

THE PHYSICS OF SYNCHROTRON RADIATION

This book explains the underlying physics of synchrotron radiation and derives its main properties. It is divided into four parts. The first covers the general case of the electromagnetic fields created by an accelerated relativistic charge. The second part concentrates on the radiation emitted by a charge moving on a circular trajectory, deriving its distribution in angle, frequency, and polarization modes. The third part looks at undulator radiation. Starting from the simple case of a plane weak undulator with a spatially periodic field that emits quasi-monochromatic radiation, the author then discusses strong undulators, emitting more complicated radiation and containing higher harmonics. More general undulators are also considered, with a non-planar (helical) electron trajectory or non-harmonic field. The final part deals with applications and investigates the optics of synchrotron radiation dominated by diffraction due to the small opening angle. It also includes a description of electron-storage rings as radiation sources and the effect of the emitted radiation on the electron beam.

This book provides a valuable reference for scientists and engineers in the field of accelerators, and for all users of synchrotron radiation.

ALBERT HOFMANN received his doctorate in physics from the ETH (Swiss Federal Institute of Technology) in Zürich in 1964. From 1966 to 1972 he was a Research Fellow at the Cambridge Electron Accelerator, a joint laboratory of Harvard University and MIT. He then spent the next ten years working as Senior Physicist at CERN, Geneva. In 1983 he became a professor at Stanford University, working on the Stanford Linear Collider (SLC) and on optimizing the storage rings SPEAR and PEP for synchrotron-radiation use. He spent two years as head of the SLAC beam-dynamics group. He then returned to CERN, in 1987, and was jointly responsible for the commissioning of the Large Electron–Positron ring (LEP). After its completion, he worked on accelerator-physics problems with this machine until his retirement from CERN in 1998.

Over the years Albert Hofmann has done consulting work for other machines, such as the European Synchrotron Radiation Facility (ESRF), the Synchrotron Radiation Research Center (SRRC) in Taiwan, and the Swiss Light Source (SLS). He has taught in over 25 short-term schools on accelerator physics and synchrotron radiation, and has published numerous papers. In 1992 he was elected to become a fellow of the American Physical Society, and in 1996 he received the Robert Wilson Prize from this Society. In 2001 he obtained the degree Doctor honoris causa from the University of Geneva.

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS NUCLEAR PHYSICS AND COSMOLOGY 20

General Editors: T. Ericson, P. V. Landshoff

- 1. K. Winter (ed.): Neutrino Physics
- 2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
- 3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the 'New Particles' and the Parton Model
- 4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
- 5. C. Grupen: Particle Detectors
- 6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
- 7. B. Andersson: The Lund Model
- 8. R. K. Ellis, W. J. Stirling and B. R. Webber: QCD and Collider Physics
- 9. I. I. Bigi and A. I. Sanda: CP Violation
- 10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
- R. K. Bock, H. Grote, R. Frühwirth and M. Regler: Data Analysis Techniques for High-Energy Physics, Second edition
- 12. D. Green: The Physics of Particle Detectors
- 13. V. N. Gribov and J. Nyiri: Quantum Electrodynamics
- 14. K. Winter (ed.): Neutrino Physics, Second edition
- 15. E. Leader: Spin in Particle Physics
- 16. J. D. Walecka: Electron Scattering for Nuclear and Nucleon Structure
- 17. S. Narison: QCD as a Theory of Hadrons
- 18. J. F. Letessier and J. Rafelski: Hadrons and Quark-Gluon Plasma
- 19. A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann: Pomeron Physics and QCD
- 20. A. Hofmann: The Physics of Synchrotron Radiation

THE PHYSICS OF SYNCHROTRON RADIATION

ALBERT HOFMANN

Formerly CERN, Geneva

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521308267

© Albert Hofmann 2004

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004
This digitally printed version 2007

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Hofmann, Albert, 1933-

The physics of synchrotron radiation / Albert Hofmann.

p. cm. – (Cambridge monographs on particle physics, nuclear physics, and cosmology; 20)

Includes bibliographical references and index.

ISBN 0 521 30826 7

1. Synchrotron radiation. I. Title. II. Series. QC793.5.E627H64 2003 539.7'35 – dc21 2003043939

ISBN 978-0-521-30826-7 hardback ISBN 978-0-521-03753-2 paperback

To my wife Elisabeth for her support

Contents

	Pr	e face		page xv11
	Ac	cknow	ledgments	xix
	No	otatio	\imath	XX
Part I	In	trodu	action	1
	1	A qu	ualitative treatment of synchrotron radiation	3
		1.1	Introduction	3
		1.2	The opening angle	3
		1.3	The spectrum emitted in a long magnet	4
		1.4	The spectrum emitted in a short weak magnet	5
		1.5	The wave front of synchrotron radiation	6
		1.6	The polarization	8
	2	Fiel	ds of a moving charge	9
		2.1	Introduction	9
		2.2	The particle motion relevant to the retarded potentials	9
		2.3	The retarded electromagnetic potentials	11
		2.4	The fields of a moving charge	14
		2.5	A discussion of the field equations	18
		2.6	Examples	20
			2.6.1 The field of a charge moving with constant velocity	20
			2.6.2 The field of a non-relativistic oscillating charge	27
		2.7	The near field and the far field	34
		2.8	The Fourier transform of the radiation field	35
			2.8.1 The Fourier integral of the field	35
			2.8.2 The periodic motion	37
			2.8.3 The motion with a periodic velocity	38
	3	The	emitted radiation field and power	40
		3.1	Introduction	40
		3.2	The emitted and received powers	41
		3.3	Transverse and longitudinal acceleration	42
			3.3.1 The transverse acceleration	42
			3.3.2 The longitudinal acceleration	45

X		Contents	
	3.4	The ultra-relativistic case for transverse acceleration	48
	3.5	The angular spectral energy and power density	51
Part II	Synch	rotron radiation	55
	4 Syı	nchrotron radiation: basic physics	57
	4.1		57
	4.2	2 The geometry and approximations	58
		4.2.1 The particle motion	58
		4.2.2 The dipole approximation	59
		4.2.3 The relevant motion	61
		4.2.4 The ultra-relativistic approximation	62
	4.3	The continuous spectrum radiated on a circular arc	65
		4.3.1 The Fourier-transformed field	65
		4.3.2 The spectral power density of the radiation	67
	4.4	The radiation emitted on a circular arc in the time domain	68
		4.4.1 The radiation field in the time domain	68
		4.4.2 The radiated energy and power in the time domain	71
		4.4.3 The radiation field in the time and frequency domains	72
	4.5	The line spectrum radiated on closed circles	73
		4.5.1 The relevant motion	73
		4.5.2 The line spectrum of the electric field	74
		4.5.3 The power of the line spectrum	77
		4.5.4 The relation between the continuous and the line	
		spectra	79
	5 Syı	nchrotron radiation: properties	81
	5.1		81
	5.2	27	81
	5.3		83
		5.3.1 The general distribution	83
		5.3.2 The distribution at low frequencies	85
		5.3.3 The distribution at high frequencies	89
	5.4	1	89
		5.4.1 The general spectrum	89
		5.4.2 The spectrum at low frequencies	92
		5.4.3 The spectrum at high frequencies	92
		5.4.4 The spectrum integrated up to a given frequency	92
		5.4.5 The integral over all frequencies	93
	5.5	ε	94
		5.5.1 The angular distribution as a function of frequency	94
	5.6	5.5.2 The frequency-integrated angular distribution	96
	5.6	<u> </u>	98
		5.6.1 The description of linear and circular polarization5.6.2 The linear polarization	98
		5.6.2 The linear polarization	102

5.6.3 The elliptical polarization 105					Contents	xi
5.7 The photon distribution 110				5.6.3	The elliptical polarization	105
6 A qualitative treatment 117 6.1 Introduction 117 6.2 The interference 118 6.3 The undulator radiation as a wave front 120 6.4 The modulation of the emitted field 121 6.5 The weak undulator in the laboratory and moving frames 121 6.6 The strong undulator in the laboratory and moving frames 123 6.7 The helical undulator 124 6.8 Undulators and related devices 124 7 The plane weak undulator 126 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.3 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 136			5.7	The ph		110
6.1 Introduction 117 6.2 The interference 118 6.3 The undulator radiation as a wave front 120 6.4 The modulation of the emitted field 121 6.5 The weak undulator in the laboratory and moving frames 121 6.6 The strong undulator in the laboratory and moving frames 123 6.7 The helical undulator 124 6.8 Undulators and related devices 124 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.2 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 136 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undul	Part III	Uı	ndula	tor rad	liation	115
6.2 The interference 118 6.3 The undulator radiation as a wave front 120 6.4 The modulation of the emitted field 121 6.5 The weak undulator in the laboratory and moving frames 121 6.6 The strong undulator in the laboratory and moving frames 123 6.7 The helical undulator 124 6.8 Undulators and related devices 124 7 The plane weak undulator 126 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.2 The undulator radiation in the frequency domain 132 7.2.2 The undulator radiation in the frequency domain 135 7.2.2 A discussion of the weak-undulator radiation field 136 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulat		6	A q	ualitativ	ve treatment	117
6.3 The undulator radiation as a wave front 6.4 The modulation of the emitted field 6.5 The weak undulator in the laboratory and moving frames 6.6 The strong undulator in the laboratory and moving frames 6.7 The helical undulator 6.8 Undulators and related devices 7 The plane weak undulator 7.1 The trajectory 7.1.1 The equation of motion 7.1.2 The approximation for a weak undulator 7.1.3 The observation from a large distance 7.1.4 The ultra-relativistic approximation 7.1.5 The particle motion in the moving system 7.1.6 The radiation field 7.1 The right as Lorentz-transformed dipole radiation 7.2 The undulator field as Lorentz-transformed dipole radiation 7.2.1 The undulator radiation in the frequency domain 7.2.2 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 138 7.3.1 The approximation 139 7.3.3 The angular power distribution 140 7.4 The photon distribution 141 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 148 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 150 7.4.4 The photon spectrum 7.5.5 The plane strong undulator 151 7.4.4 The undulator radiation on the axis 152 154 155 156 157 158 158 159 159 150 150 150 150 150 150 150 150 150 150			6.1	Introd	luction	117
6.4 The modulation of the emitted field 6.5 The weak undulator in the laboratory and moving frames 6.6 The strong undulator in the laboratory and moving frames 6.7 The helical undulator 6.8 Undulators and related devices 7 The plane weak undulator 7.1 The trajectory 7.1.1 The equation of motion 7.1.2 The approximation for a weak undulator 7.1.3 The observation from a large distance 7.1.4 The ultra-relativistic approximation 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 7.2.1 The field calculated from the Liénard–Wiechert equation 7.2.2 The undulator field as Lorentz-transformed dipole radiation 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 140 7.4 The photon distribution 141 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 154 155 157 158 159 150 150 150 150 150 150 151 151 152 154 155 155 155 155 156 157 157 157 157 157 158 157 158 157 158 157 158 158 159 159 150 150 150 150 150 150 150 150 150 150			6.2	The in	nterference	118
6.5 The weak undulator in the laboratory and moving frames 121 6.6 The strong undulator in the laboratory and moving frames 123 6.7 The helical undulator 124 6.8 Undulators and related devices 124 7 The plane weak undulator 126 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.1 The indulator field as Lorentz-transformed dipole radiation 132 7.2.2 The undulator radiation in the frequency domain 135 7.2.2 The undulator radiation in the frequency domain 135 7.2.3 The undulator radiation in the frequency domain 136 7.3			6.3	The u	ndulator radiation as a wave front	120
6.6 The strong undulator in the laboratory and moving frames 123 6.7 The helical undulator 124 6.8 Undulators and related devices 124 7 The plane weak undulator 126 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.1 The ield calculated from the Liénard-Wiechert equation 131 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.1 The undulator radiation in the frequency domain 135 7.2.2 The undulator radiation in the frequency domain 135 7.2.1 The energy and power radiated in an undulator 136 7.3.1			6.4	The n	nodulation of the emitted field	121
6.7 The helical undulator 124 6.8 Undulators and related devices 124 7 The plane weak undulator 126 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.2 The undulator radiation in the frequency domain 132 7.2.2 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 136 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 141 7.3.4 T			6.5	The w	yeak undulator in the laboratory and moving frames	121
6.8 Undulators and related devices 124 7 The plane weak undulator 126 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.2 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 136 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The photon distribution 148 7.4.1 The number			6.6	The st	trong undulator in the laboratory and moving frames	123
7 The plane weak undulator 126 7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.3 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 136 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The photon distribution 146 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the			6.7	The h	elical undulator	124
7.1 The trajectory 126 7.1.1 The equation of motion 126 7.1.2 The approximation for a weak undulator 128 7.1.3 The observation from a large distance 129 7.1.4 The ultra-relativistic approximation 130 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard-Wiechert equation 131 7.2.1 The field calculated from the Liénard-Wiechert equation 132 7.2.2 The undulator radiation in the frequency domain 132 7.2.2 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 136 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 146 7.4 The photon distribution 146 7.4 The photon spectrum 151 7.4.2			6.8	Undu	lators and related devices	124
7.1.1 The equation of motion 7.1.2 The approximation for a weak undulator 7.1.3 The observation from a large distance 7.1.4 The ultra-relativistic approximation 7.1.5 The particle motion in the moving system 7.2 The radiation field 7.2.1 The field calculated from the Liénard–Wiechert equation 7.2.2 The undulator field as Lorentz-transformed dipole radiation 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 7.3.3 The angular power distribution 7.3.4 The spectral power distribution 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 7.4.4 The undulator radiation on the axis 8 The plane strong undulator 8.1 The trajectory 8.1.1 The trajectory in the laboratory frame 8.1.2 The trajectory in the moving frame 157		7	The	plane v	veak undulator	126
7.1.2 The approximation for a weak undulator 7.1.3 The observation from a large distance 7.1.4 The ultra-relativistic approximation 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard–Wiechert equation 132 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.3 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 140 7.4 The photon distribution 141 7.5 The photon distribution 148 7.4 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 8.1.2 The trajectory in the moving frame			7.1	The tr	rajectory	126
7.1.3 The observation from a large distance 7.1.4 The ultra-relativistic approximation 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 7.2.1 The field calculated from the Liénard–Wiechert equation 7.2.2 The undulator field as Lorentz-transformed dipole radiation 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation in 138 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 147 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 8.1.2 The trajectory in the moving frame				7.1.1	The equation of motion	126
7.1.4 The ultra-relativistic approximation 7.1.5 The particle motion in the moving system 131 7.2 The radiation field 131 7.2.1 The field calculated from the Liénard–Wiechert equation 132 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.3 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 147 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame				7.1.2	The approximation for a weak undulator	128
7.1.5 The particle motion in the moving system 7.2 The radiation field 7.2.1 The field calculated from the Liénard–Wiechert equation 7.2.2 The undulator field as Lorentz-transformed dipole radiation 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 7.3.3 The angular power distribution 7.3.4 The spectral power distribution 7.4 The photon distribution 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 7.4.4 The undulator radiation on the axis 8 The plane strong undulator 8.1 The trajectory 8.1.1 The trajectory in the laboratory frame 8.1.2 The trajectory in the moving frame				7.1.3	The observation from a large distance	129
7.2 The radiation field 7.2.1 The field calculated from the Liénard–Wiechert equation 7.2.2 The undulator field as Lorentz-transformed dipole radiation 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 7.3.3 The angular power distribution 7.3.4 The spectral power distribution 146 7.4 The photon distribution 147 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 157						130
7.2.1 The field calculated from the Liénard–Wiechert equation 7.2.2 The undulator field as Lorentz-transformed dipole radiation 132 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 147 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 157						131
equation 7.2.2 The undulator field as Lorentz-transformed dipole radiation 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 139 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 140 7.4 The spectral power distribution 141 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157			7.2			131
7.2.2 The undulator field as Lorentz-transformed dipole radiation 7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 7.3.3 The angular power distribution 7.3.4 The spectral power distribution 7.4 The photon distribution 148 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 8 The plane strong undulator 8.1 The trajectory 8.1.1 The trajectory in the laboratory frame 8.1.2 The trajectory in the moving frame				7.2.1		
radiation 132 7.2.3 The undulator radiation in the frequency domain 135 7.2.4 A discussion of the weak-undulator radiation field 136 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory in the laboratory frame 154 8.1.1 The trajectory in the moving frame 157					-	131
7.2.3 The undulator radiation in the frequency domain 7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 7.3.3 The angular power distribution 7.3.4 The spectral power distribution 7.4 The photon distribution 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 157				7.2.2	_	
7.2.4 A discussion of the weak-undulator radiation field 7.3 Properties of weak-undulator radiation 138 7.3.1 The energy and power radiated in an undulator 138 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 157						
7.3 Properties of weak-undulator radiation 7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame					- · · ·	
7.3.1 The energy and power radiated in an undulator 7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 148 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157						
7.3.2 The angular spectral power distribution 139 7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157			7.3	-		
7.3.3 The angular power distribution 141 7.3.4 The spectral power distribution 146 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157						
7.3.4 The spectral power distribution 146 7.4 The photon distribution 148 7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157						
7.4 The photon distribution 7.4.1 The number and energy of photons 7.4.2 The photon spectrum 7.4.3 The angular spectral photon distribution 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 8.1 The trajectory 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157						
7.4.1 The number and energy of photons 148 7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157						
7.4.2 The photon spectrum 151 7.4.3 The angular spectral photon distribution 151 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157			7.4	_		_
7.4.3 The angular spectral photon distribution 7.4.4 The undulator radiation on the axis 152 8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157						
7.4.4 The undulator radiation on the axis 8 The plane strong undulator 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame						
8 The plane strong undulator 154 8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157					• •	
8.1 The trajectory 154 8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157		0	TIL			
8.1.1 The trajectory in the laboratory frame 154 8.1.2 The trajectory in the moving frame 157		ð		•	_	
8.1.2 The trajectory in the moving frame 157			0.1			
6.1.5 The relevant motion in a strong undulator 159						
8.2 The radiation from a plane strong undulator 162			Q T		_	

xii Contents

		8.2.1	The radiation field	162
	8.3		ies of strong-undulator radiation	167
	0.5	8.3.1	_	167
		8.3.2		168
		8.3.3		171
		8.3.4		171
		8.3.5	_	173
		8.3.6	The development with respect to K_n^*	177
9	The h		ndulator	181
		The traj		181
			iation emitted in a helical weak undulator	185
		9.2.1	The radiation obtained with the	
			Liénard–Wiechert formula	185
	9.3	Properti	ies of weak-helical-undulator radiation	187
		9.3.1	The total power	187
		9.3.2	•	187
		9.3.3		188
		9.3.4	The spectral power distribution	189
		9.3.5	The total radiation	190
		9.3.6	The degree of circular polarization	190
		9.3.7	The on-axis radiation	192
	9.4	The rad	iation field from a strong helical undulator	193
	9.5	Properti	ies of strong-helical-undulator radiation	197
		9.5.1	The total power	197
		9.5.2	The angular spectral power distribution	197
		9.5.3	E 1	198
		9.5.4	1	198
		9.5.5	The on-axis radiation	200
		9.5.6	The development with respect to K_{uh}^*	202
10		ler mag		206
	10.1	Introd		206
			avelength shifter	206
	10.3		ultipole wiggler	207
11		_	ts – a generalized weak undulator	209
	11.1		ties of weak-magnet radiation	209
		11.1.1	Introduction	209
		11.1.2	,	210
	11.0	11.1.3	C	210
	11.2		magnets Introduction	213
		11.2.1	Introduction	213
		11.2.2	Qualitative properties of the short-magnet radiation	213
			TautauOII	21.5

				Contents	xiii
		11.3	The mo	odulated undulator radiation	215
			11.3.1	Introduction	215
			11.3.2	The undulator of finite length	216
			11.3.3		
				modulation	219
			11.3.4	The undulator radiation with Lorentzian	
				modulation	221
		11.4	The Co	mpton back scattering and quantum correction	224
Part IV	Ap	plication	ons		227
	12	Optic	s of SR -	- imaging	229
		12.1	Imagin	g with SR – a qualitative treatment	229
			12.1.1	The limitation on resolution caused by	
				diffraction and the depth-of-field effect	229
			12.1.2	Diffraction and the depth-of-field effect for SR	
				from long magnets	230
			12.1.3	Diffraction and the depth-of-field effect for	
				undulator radiation	231
			12.1.4	Diffraction and the depth-of-field effect for	
				short-magnet radiation	231
			12.1.5	Discussion	232
		12.2	Imagin	g with SR – a quantitative treatment	232
			12.2.1	The Fraunhofer diffraction	232
			12.2.2	The emittance of a photon beam	235
			12.2.3	The diffraction of synchrotron radiation emitted	
				in long magnets	236
			12.2.4	The diffraction of undulator radiation	239
			12.2.5	The diffraction for the undulator with a	
				Lorentzian profile	242
			12.2.6	A comparison of the properties of beams from	
				various sources	243
	13	Elect	ron-stora	ge rings	244
		13.1	Introdu	ction	244
			13.1.1	Lattice magnets	245
		13.2	The tra	nsverse particle dynamics in a storage ring	248
			13.2.1	The particle dynamics over many revolutions	248
			13.2.2	The beam with many particles	256
			13.2.3	The dispersion	258
			13.2.4	The chromatic aberrations and their correction	
				with sextupoles	259
			13.2.5	Coupling and vertical dispersion	261
			13.2.6	An example: The FODO lattice	261
		13.3	The lon	gitudinal particle dynamics	264

xiv Contents

		13.3.1	Introduction	264
		13.3.2	The longitudinal focusing – small amplitudes	266
			The longitudinal focusing – large amplitudes	268
14	Effec	ts of radi	ation on the electron beam	271
	14.1	The end	ergy loss	271
	14.2	The rad	liation damping	272
		14.2.1	Introduction	272
		14.2.2	The damping of synchrotron oscillations	274
			The damping of vertical betatron oscillations	274
		14.2.4	The damping of horizontal betatron oscillations	276
		14.2.5	The sum of the damping rates	278
	14.3	The qua	antum excitation of oscillations	279
		14.3.1	Introduction	279
		14.3.2	The energy spread	280
		14.3.3	The horizontal emittance	280
		14.3.4	The vertical emittance	281
	14.4	A sumr	mary of the effects of radiation on the electron	
		beam	•	282
	14.5	Changi	ng effects of radiation with wiggler magnets	284
15	Radia	ation emi	tted by many particles	286
	15.1	Effects	of the electron distribution on the radiation	286
		15.1.1	Introduction	286
		15.1.2	The radiation geometry in the case of a large	
			electron emittance	286
		15.1.3	The electron and natural photon emittances are	
			of the same magnitude	288
	15.2	The spa	ntial coherence	288
		15.2.1	The diffraction limit	288
		15.2.2	Small-emittance rings	289
	15.3	The ten	nporal coherence	290
	15.4	Flux an	nd brightness	295
	15.5	The syr	nchrotron radiation emitted by protons and ions	296
		15.5.1	Introduction	296
		15.5.2	The radiation from protons	296
		15.5.3	The radiation from ions	297
A	Airy	functions	3	300
	A.1	Definition	ons and developments	300
	A.2	Integrals	s involving Airy functions	301
В	Besse	el functio	ons	308
	B.1	General	relations	308
	B.2	The app	roximation for large order and arguments	309

		Contents	XV
	B.3	Sums over squares of Bessel functions	310
	B.4	Series of Bessel functions	312
C	Deve	elopments of strong-undulator radiation	313
	C.1	The plane-undulator radiation	313
	C.2	The helical-undulator radiation	314
Ref	erence	es	316
nd	ex		321

Preface

Under the rubric of synchrotron radiation we understand the electromagnetic waves emitted by a charge moving with relativistic velocity and undergoing a transverse acceleration. It is characterized by a small opening angle and a high frequency caused by the velocity of the charge being close to that of light. Owing to the relatively simple motion of the charge, the radiation has clear polarization properties. Ordinary synchrotron radiation is emitted by a charge moving on a circular arc determined by a deflecting magnetic field. It has a broad spectrum, a typical frequency being γ^3 times higher than the Larmor frequency of the charge. This spectrum can be modified by varying the curvature of the trajectory $1/\rho$ within a distance smaller than the formation length of the radiation, as is realized in undulators.

Synchrotron radiation has been investigated theoretically for over a century and experimentally for about half this time. Thanks to its unique properties, this radiation has become a research tool for many fields of science and electron-storage rings serving as radiation sources are spread over the whole globe.

This book tries to explain synchrotron radiation from basic principles and to derive its main properties. It is divided into four parts. First the general case of the electromagnetic fields created by an accelerated relativistic charge is investigated. This gives the angular distribution with the small opening angle of the emitted radiation and distinguishes between the 'near' (Coulomb) and the 'far' (radiation) field. The second part concentrates on the radiation emitted by a charge moving on a circular trajectory, which we usually call synchrotron radiation. Its distributions in angle, frequency, and polarization modes are derived. Undulator radiation is treated in the next part. We start with the simple case of a plane weak undulator with a spatially periodic field that emits quasi-monochromatic radiation. A strong undulator emits radiation that is more complicated and contains higher harmonics. There are more general undulators having a non-planar (helical) electron trajectory or a non-harmonic field. The last part deals with applications and investigates first the optics of synchrotron radiation, which is dominated by diffraction due to the small opening angle. This is followed by a description of electron-storage rings serving as radiation sources and the effect of the emitted radiation on the electron beam.

There are some technical remarks to be made. Throughout the book MKSA units are used. With very few exceptions the radiation field refers to a single positive elementary charge e as a source. For convenience sometimes the radiation emitted by a current I is

xviii Preface

also given and, in the last chapter, the temporal coherence of the radiation from different particles is considered. As a basis for the properties of the radiation we give first the total emitted power or energy. In the case of ordinary synchrotron radiation we denote by P_s the power radiated by the electron while it is going through the magnet and by $U_{\rm s}$ the energy radiated during one revolution. For undulators we denote by $P_{\rm u}$ the power radiated in the undulator but averaged over one period and by U_s the energy emitted during one traversal through the undulator. These powers and energies can also be expressed in terms of the photon number or photon flux. Distributions in terms of angle and frequency are then given with these total values as a factor that makes it easy to express them in terms of power, energy, photon-number or photon-flux distributions or in other units. Vectors are printed in bold. They are also written as an array with three components between square brackets, like $\mathbf{E} = [E_x, E_y, E_z]$. For radiation fields the z-component can often be neglected. The remaining two-component vector is written as $E_{\perp} = [E_x, E_y]$. These field components give the polarization of the radiated power. To mark the contributions of the horizontal or vertical polarization to the power, which is of course a scalar, we write it as a sum $P = P_{\sigma} + P_{\pi}$. The calculation of synchrotron radiation leads to some integrals that can be expressed in terms of modified Bessel functions or Airy functions. Here the second type is chosen, but the important results are given in both. Some properties, integrals, and sums of Airy and Bessel functions are given in the appendices, partly for convenience and partly because they are not so easy to find. However, this is not meant to provide rigorous mathematical derivations but rather to provide some insight into how some results are obtained.

There are lots of publications on synchrotron radiation and related topics. Apart from well-known books and journals they appear often in laboratory reports and proceedings of workshops. The bibliography to this volume is by no means complete and refers mostly to the topics covered and the methods used to investigate them.

Acknowledgments

I received much help from many people while writing this book. I owe many thanks to my colleague and friend Bruno Zotter from CERN. He not only answered many questions concerning the mathematics I had to use, but also read the whole book and made many suggestions, corrections, and significant improvements. Jim Murphy from Brookhaven National Laboratory read and corrected part of the book and clarified questions concerning mainly coherent radiation. On many occasions I sought advice from my friend and colleague Hermann Winick from Stanford University. Thanks to his insight and experience, he could answer many questions on synchrotron radiation and explained difficult topics to me. I also profited from discussions with many experts in the field: R. Coisson, K. J. Kim, B. M. Kincaid, S. Krinsky, F. Méot, M. Sands, and H. Wiedemann. I also thank the staffs of the laboratories where I had the opportunity to work on and learn about synchrotron radiation: CEA, Cambridge Electron Accelerator, Harvard University – MIT, Cambridge, MA, U.S.A.; CERN, European Laboratory of Particle Physics, Geneva, Switzerland; SLAC, Stanford Linear Accelerator Center, SSRL division, Stanford, CA, U.S.A.; and LNLS, Laboratório Nacional de Luz Sínchrotron, Campinas, Brazil.

Notation

vector potential A Ai(x), Ai'(x)Airy function and its derivative magnetic-field vector В $\tilde{\mathbf{B}}(\omega)$ Fourier transformed B-field of radiation amplitude of magnetic undulator field B_0 weak-magnet Fourier component at $k_{\rm g}$ $\tilde{B}_{y}(k_{\rm g})$ speed of light $C_{\mathfrak{q}}$ quantum excitation factor particle-beam-optics dispersion D_x , D'_x elementary charge \mathbf{E} electric-field vector $\tilde{\mathbf{E}}(\omega)$ Fourier-transformed E-field of radiation $E_{\rm e} = m_0 c^2 \gamma$ particle energy $E_{\gamma} = \hbar \omega$ photon energy $F_{\rm s}(\psi,\omega/\omega_c)$ normalized angular spectral density of SR normalized angular power density of UR $F_{\rm u}(\theta,\phi)$ $h, \ \hbar = h/(2\pi)$ Planck's constant emittance function $I_{s2}, I_{s3}, I_{s4}, I_{s5}$ synchrotron-radiation integrals Bessel function of order n $J_n(x)$ $J_{\epsilon}, J_{\chi}, J_{\chi}$ longitudinal and transverse damping partitions $K_{1/3}, K_{2/3}$ modified Bessel function of order 1/3, 2/3 K_{f} quadrupole focusing parameter wave number of general weak magnet k_{g} $k_{\rm u} = 2\pi/\lambda_{\rm u}$ undulator period wave number $K_{\rm u} = eB_0/(m_0ck_{\rm u})$ undulator parameter reduced plane undulator parameter K_{11}^* K_{uh}^* reduced helical undulator parameter $L_{\rm u} = N_{\rm u} \lambda_{\rm u}$ undulator length

Notation xxi

m_0 rest mass of a particle $\mathbf{n} = \mathbf{r}/r$ unit vector in \mathbf{r} -direction $m_B = -\rho^2 K_{\mathrm{f}}$ field index
,
$a = -0^2 K_0$ field index
$n_{\rm s} = p K_{\rm f}$ field fidex photons per revolution, photon flux
$n_{\rm u},~\dot{n}_{\rm u}$ photon number per traversal, photon flux undulator period number
$P_{\rm s}$ instantaneous radiated power of SR
$P_{\rm u}$ period-averaged total power of plane UR distance from source to observer
$\mathbf{R}(t')$ vector from origin to particle
R, Φ polar coordinates in image plane
$r_0 = e^2/(4\pi\epsilon_0 m_0 c^2)$ classical electron radius
vector from origin to observer
$\mathbf{S} = [\mathbf{E} \times \mathbf{B}]/\mu_0$ Poynting vector
$S_{\rm hm}(\omega_{\rm m})$ normalized spectral power of helical UR
$S_{\rm s}(\omega/\omega_c)$ normalized spectral power densities of SR
t = t' + r/c observation time
$r_{\rm p} = t - r_{\rm p}/c$ reduced observation time
$T_0 = 2\pi/\omega_0$ revolution time without straight sections
$T_{\rm rev} = 2\pi/\omega_{\rm rev}$ revolution time with straight sections
emission time
$U_{\rm s}$ energy radiated per turn of SR
$\mathbf{v}(t') = \mathbf{d}\mathbf{R}/\mathbf{d}t'$ particle velocity
V scalar potential
ŷ peak voltage of RF system
w transverse coordinate, x or y
X, Y rectangular coordinates in image plane
$\alpha_{\rm c}$ momentum compaction
$\alpha_{\epsilon}, \alpha_{\rm h}, \alpha_{\rm v}$ longitudinal and transverse damping rates
$\alpha_{\rm f} = e^2/(2\epsilon_0 ch)$ fine structure constant
$\alpha_w = -\beta_w'/2$ particle-optics functions
$\beta = v/c$ normalized velocity
$\mathbf{\beta} = \mathbf{v}/c$ normalized velocity vector
β_w particle-optics functions
β^* normalized drift velocity in plane undulator
$\beta_{\rm h}^*$ normalized drift velocity in helical undulators
$y = 1/\sqrt{1-\beta^2}$ Lorentz factor
γ_w particle-optics functions
V* Lorentz factor of drift velocity
$\gamma_{\rm h}^*$ drift Lorentz factor in helical undulators
vacuum permittivity
ϵ_x , ϵ_y horizontal and vertical particle-beam emittance

xxii

 $\epsilon_{\gamma x}, \; \epsilon_{\gamma v}$ η_x , η_y $\lambda_{\text{Comp}} = h/(m_0 c)$ λ_{u} μ_0 ρ σ_x , σ'_x φ_{B} $\varphi_w(s)$ $\varphi_{\rm S}$ ψ $\omega_0 = \beta c/\rho = 2\pi/T_0$ ω_1 ω_{10} $\omega_c = 3\omega_0 \gamma^3/2$ ω_m ω_{m0} $\omega_{\rm rev} = 2\pi/T_{\rm rev}$ $\Omega_{\rm u} = \beta c k_{\rm u}$ $dP/d\Omega$ $d^2 P/(d\Omega d\omega)$ $(\)_{\sigma},\ (\)_{\pi}$ $()_{+}, ()_{-}$

 $}_{ret}$

Notation

horizontal and vertical photon-beam emittance unit vectors in x- and y-directions Compton wavelength undulator period length vacuum permeability bending radius RMS electron-beam size and angular spread bending angle in a dipole magnet betatron phase within one turn synchrotron phase angle in RF acceleration angle between median plane and \mathbf{r}_{p} angular velocity, Larmor frequency fundamental UR frequency off axis fundamental UR frequency on axis critical frequency mth harmonic UR frequency off axis mth harmonic UR frequency on axis revolution frequency with straight sections particle-motion frequency in undulator power radiated per unit solid angle angular spectral radiated power density horizontal, vertical linear polarization positive, negative helicity circular polarization parenthesis evaluated at emission time t'