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Preface

During the last few decades of the twentieth century, we saw an almost
triumphant success in establishing that Einstein’s general relativity is
correct, both experimentally and theoretically. We find nevertheless con-
siderable efforts still being made in terms of “alternative theories.” This
trend may be justified insofar as the scalar–tensor theory is concerned, as
will be argued, not to mention one’s hidden desire to see nature’s simplest
imaginable phenomenon, a scalar field, be a major player.

The success on the theoretical front prompted researchers to study the-
ories with the aim of unifying gravitation and microscopic physics. Among
them string theory appears to be the most promising. According to this
theory, the graviton corresponding to the metric tensor has a scalar com-
panion, called the dilaton. The interaction between these two fields is
surprisingly similar to what Jordan foresaw nearly half a century ago,
without sharing ideas that characterize the contemporary unification pro-
gram. There seems to be, however, a crucial point that might constrain
the original proposal through the value of the parameter ω, whose inverse
measures the strength of the coupling of the scalar field.

More specifically, string theory predicts that ω = −1, which goes against
the widely accepted constraint from observation, namely ω >∼ 103 � 1.
Although many more details have yet to be worked out in order for string
theory to be compared with the real world, we point out that expecting
the dilaton to be close to the limit of total decoupling is by no means
obvious or natural. One may even suspect that the scalar force has a
finite force-range, rendering the solar-system experiments from which a
large value of ω derives irrelevant.

Also related is the fact that string theory, like other unification theories,
allows coupling to matter at the level of the Lagrangian, thus inevitably
violating the weak equivalence principle (WEP), in contrast to what Brans
and Dicke proposed as a modification of Jordan’s model.

xi
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xii Preface

Both of these considerations, together with our own study of the cos-
mological equations, suggest a possible way out by revisiting the idea
of non-Newtonian gravity, which might be present somewhat below the
constraints obtained so far, as a manifestation of the scalar field.

There are other aspects of the scalar–tensor theory requiring more care-
ful understanding, including such issues as how the physical “conformal
frame” is singled out, and how much time-variability of the gravitational
constant there could be. There is also the question arising from the sign
of the energy of the scalar field in the original conformal frame, placing
string theory further away from the near-complete decoupling.

One of the purposes of this book is to provide detailed accounts of
subtleties that might have escaped attention, which are based on naive
questions but need to be treated with sufficient caution. We find that this
theory, with appropriate modifications, seems to provide a small window
through which we can look into what the expected unification theory is.

We then ask whether there are any observational signals that make
such a departure from the standard theory urgent. We may consider a
modern version of the problem of the cosmological constant as well as
observational searches for time-variability of the coupling constants. From
this point of view, we apply the scalar–tensor theory to a cosmology with
Λ in accordance with the recent discovery from type-Ia supernovae. There
has been an expectation, which is sound but nonetheless somewhat vague,
that a light scalar field with a universal coupling should play a role. We
offer what we hope is a realistic implementation.

We discuss another more phenomenological approach, which is based
on a scalar field now widely known as “quintessence.” Also included is a
brief introduction to “brane cosmology,” which might provide a new breed
of cosmological model descending from higher-dimensional space-time.

Toward the end of the book we attempt to relate the problem of the cos-
mological constant to the possible time-dependence of the fine-structure
constant. Even though it is still provisional, this argument illustrates how
the scalar–tensor theory, a highly constrained theory, has the capability
of linking two otherwise disparate phenomena.

Since we focus on a limited range of subjects, we have not attempted
to make the book encyclopedic.

We have dealt with some of the technical complications in 14 appendices
so that readers can gain a good overview of the underlying flow of our
story without being deterred by these complexities. They belong basically
to the chapters as shown:

Chapter 1: A, B

Chapter 2: C, D, E, F

Chapter 3: G, H
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Preface xiii

Chapter 4: J, K

Chapter 5: L

Chapter 6: M, N, O.

Some of them might be skipped entirely. We hope, on the other hand,
that some could serve as problems or exercises. Appendix D, for example,
might be an answer to the following problem: “Show that the matter
energy–momentum tensor is covariantly conserved if Lmatter is indepen-
dent of φ.” Appendix L was prepared particularly for readers unfamiliar
with “brane” geometry. Appendix C is truly fundamental throughout the
book. Appendix A might be used as a basis of part of section 5.3, as might
Appendix L.

The book is a consequence of discussions with and critical comments
from many of our friends and colleagues. Among them we wish to express
our thanks particularly to Yuichi Chikashige, Yon-Min Cho, Ephraim
Fischbach, Shoichi Ichinose, Takashi Ikegami, Satoru Ikeuchi, Susumu
Kamefuchi, Mitsuhiro Kato, Shinsaku Kitakado, Kazuaki Kuroda,
Shuntaro Mizuno, Masahiro Morikawa,Wei-Tou Ni,Janis Niedra,Tsuyoshi
Nishioka, Nobuyoshi Ohta, Minoru Omote, Takeshi Saito, Misao Sasaki,
Tetsuya Shiromizu, Naoshi Sugiyama, Akira Tomimatsu, and Tamiaki
Yoneya for their invaluable help in shaping our basic attitude toward the
subject.

Our thanks are also due to Humitaka Sato for his having suggested
that one of us (Y. F.) begin writing this book. Our gratitude goes also to
Yasushi Takahashi who compiled a series including a book in Japanese,
whose title translates as Gravitation and Scalar Field, by Y. F., which
was published by Kodan-sha in 1997, an outgrowth of which constituted
a major part of the present book.

For the writing of this book, we consulted Jordan’s book to ascertain
how it differed from the ensuing paper by Brans and Dicke. A consequence
was our adding a short passage in Chapter 1. We leave more stories to a
forthcoming publication by Carl Brans, to whom we express our gratitude
for his comments and having shown us his thesis.

We thank Owen Parkes, and Bonnie and Patrick Ion for helping us by
correcting our English during the earlier periods of our work.

Y. Fujii
K. Maeda

Yokohama
March 2002

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-03752-5 - The Scalar-Tensor Theory of Gravitation
Yasunori Fujii and Kei-Ichi Maeda
Frontmatter
More information

http://www.cambridge.org/0521037522
http://www.cambridge.org
http://www.cambridge.org


Conventions and notation

Greek indices run from 0 through 3, where x0 = ct. The Minkowskian
metric is diagonal (−1,+1,+1,+1). Indices with overbars are those for D
dimensions. Some of the quantities in higher dimensions are attached as
a superscript (D) to the left, but not strictly all the time, as long as no
confusion is expected to ensue.

We use the reduced Planckian system of units by choosing c = h̄ =
MP (= [8πG/(ch̄)]−1/2) = 1, yielding the units of length, time, and energy
given, respectively, by

8.07 × 10−33 cm, 2.71 × 10−43 s, 2.44 × 1018 GeV.

In this unit of time, the present age of the universe (1.1–1.4) × 1010 years
is expressed as 1060.11–1060.21.
The Christoffel symbol is defined as usual:

Γλ
µν = 1

2g
λρ(∂µgρν + ∂νgρµ − ∂ρgµν).

The same definition applies to higher dimensions as well, but simply with
overbars in the indices.

The Riemann curvature tensor is defined by

Rρ
σ,µν = ∂µΓρ

σν + Γρ
λµΓλ

σν − (terms with µ ↔ ν).

The Ricci tensor and scalar curvature are derived as

Rµν = Rρ
µ,ρν and R = Rµ

µ,

respectively. R > 0 for a sphere.

xiv
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Conventions and notation xv

Symbols used multiply

We followed the usual usage of symbols as much as we could. We could
not avoid, however, using some of them for two or more different purposes.
Some of them might be worth listing.

σ Originally the fluctuating part of the scalar field φ in the
scalar–tensor theory (Chapter 2), but also the scalar field in
the E frame, and further used to denote a scalar field in the
quintessence models.

Φ The dilaton field in string theory (Chapter 1), but used also
for the scalar field as a simplified representative of (nongrav-
itational) matter fields (Chapters 4–6).

χ Decomposition of the metric (Chapter 2), also the second
scalar field in the two-scalar model (Chapter 5).

q The exponent of the power of the scalar field φ which mul-
tiplies Λ in Chapter 4. The same symbol is used also as a
negative exponent of σ in the inverse-power potential of the
quintessence field in Chapter 5.

Other special symbols

ξ Related to the original notation ω by ξ = |ω−1|/4.

ε The sign of ω, agreeing also with the sign of the kinetic
energy of the scalar field φ in the J frame.

A The radius of internal space in Appendix A for the Kaluza–
Klein theory, also with A = A2. Similar usage is found in
Appendix B as well. On the other hand, the scale factor of
the universe is denoted by a.

D The dimensionality of space-time. We also use d = D/2.
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