
1
Introduction

We begin this chapter with an overview in section 1 of how the scalar–
tensor theory was conceived, how it has evolved, and also what issues
we are going to discuss from the point of view of such cosmological
subjects as the cosmological constant and time-variability of coupling
constants. In section 2 we provide a simplified view of fundamental theo-
ries which are supposed to lie behind the scalar–tensor theory. Section 3
includes comments expected to be useful for a better understanding of
the whole subject. This section will also summarize briefly what we have
achieved.

In section 1 we emphasize that the scalar field in what is qualified
to be called the scalar–tensor theory is not simply added to the tensor
gravitational field, but comes into play through the nonminimal coupling
term, which was invented by P. Jordan. Subsequently, however, a version
that we call the prototype Brans–Dicke (BD) model has played the most
influential role up to the present time. We also explain the notation and
the system of units to be used in this book.

The list of the fundamental ideas sketched in section 2 includes the
Kaluza–Klein (KK) theory, string theory, brane theory as the latest out-
growth of string theory, and a conjecture on two-sheeted space-time.
Particular emphasis is placed on showing how closely the scalar field can
be related to the “dilaton” as a partner of the graviton in string theory
that emerged from an entirely different point of view.

Section 3 will be a collection of comments. We wish to answer potential
questions that might be asked by readers who have not yet entered the
main body of the book but have nonetheless heard something about the
scalar–tensor theory. We also embed certain abstracts or advertisements
of the related subjects which will be discussed later in detail. As a result of
our doing so we expect that readers may be acquainted beforehand with
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2 Introduction

our achievements from a wider perspective of the whole development.
The topics will cover the weak equivalence principle (WEP), parameters
of the prototype BD model, conformal transformation, Mach’s principle
and variable G, and a question about whether there is any advantage to
be gained from sticking to a complicated scalar–tensor theory instead of
less constrained theories of scalar fields, like the quintessence model.

1.1 What is the scalar–tensor theory of gravitation?

Einstein’s general theory of relativity is a geometrical theory of space-
time. The fundamental building block is a metric tensor field. For this
reason the theory may be called a “tensor theory.” A “scalar theory” of
gravity had earlier been attempted by G. Nodström by promoting the
Newtonian potential function to a Lorentz scalar. Owing to the lack of a
geometrical nature, however, the equivalence principle (EP), one of the
two pillars supporting the entire structure of general relativity, was left
outside the aim of the theory in the early 1910s. This did not satisfy
Einstein, who eventually arrived at a dynamical theory of space-time ge-
ometry. His theory must have appeared highly speculative at first, but
proved later to be truly realistic, since it was supported by observations
of diverse physical phenomena, including those in modern cosmology. It
also served as an excellent textbook showing how a new way of thinking
develops to reality.

In spite of the widely recognized success of general relativity, now called
the standard theory of gravitation, the theory has also nurtured many
“alternative theories” for one reason or another. Among them we focus
particularly on the “scalar–tensor theory.” It might appear as if the old
idea of scalar gravity were being resurrected. In fact, however, this type
of theory does not merely combine the two kinds of fields. It is built on
the solid foundation of general relativity, and the scalar field comes into
play in a highly nontrivial manner, specifically through a “nonminimal
coupling term,” as will be explained shortly.

The scalar–tensor theory was conceived originally by Jordan, who
started to embed a four-dimensional curved manifold in five-dimensional
flat space-time [1]. He showed that a constraint in formulating projec-
tive geometry can be a four-dimensional scalar field, which enables one to
describe a space-time-dependent gravitational “constant,” in accordance
with P. A. M. Dirac’s argument that the gravitational constant should be
time-dependent [2], which is obviously beyond what can be understood
within the scope of the standard theory. He also discussed the possi-
ble connection of his theory with another five-dimensional theory, which
had been offered by Th. Kaluza and O. Klein [3]. On the basis of these
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1.1 What is the scalar–tensor theory of gravitation? 3

considerations he presented a general Lagrangian for the scalar field living
in four-dimensional curved space-time:

LJ =
√−g

[
ϕγ

J

(
R− ωJ

1
ϕ2

J

gµν ∂µϕJ ∂νϕJ

)
+ Lmatter(ϕJ,Ψ)

]
, (1.1)

where ϕJ(x) is Jordan’s scalar field, while γ and ωJ are constants, also
with Ψ representing matter fields collectively. The introduction of the
nonminimal coupling term, ϕγ

JR, the first term on the right-hand side,
marked the birth of the scalar–tensor theory. The term Lmatter(ϕJ,Ψ)
was for the matter Lagrangian, which depends generally on the scalar
field, as well.

For later convenience, we here explain the unit system we are going to
use throughout the book. Since we always encounter relativity and quan-
tum mechanics in the area of particle physics, it is convenient to choose
a unit system in which c and h̄ are set equal to unity. By doing so we can
express all three fundamental dimensions only in terms of one remain-
ing dimension, which may be chosen as length, time, mass, or energy. In
particular, the gravitational constant, or Newton’s constant, G turns out
to have a mass dimension −2, or length squared. We then write

8πG = ch̄M−2
P , (1.2)

with MP called the Planck mass, which is estimated to be 2.44 × 1018 GeV,
which is quite heavy compared with other ordinary particles. We hereafter
choose MP = 1. In this way we can express every quantity as if it were
dimensionless. This unit system is called the reduced Planckian unit sys-
tem, though G = 1 is often chosen in the plain Planckian unit system. We
prefer the former system with the difference of

√
8π. We show units of

length, time, and energy in this system expressed in conventional units:

8.07 × 10−33 cm, 2.71 × 10−43 s, 2.44 × 1018 GeV. (1.3)

Sometimes, however, it is convenient to leave one of the dimensions
still “floating,” not necessarily set fixed. We choose it to be mass, for
example, as was shown in (1.2). In the same context, the Lagrangian is
found to have a mass dimension 4, while a derivative contributes a mass
dimension 1. The metric tensor is dimensionless. If a scalar field has a
conventional canonical kinetic term, then we conclude that the field has
a mass dimension 1.

Now the second term on the right-hand side of (1.1) resembles a kinetic
term of ϕJ. Requiring this term to have a correct mass dimension 4 yields
the result that ϕJ has mass dimension 2/γ. It then follows that ϕγ

J , which
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4 Introduction

multiplies R in the first term on the right-hand side of (1.1), has mass
dimension 2, the same as G−1. In this way we re-assure ourselves that
the first two terms on the right-hand side of (1.1) contain no dimensional
constant. This remains true for any value of γ, although this “invari-
ance” under a change of γ need not be respected if ϕJ enters the matter
Lagrangian, in general.

Jordan’s effort was taken over particularly by C. Brans and R. H. Dicke.
They defined their scalar field ϕ by

ϕ = ϕγ
J , (1.4)

which simplifies (1.1) by making use of the fact that the specific choice
of the value of γ is irrelevant, as explained above. This process is justi-
fied only because they demanded that the matter part of the Lagrangian√−gLmatter be decoupled from ϕ(x) as an implementation of their re-
quirement that the WEP be respected, in contrast to Jordan’s model. The
reason for this crucial decision, after the critical argument by Fierz [4] and
others, will be made clear soon.

In this way they proposed the basic Lagrangian

LBD =
√−g

(
ϕR− ω

1
ϕ
gµν ∂µϕ∂νϕ + Lmatter(Ψ)

)
. (1.5)

We call the model described by (1.5) the prototype BD model throughout
this book [5]. The adjective “prototype” emphasizes the unique features
that characterize the original model compared with many extended ver-
sions. The dimensionless constant ω is the only parameter of the theory.

Note that we left out the factor 16π that multiplied the whole expression
on the right-hand side in the original paper, to make the result appear in
a more standard fashion. For this reason our ϕ is related to their original
scalar field, denoted here by φBD, by the relation

ϕ = 16πφBD. (1.6)

We now take a special look at the nonminimal coupling term, the first
term on the right-hand side of (1.5). This replaces the Einstein–Hilbert
term,

LEH =
√−g

1
16πG

R, (1.7)

in the standard theory, in which R is multiplied by a constant G−1. By
comparing (1.5) and (1.7) we find that this model has no gravitational
“constant,” but is characterized by an effective gravitational constant Geff

defined by
1

16πGeff
= ϕ, (1.8)
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1.1 What is the scalar–tensor theory of gravitation? 5

as long as the dynamical field ϕ varies sufficiently slowly. In particular we
may expect that ϕ is spatially uniform, but varies slowly with cosmic time,
as suggested by Dirac. We should be careful, however, to distinguish Geff ,
the gravitational constant for the tensor force only, from the one including
the possible contribution from the scalar field, as will be discussed later.

As another point, we note that the second term on the right-hand side
of (1.5) appears to be a kinetic term of the scalar field ϕ, but looks
slightly different. First, the presence of ϕ−1 seems to indicate a singularity.
Secondly, there is a multiplying coefficient ω. These are, however, super-
ficial differences. The whole term can be cast into the standard canonical
form by redefining the scalar field.

For this purpose we introduce a new field φ and a new dimensionless
constant ξ, chosen to be positive, by putting

ϕ = 1
2ξφ

2 (1.9)

and
εξ−1 = 4ω, (1.10)

in terms of which the second term on the right-hand side of (1.5) is re-
expressed in the desired form;

√−g
(
−1

2εg
µν ∂µφ∂νφ

)
, (1.11)

with ε = ±1 = Signω.
No singularity appears, as suggested. ε = +1 corresponds to a normal

field having a positive energy, in other words, not a ghost. Note that
(1.11) becomes φ̇2/2 for ε = +1 in the limit of flat space-time where
g00 ∼ η00 = −1. The choice ε = −1 seems to indicate a negative energy,
which is unacceptable physically. As will be shown later in detail, how-
ever, this need not be an immediate difficulty owing to the presence of the
nonminimal coupling. We will show in fact that some of the models do
require ε = −1. Even the extreme choice ε = 0, corresponding to choosing
ω = 0 in the original formulation, according to (1.10), leaving ξ arbitrary,
may not be excluded immediately. Note also that (1.9) shows that φ has
a mass dimension 1, as in the usual formulation.

In this way (1.5) is cast into the new form

LBD =
√−g

(
1
2ξφ

2R− 1
2εg

µν ∂µφ∂νφ + Lmatter

)
. (1.12)

Discussing consequences of (1.12) will be the main purpose of Chapter 2.
We briefly outline here subjects of particular interest.

Obviously (1.12) describes something beyond what one would obtain
simply by adding the kinetic term of the scalar field to the Lagrangian
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6 Introduction

with the Einstein–Hilbert term. We reserve the term “scalar–tensor
theory” specifically for a class of theories featuring a nonminimal coupling
term or its certain extension.

As we explain in the subsequent section, there are theoretical models to
be categorized in this class. More general models have also been discussed.
The prototype BD model still deserves detailed study, from which we may
learn many lessons useful in analyzing other models.

Deriving field equations from (1.12) is a somewhat nontrivial task, as
we elaborate in Chapter 2. In particular, we obtain

�ϕ = ζ2T, (1.13)

where T is the trace of the matter energy–momentum tensor Tµν , while
ζ is a constant defined by

ζ−2 = 6 + εξ−1 = 6 + 4ω. (1.14)

Notice that ϕ in (1.13) is the BD scalar field, now given by the combi-
nation of φ as given by (1.9), though the field equation itself was derived
by considering φ as an independent field. The fact that the right-hand
side of (1.13) is given in terms of the matter energy–momentum tensor
guarantees that the force mediated by the scalar field respects the WEP,
or universal free-fall (UFF). This is because, in the limit of zero momen-
tum transferred, the source of the scalar field is given by the integrated
T00, which is the total energy of the system independent of what the
content is.

One might be puzzled to see how the scalar field decoupled from the
matter at the level of the Lagrangian comes to have a coupling at the level
of the field equations. The underlying mechanism is provided by the
nonminimal coupling term which acts as a mixing interaction between
the scalar field and the spinless component of the tensor field, as will be
elaborated toward the end of Chapter 2.

From (1.13) we expect that the scalar field mediates a long-range force
between massive objects in the same way as the Newtonian force does in
the weak-field limit of Einstein’s gravity. The coupling strength is essen-
tially of the same order of magnitude as that of the Newtonian force as
long as ξ or ω is roughly of the order of unity, as we can see by restoring
8πG in the conventional unit system. Equation (1.14) also shows that the
coupling vanishes as ω → ∞, or ξ → 0. It is often stated that the theory
reduces to Einstein’s theory in this limit.

According to (1.13) the scalar field does not couple to the photon,
for example, indicating that the light-deflection phenomenon will remain
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1.1 What is the scalar–tensor theory of gravitation? 7

unaffected by the scalar force. This is an example displaying how the
scalar force makes a difference from general relativity. On re-examining
what had been done in general relativity, Brans and Dicke discovered room
for the scalar component to be accommodated within the limit ω >∼ 6 or
|ξ| <∼ 0.042 [5].

Shapiro time-delay measurements during the Viking Project in the
1970s, however, yielded the constraint ω >∼ 1000, or ξ <∼ 2.5 × 10−4 [6]. Two
decades later, the latest bound from the VLBI experiments, basically con-
cerning the light-deflection phenomenon involving light from extragalactic
radio sources, is even stronger [7]:

ω >∼ 3.6 × 103, or ξ <∼ 7.0 × 10−5, (1.15)

severer than that expected initially by nearly three orders of magnitude.
Notice that ε = +1 is also implied. There has been no unambiguous evi-
dence for the presence of the additional scalar field, only certain bounds
of the parameter having been obtained.

It seems as if Brans and Dicke wished naturally to find positive ev-
idence right at the very beginning. At one time, Dicke, as an experi-
mentalist, wondered whether there was a flaw in comparing theory and
observation. He specifically suspected that the Sun is not completely
spherically symmetric, which property was used extensively to derive the
Schwarzschild solution. He performed his own experiment to re-measure
the Sun’s oblateness. If the quadrupole moment J2 turned out to be as
large as ∼10−5, as he and Goldenberg reported [8], it would have allowed
more deviation from general relativity, resulting in ω ∼ 5 or ∼ 0.2 for
ε = 1 or −1, respectively.

Unfortunately, however, subsequent re-measurements by other groups
yielded values mostly as small as ∼10−6 for J2, including the latest even
smaller value [7]. In this sense, there seems to be little hope that ω or ξ
is close to anywhere around unity. The smallness of ξ has affected con-
siderably the development of the theory during the years that followed.
It appeared as if the theory were destined to grow only to occupy an
ever smaller territory without an obvious reason, although Dicke himself
worked actively on initiating a new era of “experimental relativity.” In
some sense, the scalar–tensor theory served as an explicit model illustrat-
ing what the world could be like if Einstein were not entirely right.

In spite of all these circumstances surrounding the scalar–tensor theory,
however, there have been some people who were deeply impressed by the
idea that nature’s simplest phenomenon, a scalar field, plays a major
role, and tried to modify the prototype BD model in such a way that
the constraint (1.15) could be evaded. V. Wagoner suggested extending
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8 Introduction

the original model by introducing arbitrary functions of the scalar field,
including a mass term as well [9], though without well-defined physical
principles to determine those functions.

One of the present authors (Y. F.) proposed that a dilaton, a Nambu–
Goldstone (NG) boson of broken scale invariance, might mediate a finite-
range gravity (non-Newtonian force) based on an idea in particle physics
[10]. O’Hanlon [11], and Acharia and Hogan [12] showed immediately that
the dilaton can be identified as the scalar field of a version of the prototype
BD model, hence finding that the massive scalar field does have a place
in the theory of gravity.

A crucial point in these approaches is that the scalar field is naturally
not immune against acquiring a nonzero mass. If the corresponding force-
range of the scalar force turns out to be smaller than the size of the
solar system, it no longer affects the perihelion advance of Mercury, for
example, thus leaving a constraint like (1.15) irrelevant. This will free us
from a long-standing curse.

More recently, T. Damour and A. Polyakov showed that extending the
prototype BD model in a way allowing the scalar field to enter in a more
complicated manner is rather natural from the viewpoint of string the-
ory [13]. They specifically proposed the “least-coupling principle” (LCP)
according to which one might be able to understand why the deviation
from general relativity is so small if there is any, though the idea is still
short of being implemented from a realistic point of view.

In this book we will be interested also in the cosmological constant,
which seems to be one of the hot topics at the present time [14, 15].
Although this subject has a long but widely known history, what we face
today is quite new, and appears to be a challenge that probably requires
something beyond the standard theory. Today might be a time when the
discovery of an accelerating universe [14, 15] is in fact a crisis on which
physics will thrive [16]. We may more specifically expect this issue to be
a fresh ground to which the scalar–tensor theory applies. The situation
might provide a chance to go beyond an “alternative theory,” suggesting
phenomena that had never been thought of in general relativity.

Ideas based on scalar fields have already been attempted, particularly
under the name of “quintessence” [17]. Some of these theories are not
necessarily related to the scalar–tensor theory. One has more flexibility,
but to some extent they are more phenomenological. After giving a brief
overview of the recent developments on these subjects, we will see how we
reach an understanding of the accelerating universe in terms of the scalar–
tensor theory, which has been extended minimally from the prototype BD
model, from our point of view. As a further attempt, we apply the theory
also to the reported time-dependence of α, the fine-structure constant [18].
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1.2 Where does the scalar field come from? 9

As one of the conclusions that has emerged from our efforts, our classical
solutions of the cosmological equations are partially chaotic, with very
sensitive dependence on the initial values. Closely connected with this is
the great likelihood that we are in a transient state before reaching a final,
asymptotic state. All these things may alter our traditional view that the
universe we see at the present time should have an attractor solution that
depends on the initial values supposedly as little as possible. The universe
after all might also be like many natural phenomena around us.

1.2 Where does the scalar field come from?

As we stated before, Brans and Dicke assumed that decoupling of the
scalar field from the matter part of the Lagrangian occurs. As we see in
the following, this is an assumption that hardly seems to be supported
by any of the examples of more fundamental theories. They never made
it clear how they could avoid this. It appears as if they had never been
particularly concerned about whether there were any theories at a deeper
level behind their model, which they viewed as an alternative theory in
its own right.

It is nevertheless hard to deny that the scalar–tensor theory has at-
tracted wide interest because it appears to provide a small window through
which one can look into phenomenological aspects of more fundamental
theories to which one is still denied any direct access otherwise.

It is truly remarkable and even surprising to find that a candidate
scalar field of the desired nature is provided by the string theory of the
late twentieth century, not to mention the KK theory of the 1920s. We
will discuss briefly such candidates, starting from a reasonably detailed
account of the KK approach. We then move on to the “dilaton” expected
from string theory, and further to the recent development of the “brane,”
which has become a focus of attention even though it is still highly spec-
ulative. We also sketch another highly hypothetical idea that is closely
related to “noncommutative geometry,” which turns out to be yet an-
other supplier of a scalar field.

1.2.1 The scalar field arising from the size of compactified
internal space

Shortly after the advent of general relativity, the historic attempts at
unification appeared, first due to H. Weyl [19], and then due to Kaluza.
Weyl’s theory eventually laid the foundation for what was later called
gauge theory, the heart of the contemporary version of unification theories,
whereas Kaluza’s proposal, later known as the KK theory, played a
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10 Introduction

decisive role in making clear the importance of higher-dimensional space-
time in string theory, not to mention serving as an ancestor of the scalar–
tensor theory.

Kaluza envisioned five-dimensional space-time to which general
relativity was applied. One of the spatial dimensions was assumed to
be “compactified” to a small circle leaving four-dimensional space-time
extended infinitely as we see it. The size of the circle is so small that no
phenomena of sufficiently low energies can detect it.

He started with the metric in five dimensions, of which the “off-
diagonal” components connecting the four dimensions with the fifth di-
mension behave as a 4-vector that has been shown to play the role of
the electromagnetic potential. In this way the theory offered the unified
Einstein–Maxwell theory. The gauge transformation for the potential is
interpreted as an isometry transformation along the circle.

The idea was re-discovered later from a more contemporary point of
view [20], in particular in connection with the realization that string the-
ory requires higher-dimensional space-time [21]. We outline briefly how
the size of compactified internal space behaves as a four-dimensional scalar
field precisely of the nature of the prototype BD model, with the parame-
ter determined uniquely in terms of the dimensionality of space-time. See
Appendix A for more details of derivations.

Let us assume the “Ansatz” for the D = (4 + n)-dimensional metric
with n-dimensional compactified space:

gµ̄ν̄ =

(
gµν(x) 0

0 A(x)2g̃αβ(θ)

)
, (1.16)

with the radius A, while g̃αβ(θ) means the purely geometrical portion
described by the coordinates θα with α, β = 1, 2, . . . , n. We choose θα to
be dimensionless, like angles. Notice that we omitted, for the moment, the
off-diagonal components for the gauge fields, focusing on the scalar field.

We also have √
−(D)g =

√−gAn
√
g̃, (1.17)

where g is the four-dimensional determinant, while
√
g̃ is related to the

volume Vn of compactified space by

Vn = AnṼn, (1.18)

where

Ṽn =
∫ √

g̃ dnθ. (1.19)
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