THE PHYSICS OF SYNCHROTRON RADIATION

This book explains the underlying physics of synchrotron radiation and derives its main properties. It is divided into four parts. The first covers the general case of the electromagnetic fields created by an accelerated relativistic charge. The second part concentrates on the radiation emitted by a charge moving on a circular trajectory, deriving its distribution in angle, frequency, and polarization modes. The third part looks at undulator radiation. Starting from the simple case of a plane weak undulator with a spatially periodic field that emits quasi-monochromatic radiation, the author then discusses strong undulators, emitting more complicated radiation and containing higher harmonics. More general undulators are also considered, with a non-planar (helical) electron trajectory or non-harmonic field. The final part deals with applications and investigates the optics of synchrotron radiation dominated by diffraction due to the small opening angle. It also includes a description of electron-storage rings as radiation sources and the effect of the emitted radiation on the electron beam.

This book provides a valuable reference for scientists and engineers in the field of accelerators, and for all users of synchrotron radiation.

ALBERT HOFMANN received his doctorate in physics from the ETH (Swiss Federal Institute of Technology) in Zürich in 1964. From 1966 to 1972 he was a Research Fellow at the Cambridge Electron Accelerator, a joint laboratory of Harvard University and MIT. He then spent the next ten years working as Senior Physicist at CERN, Geneva. In 1983 he became a professor at Stanford University, working on the Stanford Linear Collider (SLC) and on optimizing the storage rings SPEAR and PEP for synchrotron-radiation use. He spent two years as head of the SLAC beam-dynamics group. He then returned to CERN, in 1987, and was jointly responsible for the commissioning of the Large Electron–Positron ring (LEP). After its completion, he worked on accelerator-physics problems with this machine until his retirement from CERN in 1998.

Over the years Albert Hofmann has done consulting work for other machines, such as the European Synchrotron Radiation Facility (ESRF), the Synchrotron Radiation Research Center (SRRC) in Taiwan, and the Swiss Light Source (SLS). He has taught in over 25 short-term schools on accelerator physics and synchrotron radiation, and has published numerous papers. In 1992 he was elected to become a fellow of the American Physical Society, and in 1996 he received the Robert Wilson Prize from this Society. In 2001 he obtained the degree Doctor honoris causa from the University of Geneva.
CAMBRIDGE MONOGRAPHS ON
PARTICLE PHYSICS
NUCLEAR PHYSICS AND COSMOLOGY

General Editors: T. Ericson, P. V. Landshoff

1. K. Winter (ed.): Neutrino Physics
2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume I: Electroweak Interactions, the ‘New Particles’ and the Parton Model
4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
5. C. Grupen: Particle Detectors
6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
7. B. Andersson: The Lund Model
9. I. I. Bigi and A. I. Sanda: CP Violation
10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
12. D. Green: The Physics of Particle Detectors
15. E. Leader: Spin in Particle Physics
16. J. D. Walecka: Electron Scattering for Nuclear and Nucleon Structure
17. S. Narison: QCD as a Theory of Hadrons
18. J. F. Letessier and J. Rafelski: Hadrons and Quark–Gluon Plasma
19. A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann: Pomeron Physics and QCD
20. A. Hofmann: The Physics of Synchrotron Radiation
THE PHYSICS OF SYNCHROTRON RADIATION

ALBERT HOFMANN

Formerly CERN, Geneva
To my wife Elisabeth
for her support
Contents

Preface xvii
Acknowledgments xix
Notation xx

Part I Introduction 1

1 A qualitative treatment of synchrotron radiation 3
 1.1 Introduction 3
 1.2 The opening angle 3
 1.3 The spectrum emitted in a long magnet 4
 1.4 The spectrum emitted in a short weak magnet 5
 1.5 The wave front of synchrotron radiation 6
 1.6 The polarization 8

2 Fields of a moving charge 9
 2.1 Introduction 9
 2.2 The particle motion relevant to the retarded potentials 9
 2.3 The retarded electromagnetic potentials 11
 2.4 The fields of a moving charge 14
 2.5 A discussion of the field equations 18
 2.6 Examples 20
 2.6.1 The field of a charge moving with constant velocity 20
 2.6.2 The field of a non-relativistic oscillating charge 27
 2.7 The near field and the far field 34
 2.8 The Fourier transform of the radiation field 35
 2.8.1 The Fourier integral of the field 35
 2.8.2 The periodic motion 37
 2.8.3 The motion with a periodic velocity 38

3 The emitted radiation field and power 40
 3.1 Introduction 40
 3.2 The emitted and received powers 41
 3.3 Transverse and longitudinal acceleration 42
 3.3.1 The transverse acceleration 42
 3.3.2 The longitudinal acceleration 45
Contents

3.4 The ultra-relativistic case for transverse acceleration 48
3.5 The angular spectral energy and power density 51

Part II Synchrotron radiation 55
4 Synchrotron radiation: basic physics 57
4.1 Introduction 57
4.2 The geometry and approximations 58
4.2.1 The particle motion 58
4.2.2 The dipole approximation 59
4.2.3 The relevant motion 61
4.2.4 The ultra-relativistic approximation 62
4.3 The continuous spectrum radiated on a circular arc 65
4.3.1 The Fourier-transformed field 65
4.3.2 The spectral power density of the radiation 67
4.4 The radiation emitted on a circular arc in the time domain 68
4.4.1 The radiation field in the time domain 68
4.4.2 The radiated energy and power in the time domain 71
4.4.3 The radiation field in the time and frequency domains 72
4.5 The line spectrum radiated on closed circles 73
4.5.1 The relevant motion 73
4.5.2 The line spectrum of the electric field 74
4.5.3 The power of the line spectrum 77
4.5.4 The relation between the continuous and the line spectra 79

5 Synchrotron radiation: properties 81
5.1 Introduction 81
5.2 The total radiated power and energy 81
5.3 The angular spectral distribution 83
5.3.1 The general distribution 83
5.3.2 The distribution at low frequencies 85
5.3.3 The distribution at high frequencies 89
5.4 The spectral distribution 89
5.4.1 The general spectrum 89
5.4.2 The spectrum at low frequencies 92
5.4.3 The spectrum at high frequencies 92
5.4.4 The spectrum integrated up to a given frequency 92
5.4.5 The integral over all frequencies 93
5.5 The angular distribution 94
5.5.1 The angular distribution as a function of frequency 94
5.5.2 The frequency-integrated angular distribution 96
5.6 The polarization 98
5.6.1 The description of linear and circular polarization 98
5.6.2 The linear polarization 102
Contents

5.6.3 The elliptical polarization 105

5.7 The photon distribution 110

Part III Undulator radiation 115

6 A qualitative treatment 117

6.1 Introduction 117

6.2 The interference 118

6.3 The undulator radiation as a wave front 120

6.4 The modulation of the emitted field 121

6.5 The weak undulator in the laboratory and moving frames 121

6.6 The strong undulator in the laboratory and moving frames 123

6.7 The helical undulator 124

6.8 Undulators and related devices 124

7 The plane weak undulator 126

7.1 The trajectory 126

7.1.1 The equation of motion 126

7.1.2 The approximation for a weak undulator 128

7.1.3 The observation from a large distance 129

7.1.4 The ultra-relativistic approximation 130

7.1.5 The particle motion in the moving system 131

7.2 The radiation field 131

7.2.1 The field calculated from the Liénard–Wiechert equation 131

7.2.2 The undulator field as Lorentz-transformed dipole radiation 132

7.2.3 The undulator radiation in the frequency domain 135

7.2.4 A discussion of the weak-undulator radiation field 136

7.3 Properties of weak-undulator radiation 138

7.3.1 The energy and power radiated in an undulator 138

7.3.2 The angular spectral power distribution 139

7.3.3 The angular power distribution 141

7.3.4 The spectral power distribution 146

7.4 The photon distribution 148

7.4.1 The number and energy of photons 148

7.4.2 The photon spectrum 151

7.4.3 The angular spectral photon distribution 151

7.4.4 The undulator radiation on the axis 152

8 The plane strong undulator 154

8.1 The trajectory 154

8.1.1 The trajectory in the laboratory frame 154

8.1.2 The trajectory in the moving frame 157

8.1.3 The relevant motion in a strong undulator 159

8.2 The radiation from a plane strong undulator 162
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1</td>
<td>The radiation field</td>
<td>162</td>
</tr>
<tr>
<td>8.3</td>
<td>Properties of strong-undulator radiation</td>
<td>167</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The angular spectral power distribution</td>
<td>167</td>
</tr>
<tr>
<td>8.3.2</td>
<td>The angular power distribution</td>
<td>168</td>
</tr>
<tr>
<td>8.3.3</td>
<td>The spectral density of the radiation</td>
<td>171</td>
</tr>
<tr>
<td>8.3.4</td>
<td>The power contained in each harmonic</td>
<td>171</td>
</tr>
<tr>
<td>8.3.5</td>
<td>The properties of the radiation on the axis</td>
<td>173</td>
</tr>
<tr>
<td>8.3.6</td>
<td>The development with respect to K_u^*</td>
<td>177</td>
</tr>
<tr>
<td>9</td>
<td>The helical undulator</td>
<td>181</td>
</tr>
<tr>
<td>9.1</td>
<td>The trajectory</td>
<td>181</td>
</tr>
<tr>
<td>9.2</td>
<td>The radiation emitted in a helical weak undulator</td>
<td>185</td>
</tr>
<tr>
<td>9.2.1</td>
<td>The radiation obtained with the Liénard–Wiechert formula</td>
<td>185</td>
</tr>
<tr>
<td>9.3</td>
<td>Properties of weak-helical-undulator radiation</td>
<td>187</td>
</tr>
<tr>
<td>9.3.1</td>
<td>The total power</td>
<td>187</td>
</tr>
<tr>
<td>9.3.2</td>
<td>The angular spectral power distribution</td>
<td>187</td>
</tr>
<tr>
<td>9.3.3</td>
<td>The angular power distribution</td>
<td>188</td>
</tr>
<tr>
<td>9.3.4</td>
<td>The spectral power distribution</td>
<td>189</td>
</tr>
<tr>
<td>9.3.5</td>
<td>The total radiation</td>
<td>190</td>
</tr>
<tr>
<td>9.3.6</td>
<td>The degree of circular polarization</td>
<td>190</td>
</tr>
<tr>
<td>9.3.7</td>
<td>The on-axis radiation</td>
<td>192</td>
</tr>
<tr>
<td>9.4</td>
<td>The radiation field from a strong helical undulator</td>
<td>193</td>
</tr>
<tr>
<td>9.5</td>
<td>Properties of strong-helical-undulator radiation</td>
<td>197</td>
</tr>
<tr>
<td>9.5.1</td>
<td>The total power</td>
<td>197</td>
</tr>
<tr>
<td>9.5.2</td>
<td>The angular spectral power distribution</td>
<td>197</td>
</tr>
<tr>
<td>9.5.3</td>
<td>The angular power distribution</td>
<td>198</td>
</tr>
<tr>
<td>9.5.4</td>
<td>The spectral density of helical-undulator radiation</td>
<td>198</td>
</tr>
<tr>
<td>9.5.5</td>
<td>The on-axis radiation</td>
<td>200</td>
</tr>
<tr>
<td>9.5.6</td>
<td>The development with respect to K_{uh}^*</td>
<td>202</td>
</tr>
<tr>
<td>10</td>
<td>Wiggler magnets</td>
<td>206</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>206</td>
</tr>
<tr>
<td>10.2</td>
<td>The wavelength shifter</td>
<td>206</td>
</tr>
<tr>
<td>10.3</td>
<td>The multipole wiggler</td>
<td>207</td>
</tr>
<tr>
<td>11</td>
<td>Weak magnets – a generalized weak undulator</td>
<td>209</td>
</tr>
<tr>
<td>11.1</td>
<td>Properties of weak-magnet radiation</td>
<td>209</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>11.1.2</td>
<td>The trajectory</td>
<td>210</td>
</tr>
<tr>
<td>11.1.3</td>
<td>The radiation from weak magnets</td>
<td>210</td>
</tr>
<tr>
<td>11.2</td>
<td>Short magnets</td>
<td>213</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Qualitative properties of the short-magnet radiation</td>
<td>213</td>
</tr>
</tbody>
</table>
11.3 The modulated undulator radiation
 11.3.1 Introduction
 11.3.2 The undulator of finite length
 11.3.3 The undulator radiation with amplitude modulation
 11.3.4 The undulator radiation with Lorentzian modulation

11.4 The Compton back scattering and quantum correction

Part IV Applications

12 Optics of SR – imaging
 12.1 Imaging with SR – a qualitative treatment
 12.1.1 The limitation on resolution caused by diffraction and the depth-of-field effect
 12.1.2 Diffraction and the depth-of-field effect for SR from long magnets
 12.1.3 Diffraction and the depth-of-field effect for undulator radiation
 12.1.4 Diffraction and the depth-of-field effect for short-magnet radiation
 12.1.5 Discussion
 12.2 Imaging with SR – a quantitative treatment
 12.2.1 The Fraunhofer diffraction
 12.2.2 The emittance of a photon beam
 12.2.3 The diffraction of synchrotron radiation emitted in long magnets
 12.2.4 The diffraction of undulator radiation
 12.2.5 The diffraction for the undulator with a Lorentzian profile
 12.2.6 A comparison of the properties of beams from various sources

13 Electron-storage rings
 13.1 Introduction
 13.1.1 Lattice magnets
 13.2 The transverse particle dynamics in a storage ring
 13.2.1 The particle dynamics over many revolutions
 13.2.2 The beam with many particles
 13.2.3 The dispersion
 13.2.4 The chromatic aberrations and their correction with sextupoles
 13.2.5 Coupling and vertical dispersion
 13.2.6 An example: The FODO lattice
 13.3 The longitudinal particle dynamics
Contents

13.3.1 Introduction 264
13.3.2 The longitudinal focusing – small amplitudes 266
13.3.3 The longitudinal focusing – large amplitudes 268

14 Effects of radiation on the electron beam 271
14.1 The energy loss 271
14.2 The radiation damping 272
 14.2.1 Introduction 272
 14.2.2 The damping of synchrotron oscillations 274
 14.2.3 The damping of vertical betatron oscillations 274
 14.2.4 The damping of horizontal betatron oscillations 276
 14.2.5 The sum of the damping rates 278
14.3 The quantum excitation of oscillations 279
 14.3.1 Introduction 279
 14.3.2 The energy spread 280
 14.3.3 The horizontal emittance 280
 14.3.4 The vertical emittance 281
14.4 A summary of the effects of radiation on the electron beam 282
14.5 Changing effects of radiation with wiggler magnets 284

15 Radiation emitted by many particles 286
15.1 Effects of the electron distribution on the radiation 286
 15.1.1 Introduction 286
 15.1.2 The radiation geometry in the case of a large electron emittance 286
 15.1.3 The electron and natural photon emittances are of the same magnitude 288
15.2 The spatial coherence 288
 15.2.1 The diffraction limit 288
 15.2.2 Small-emittance rings 289
15.3 The temporal coherence 290
15.4 Flux and brightness 295
15.5 The synchrotron radiation emitted by protons and ions 296
 15.5.1 Introduction 296
 15.5.2 The radiation from protons 296
 15.5.3 The radiation from ions 297

A Airy functions 300
 A.1 Definitions and developments 300
 A.2 Integrals involving Airy functions 301
B Bessel functions 308
 B.1 General relations 308
 B.2 The approximation for large order and arguments 309
Contents

B.3 Sums over squares of Bessel functions 310
B.4 Series of Bessel functions 312
C Developments of strong-undulator radiation 313
 C.1 The plane-undulator radiation 313
 C.2 The helical-undulator radiation 314
References 316
Index 321
Preface

Under the rubric of synchrotron radiation we understand the electromagnetic waves emitted by a charge moving with relativistic velocity and undergoing a transverse acceleration. It is characterized by a small opening angle and a high frequency caused by the velocity of the charge being close to that of light. Owing to the relatively simple motion of the charge, the radiation has clear polarization properties. Ordinary synchrotron radiation is emitted by a charge moving on a circular arc determined by a deflecting magnetic field. It has a broad spectrum, a typical frequency being γ^3 times higher than the Larmor frequency of the charge. This spectrum can be modified by varying the curvature of the trajectory $1/\rho$ within a distance smaller than the formation length of the radiation, as is realized in undulators.

Synchrotron radiation has been investigated theoretically for over a century and experimentally for about half this time. Thanks to its unique properties, this radiation has become a research tool for many fields of science and electron-storage rings serving as radiation sources are spread over the whole globe.

This book tries to explain synchrotron radiation from basic principles and to derive its main properties. It is divided into four parts. First the general case of the electromagnetic fields created by an accelerated relativistic charge is investigated. This gives the angular distribution with the small opening angle of the emitted radiation and distinguishes between the ‘near’ (Coulomb) and the ‘far’ (radiation) field. The second part concentrates on the radiation emitted by a charge moving on a circular trajectory, which we usually call synchrotron radiation. Its distributions in angle, frequency, and polarization modes are derived. Undulator radiation is treated in the next part. We start with the simple case of a plane weak undulator with a spatially periodic field that emits quasi-monochromatic radiation. A strong undulator emits radiation that is more complicated and contains higher harmonics. There are more general undulators having a non-planar (helical) electron trajectory or a non-harmonic field. The last part deals with applications and investigates first the optics of synchrotron radiation, which is dominated by diffraction due to the small opening angle. This is followed by a description of electron-storage rings serving as radiation sources and the effect of the emitted radiation on the electron beam.

There are some technical remarks to be made. Throughout the book MKSA units are used. With very few exceptions the radiation field refers to a single positive elementary charge e as a source. For convenience sometimes the radiation emitted by a current I is
also given and, in the last chapter, the temporal coherence of the radiation from different particles is considered. As a basis for the properties of the radiation we give first the total emitted power or energy. In the case of ordinary synchrotron radiation we denote by P_s the power radiated by the electron while it is going through the magnet and by U_s the energy radiated during one revolution. For undulators we denote by P_u the power radiated in the undulator but averaged over one period and by U_s the energy emitted during one traversal through the undulator. These powers and energies can also be expressed in terms of the photon number or photon flux. Distributions in terms of angle and frequency are then given with these total values as a factor that makes it easy to express them in terms of power, energy, photon-number or photon-flux distributions or in other units. Vectors are printed in bold. They are also written as an array with three components between square brackets, like $E = [E_x, E_y, E_z]$. For radiation fields the z-component can often be neglected. The remaining two-component vector is written as $E_{\perp} = [E_x, E_y]$. These field components give the polarization of the radiated power. To mark the contributions of the horizontal or vertical polarization to the power, which is of course a scalar, we write it as a sum $P = P_{\sigma} + P_{\pi}$.

The calculation of synchrotron radiation leads to some integrals that can be expressed in terms of modified Bessel functions or Airy functions. Here the second type is chosen, but the important results are given in both. Some properties, integrals, and sums of Airy and Bessel functions are given in the appendices, partly for convenience and partly because they are not so easy to find. However, this is not meant to provide rigorous mathematical derivations but rather to provide some insight into how some results are obtained.

There are lots of publications on synchrotron radiation and related topics. Apart from well-known books and journals they appear often in laboratory reports and proceedings of workshops. The bibliography to this volume is by no means complete and refers mostly to the topics covered and the methods used to investigate them.
Acknowledgments

I received much help from many people while writing this book. I owe many thanks to my colleague and friend Bruno Zotter from CERN. He not only answered many questions concerning the mathematics I had to use, but also read the whole book and made many suggestions, corrections, and significant improvements. Jim Murphy from Brookhaven National Laboratory read and corrected part of the book and clarified questions concerning mainly coherent radiation. On many occasions I sought advice from my friend and colleague Hermann Winick from Stanford University. Thanks to his insight and experience, he could answer many questions on synchrotron radiation and explained difficult topics to me. I also profited from discussions with many experts in the field: R. Coisson, K. J. Kim, B. M. Kincaid, S. Krinsky, F. Méot, M. Sands, and H. Wiedemann. I also thank the staffs of the laboratories where I had the opportunity to work on and learn about synchrotron radiation: CEA, Cambridge Electron Accelerator, Harvard University – MIT, Cambridge, MA, U.S.A.; CERN, European Laboratory of Particle Physics, Geneva, Switzerland; SLAC, Stanford Linear Accelerator Center, SSRL division, Stanford, CA, U.S.A.; and LNLS, Laboratório Nacional de Luz Síncrotron, Campinas, Brazil.
Notation

A vector potential
Ai(x), Ai′(x) Airy function and its derivative
B magnetic-field vector
B̃(ω) Fourier transformed B-field of radiation
B0 amplitude of magnetic undulator field
Bγ(k̃g) weak-magnet Fourier component at k̃g
c speed of light
Cq quantum excitation factor
Dx, Dx′ particle-beam-optics dispersion
e elementary charge
E electric-field vector
Ẽ(ω) Fourier-transformed E-field of radiation
Ec = m0c2γ particle energy
Eγ = ℏω photon energy
Ff(ψ, ω/ωc) normalized angular spectral density of SR
F0(θ, φ) normalized angular power density of UR
ℏ, ℏ = ℏ/(2π) Planck’s constant
H emittance function
I2, I3, I4, I5 synchrotron-radiation integrals
Jn(x) Bessel function of order n
Jε, Jε, Jγ longitudinal and transverse damping partitions
K1/3, K2/3 modified Bessel function of order 1/3, 2/3
K1 quadrupole focusing parameter
k̃g wave number of general weak magnet
k̃u = 2π/λ̃u undulator period wave number
Kn = eB0/(m0ck̃u) undulator parameter
K∗u reduced plane undulator parameter
K∗ab reduced helical undulator parameter
Lu = Nuλu undulator length
Notation

\(m_0 \) rest mass of a particle
\(\mathbf{n} = \mathbf{r}/r \) unit vector in \(r \)-direction
\(n_B = -\rho^2 K_f \) field index
\(n_s, \dot{n}_s \) photons per revolution, photon flux
\(n_u, \dot{n}_u \) photon number per traversal, photon flux
\(N_u \) undulator period number
\(P_s \) instantaneous radiated power of \(SR \)
\(P_u \) period-averaged total power of plane \(UR \)
\(\mathbf{r}(t') \) distance from source to observer
\(\mathbf{R}, \Phi \) polar coordinates in image plane
\(r_0 = e^2/(4\pi\epsilon_0 m_0 c^2) \) classical electron radius
\(\mathbf{r}_p \) vector from origin to observer
\(\mathbf{S} = [\mathbf{E} \times \mathbf{B}]/\mu_0 \) Poynting vector
\(S_\text{hm}(\omega_m) \) normalized spectral power of helical \(UR \)
\(S_s(\omega/\omega_c) \) normalized spectral power densities of \(SR \)
\(t = t' + r/c \) observation time
\(t_p = t - r_p/c \) reduced observation time
\(T_0 = 2\pi/\omega_0 \) revolution time without straight sections
\(T_{\text{rev}} = 2\pi/\omega_{\text{rev}} \) revolution time with straight sections
\(t' \) emission time
\(U_s \) energy radiated per turn of \(SR \)
\(\mathbf{v}(t') = d\mathbf{R}/dt' \) particle velocity
\(V \) scalar potential
\(\hat{V} \) peak voltage of RF system
\(w \) transverse coordinate, \(x \) or \(y \)
\(X, Y \) rectangular coordinates in image plane
\(\alpha_c, \alpha_h, \alpha_v \) longitudinal and transverse damping rates
\(\alpha_f = e^2/(2\epsilon_0 c h) \) fine structure constant
\(\alpha_u = -\beta_u^2/2 \) particle-optics functions
\(\beta = v/c \) normalized velocity
\(\beta = v/c \) normalized velocity vector
\(\beta_w \) particle-optics functions
\(\beta^* \) normalized drift velocity in plane undulator
\(\beta_h^* \) normalized drift velocity in helical undulators
\(\gamma = 1/\sqrt{1 - \beta^2} \) Lorentz factor
\(\gamma_w \) particle-optics functions
\(\gamma^* \) Lorentz factor of drift velocity
\(\gamma_h^* \) drift Lorentz factor in helical undulators
\(\epsilon_0 \) vacuum permittivity
\(\epsilon_x, \epsilon_y \) horizontal and vertical particle-beam emittance
Notation

$\epsilon_{x}, \epsilon_{y}$
horizontal and vertical photon-beam emittance

η_{x}, η_{y}
unit vectors in x- and y-directions

$\lambda_{\text{Comp}} = h/(m_0 c)$
Compton wavelength

λ_{u}
undulator period length

μ_0
vacuum permeability

ρ
bending radius

σ_{x}, σ'_{x}
RMS electron-beam size and angular spread

φ_{B}
bending angle in a dipole magnet

$\varphi_{w}(s)$
betatron phase within one turn

φ_{s}
synchrotron phase angle in RF acceleration

ψ
angle between median plane and r_p

$\omega_0 = \beta c / \rho = 2\pi / T_0$
angular velocity, Larmor frequency

ω_1
fundamental UR frequency off axis

ω_{10}
fundamental UR frequency on axis

$\omega_c = 3\omega_0 \gamma^3 / 2$
critical frequency

ω_m
mth harmonic UR frequency off axis

ω_{m0}
mth harmonic UR frequency on axis

$\omega_{\text{rev}} = 2\pi / T_{\text{rev}}$
revolution frequency with straight sections

$\Omega_{u} = \beta c k_{u}$
particle-motion frequency in undulator

$dP/d\Omega$
power radiated per unit solid angle

$d^2 P/(d\Omega\,d\omega)$
angular spectral radiated power density

$(\cdot)_{\pi}, (\cdot)_{\pi}$
horizontal, vertical linear polarization

$(\cdot)^{+}, (\cdot)^{-}$
positive, negative helicity circular polarization

$\{ \cdot \}_{\text{ret}}$
parenthesis evaluated at emission time t'