.): Neutrino Physics
2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the ‘New Particles’ and the Parton Model
4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
5. C. Grupen: Particle Detectors
6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
7. B. Andersson: The Lund Model
9. I. I. Bigi and A. I. Sanda: CP Violation
10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
Heavy Quark Physics

ANEESH V. MANOHAR
University of California,
San Diego

MARK B. WISE
California Institute of Technology
To our wives,
Elizabeth and Jacqueline
Contents

Preface ix

1 Review 1
 1.1 The standard model 1
 1.2 Loops 8
 1.3 Composite operators 15
 1.4 Quantum chromodynamics and chiral symmetry 17
 1.5 Integrating out heavy quarks 24
 1.6 Effective Hamiltonians for weak decays 25
 1.7 The pion decay constant 31
 1.8 The operator product expansion 32
 1.9 Problems 42
 1.10 References 43

2 Heavy quarks 44
 2.1 Introduction 44
 2.2 Quantum numbers 45
 2.3 Strong decays of excited heavy hadrons 48
 2.4 Fragmentation to heavy hadrons 52
 2.5 Covariant representation of fields 54
 2.6 The effective Lagrangian 58
 2.7 Normalization of states 60
 2.8 Heavy meson decay constants 61
 2.9 $\bar{B} \rightarrow D^{(*)}$ form factors 63
 2.10 $\Lambda_c \rightarrow \Lambda$ form factors 70
 2.11 $\Lambda_b \rightarrow \Lambda_c$ form factors 72
 2.12 Problems 72
 2.13 References 75
3 Radiative corrections

3.1 Renormalization in HQET 77

3.2 Matching between QCD and HQET 84

3.3 Heavy-light currents 87

3.4 Heavy-heavy currents 95

3.5 Problems 99

3.6 References 100

4 Nonperturbative corrections

4.1 The $1/m_Q$ expansion 102

4.2 Reparameterization invariance 104

4.3 Masses 105

4.4 $\Lambda_b \to \Lambda_c e\bar{\nu}_e$ decay 107

4.5 $\bar{B} \to D^{(s)} e\bar{\nu}_e$ decay and Luke’s theorem 112

4.6 Renormalons 115

4.7 $v \cdot A = 0$ gauge 123

4.8 NRQCD 124

4.9 Problems 127

4.10 References 129

5 Chiral perturbation theory

5.1 Heavy mesons 131

5.2 g_π in the nonrelativistic constituent quark model 136

5.3 $\bar{B} \to \pi e\bar{\nu}_e$ and $D \to \pi e\bar{\nu}_e$ decay 138

5.4 Radiative D^* decay 141

5.5 Chiral corrections to $\bar{B} \to D^{(s)} e\bar{\nu}_e$ form factors 146

5.6 Problems 149

5.7 References 150

6 Inclusive weak decay

6.1 Inclusive semileptonic decay kinematics 151

6.2 The operator product expansion 157

6.3 Differential decay rates 164

6.4 Physical interpretation of $1/m_b^2$ corrections 166

6.5 The electron endpoint region 168

6.6 $|V_{cb}|$ from inclusive decays 173

6.7 Sum rules 175

6.8 Inclusive nonleptonic decays 178

6.9 $B_s - \bar{B}_s$ mixing 181

6.10 Problems 186

6.11 References 187

Index 189
Preface

We are entering an exciting era of B meson physics, with several new high luminosity facilities that are about to start taking data. The measurements will provide information on quark couplings and CP violation. To make full use of the experimental results, it is important to have reliable theoretical calculations of the hadronic decay amplitudes in terms of the fundamental parameters in the standard model Lagrangian. In recent years, many such calculations have been performed using heavy quark effective theory (HQET), which has emerged as an indispensible tool for analyzing the interactions of heavy hadrons. This formalism makes manifest heavy quark spin-flavor symmetry, which is exact in the infinite quark mass limit, and allows one to systematically compute the correction terms for finite quark mass.

This text is designed to introduce the reader to the concepts and methods of HQET, developing them to the stage where explicit calculations are performed. It is not intended to be a review of the field, but rather to serve as an introduction accessible to both theorists and experimentalists. We hope it will be useful not just to those working in the area of heavy quark physics but also to physicists who work in other areas of high energy physics but want a deeper appreciation of HQET methods. We felt that if the book is to serve this role, then it is important that it not be too long. An effort was made to keep the book at the 200-page level and this necessitated some difficult decisions on which subjects were to be covered.

The material presented here is not uniform in its difficulty. Section 1.8 on the operator product expansion, Section 4.6 on renormalons, and Chapter 6 on inclusive B decays are considerably more difficult than the other parts of the book. Although this material is very important, depending on the background of the reader, it may be useful to skip it on first reading. Chapter 3 involves some familiarity with radiative corrections in field theory as studied, for example, in a graduate course that discusses renormalization in quantum electrodynamics. Readers less comfortable with loop corrections can read through the chapter, accepting the results for the one-loop diagrams, without necessarily going through
Preface

the detailed computations. A section on problems at the end of each chapter is intended to give the reader more experience with the concepts introduced in that chapter. The problems are of varying difficulty and most can be completed in a fairly short period of time. Three exceptions to this are Problem 2 of Chapter 3 and Problems 3 and 7 of Chapter 6, which are considerably more time-consuming.

This book could serve as a text for a one-semester graduate course on heavy quark physics. The background necessary for the book is quantum field theory and some familiarity with the standard model. The latter may be quite modest, since Chapter 1 is devoted to a review of the standard model.

The only references that are given in the text are to lattice QCD results or to experimental data that cannot be readily found by consulting the Particle Data Book (http://pdg.lbl.gov). However, at the end of each chapter a guide to some of the literature is given. The emphasis here is on the earlier papers, and even this list is far from complete.

We have benefited from the comments given by a large number of our colleagues who have read draft versions of this book. Particularly noteworthy among them are Martin Gremm, Elizabeth Jenkins, Adam Leibovich, and Zoltan Ligeti, who provided a substantial number of valuable suggestions.

Updates to the book can be found at the URL:
http://einstein.ucsd.edu/hqbook.