
Chapter 1

Mathematical prelude

For more than two thousand years some familiarity with mathemat-
ics has been regarded as an indispensable part of the intellectual
equipment of every cultured person.

(Richard Courant, 1941)

1.1 Introduction

In biological research there is a steadily increasing trend to describe functions
and mechanisms quantitatively by applying ideas and concepts from physics
and physical chemistry. This tendency is found in large areas of biology, ex-
tending from ecology over the function of the integrated organism to processes
taking place at the cellular and molecular level. This development will doubtless
continue.

However, a quantitative treatment of any phenomenon in physics or physical
chemistry requires an adequate command of the mathematical tools that are
needed to formulate and solve the particular problem that is subject to such
close scrutiny. For that reason, mastery of certain elements of mathematical
analysis is an indispensable element in the arsenal of tools that are loaded into
the knapsack of the serious student of general physiology or cell biology.

The sections that follow in this chapter are not presented as a self-contained
mathematical text. The intention is to present a summary – short in some places,
more detailed in others – of the mathematical concepts and techniques that are
used in this book. It is presumed that the reader is already familiar with these
concepts. Thus, a cursory reading of this chapter may have the effect of acting
as a reminder of items that are known but perhaps not immediately recalled
from memory.
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2 1. Mathematical prelude

1.2 Basic concepts of differential calculus

1.2.1 Limits

A collection of numbers

a1; a2; a3; a4; . . . an;

that follow each other according to a given law is called a sequence of numbers.
If the number of elements n increases without bound the sequence is an infinite
sequence. The elements of the sequence are said to converge to a limit L if the
elements beyond that of aµ behave in such a way that the difference

|L − an| for n > µ

is smaller than any arbitrarily small positive number ε. If the elements an do
not pile up in this manner, the sequence is made up of elements that diverge.
When the elements of a sequence are added they constitute a series

Sn = a1 + a2 + a3 + a4 + · · · an,

which may be finite or infinite according to whether the number of elements n
is bounded or not. An infinite series may converge to a definite value Sn when
n increases beyond the boundary. This value S∞ = L is called the limit of the
series. This is generally written as

Sn → L , for n → ∞, or lim
n→∞ Sn = L .

1.2.2 Functions

Let x and y represent two arbitrary quantities that are coupled together in such
a way that to each value of x there exists a definite value of y. We say then that
the quantity y is a function of the quantity x . Usually this is represented as

y = f (x), (1.2.1)

where x is called the independent variable and y is called the dependent
variable∗. Of course one could equally well have considered the inverse function

x = g(y), (1.2.2)

where y is now the independent variable and x is the dependent variable. The
condition that the inverse function x = g(y) is so well-behaved that there exists
in the interval a ≤ x ≤ b one and only one value of x for a given value of y, is

∗ To facilitate the readability of this text, mathematical and physical variable quantities are printed
in italics. Similarly, mathematical operators are printed in Roman type.
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1.2. Basic concepts of differential calculus 3

that the function y = f (x) is increasing or decreasing monotonically in the same
domain. Thus, the function y = x2 is monotonically decreasing in the region
−a ≤ x ≤ 0, and to every value of y there corresponds only one value x =
−√

y. In the region 0 ≤ x ≤ a the function y = x2 increases monotonically,
and to every value of y there corresponds likewise only one value x = √

y.
With increasing values for x in the region −a ≤ x ≤ a the function y = x2

both decreases monotonically as well as increasing, and for a given value of
y we have the corresponding values x = −√

y and x = √
y. A function that

suddenly jumps from one value to another is said to be a discontinuous function.
Thus, the function

y = f (x) =
{

2 for x ≥ 1
1 for x < 1

is a discontinuous function for x = 1, since

f (1 + ε) − f (1 − ε) = 1

no matter how small we make the positive quantity ε. A continuous function is,
roughly speaking, a function that does not do such things. Thus, the function

y = f (x) =
{

x2 for x ≥ 1
x for x ≤ 1

in continuous at the point x = 1 since

f (1 + ε) − f (1 − ε) = (1 + ε)2 − (1 − ε) = 3ε + ε2 → 0 for ε → 0,

although the formula displays changes for x = 1.

1.2.3 The derivative

Consider the function y = f (x) that is continuous in the range a < x < b. If
the quantity, denoted the difference quotient, for the function y = f (x) at the
point x

f (x + h) − f (x)

h
, (1.2.3)

converges towards a definite limit as h approaches zero in an arbitrary manner
0, the value of this limit

lim
h→0

[
f (x + h) − f (x)

h

]
def≡ f ′(x), (1.2.4)
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4 1. Mathematical prelude

is called the first derivative of the function y = f (x)∗. Another name for f ′(x)
is the differential quotient of f (x). We can illustrate this limiting process geo-
metrically as follows: Eq. (1.2.3) represents the value of the slope of a straight
line that is anchored at the curve point P0 with coordinates (x, f (x)) and makes
another section with the curve at the point P1 at (x + h, f (x + h)). This line
is called a secant to the curve. When we let h decrease in an arbitrary manner,
the point P1 approaches the point P0 from either side according to the sign of
h, and when h → 0 the slope of the secant attains a limiting value that is equal
to the slope of the line that, at the point P0, has only one point in common with
the curve y = f (x), namely the tangent of the curve at P0, or

lim
P1→P0

(Slope of secant anchored at P0) = (Slope of tangent at P0)

always provided there is a tangent with a well-defined direction at the point
P0 on the curve. This occurs if the limit of the ratio ( f (x + h) − f (x))/h
in Eq. (1.2.4) converges to the definite value f ′(x) when h → 0. In many
physical applications involving the derivative it may useful to keep in mind this
geometrical representation of f ′(x).

The expression y′ = f ′(x) goes back to the work of J.-L. Lagrange†. Another
way of writing the derivative f ′(x) is

f ′(x)
def≡ dy

dx
, (1.2.5)

which was introduced by G.W. Leibniz (1646–1716)‡, has many practical ad-
vantages, and is almost always used in applied mathematics.

The quantity (dy/dx) is not a fraction in the usual sense but a compact symbol
meaning that the function y = f (x) has been subjected to the operation that is
defined by Eq. (1.2.4). To emphasize the character of dy/dx as a mathematical
operation many people prefer to use the typographical convention

dy

dx
def≡ dy

dx
, (1.2.6)

to distract one’s thoughts from a fraction. This notation will be used in this
book.

∗ The symbol
def≡ is used in this text to emphasize that it is a definition.

† J.-L. Lagrange (1736–1813) was a Professor at École Polytechnique. He was one of the greatest
mathematicians of the eighteenth century, who made fundamental contributions to the devel-
opment of differential and integral calculus, calculus of variation, theory of numbers and to
mechanics (Mécanique analytique) and astronomy.

‡ This is a remainder of the derivative being obtained from the difference quotient which he wrote
as

f (x + �x) − f (x)

�x
= �y

�x
, for �x → 0.
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1.2. Basic concepts of differential calculus 5

As an illustration we consider the function y = f (x) = x2. We have

(x + h)2 − x2

h
= (x2 + 2hx + h2) − x2

h
= 2hx + h2

h
= 2x + h.

Hence

lim
h→0

(x + h)2 − x2

h
= 2x .

Thus, the limit exists, giving

f ′(x) = dy

dx
= 2x .

Continuing this argument to y = f (x) = xn , where n is any real number, one
gets

d

dx
(xn) = n xn−1.

Naturally the operations of Eq. (1.2.3) and Eq. (1.2.4) can be applied to the
function f ′(x). If the limit exists it is called the second derivative of the function
f (x). The notation for this limit is

f ′′(x)
def≡ d

dx

(
dy

dx

)
def≡ d2 y

dx2
. (1.2.7)

Some mathematicians have never become reconciled to Leibniz’s notation
and have instead replaced the operator d( )/dx by the symbol D to denote the
operation∗

D f (x)
def≡ lim

h→0

[
f (x + h) − f (x)

h

]
def≡ f ′(x).

The D notation will not be used in this text.
The requirement for the limit of Eq. (1.2.4) to exist is that the function f (x)

is continuous. However, this condition is not sufficient, because a continuous
function may exhibit a sudden break at a point x0. In this case f ′(x0 − ε) and
f ′(x0 + ε) both exist no matter how small we make ε, but they may differ
drastically from each other in value, leaving f ′(x) to have a discontinuity at the
point x0.

∗ This was introduced in 1808 by Brisson and gained a footing owing to the extensive use of the
operator D made by A.L. Cauchy (1789–1857).
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6 1. Mathematical prelude

1.2.3.1 A few derived functions

Using the operations that are defined by Eq. (1.2.4) on the elementary mathe-
matical functions one obtains explicit expressions for the derivatives of the
functions in question. Below are a few important elementary examples∗

(a) If f (x) = A, where A is a constant, f ′(x) = 0.

(b) If f (x) = Au(x), f ′(x) = Au′(x).
(c) If f (x) = u(x) + v(x), f ′(x) = u′(x) + v′(x).
(d) If f (x) = u(x) v(x), f ′(x) = u′(x) v(x) + u(x) v′(x).

(e) If f (x) = u(x)

v(x)
, f ′(x) = u′(x) v(x) − u(x) v′(x)

v(x)2
.

(f) If f (x) = x, f ′(x) = 1.

(g) If f (x) = xn, f ′(x) = nxn−1.

(h) If f (x) = sin x, f ′(x) = cos x .

(i) If f (x) = cos x, f ′(x) = − sin x .

(j) If f (x) = tan x, f ′(x) = 1/ cos2 x .

1.2.4 Approximate value of the increment ∆y

In physics many relations are described in terms of the rate of change of a
quantity. This change may depend upon time, position in space, or both. With
hardly a single exception it is sufficient initially to express this change with an
approximate accuracy that may be improved later as occasion requires. In this
context, differential calculus is a very useful tool. One proceeds as follows. The
curve in Fig. 1.1 shows an arbitrary differentiable function y = f (x). The line
AB denotes the tangent to the curve on the point (x, y) having a slope that is
equal to the value of the derivative f ′(x) taken at the point (x, y). Let x + h
be a neighboring point to x that corresponds to assigning a finite increment
h = �x to the value x of the independent variable. We denote the value of the
function at the neighboring point x + h as f (x + h) = y + �y, where �y is
the increment in y = f (x) due to the change h in the argument. According to
Eq. (1.2.3) and Eq. (1.2.4), that defines the derivative f ′(x), the increment can
be written as

�y = f (x + h) − f (x) = f ′(x) h + ε�x, (1.2.8)

or

y + �y = f (x + �x) = f (x) + f ′(x)�x + ε�x, (1.2.9)

∗ For more about hyperbolic functions, see Appendix I.
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1.2. Basic concepts of differential calculus 7

Fig. 1.1. Approximation of the increment �y of a function y = f (x) by a linear function.
The figure also illustrates the geometrical meaning of the differentials dy and dx .

where ε = ε(�x) depends on the magnitude of �x and approaches zero when
h = �x → 0.

We now regard the variable x as fixed and let the increment h = �x vary in
an arbitrary manner. Equation (1.2.9) now states that the increment �y to the
value y of f (x) at a given value of x is made up of two terms:

(i) a term f ′(x) h = f ′(x)�x that is proportional to the increment h = �x
with f ′(x) as the proportionality coefficient that is a constant at a fixed
value of x , and

(ii) a correction term εh = ε�x , which can be made as small as we wish relative
to h by making the increment h = �x sufficiently small. Thus, the smaller
we make the interval in question h = �x around x the more precisely will
the function f (x + h), being a function of h, be represented by its linear part

f (x + h) ≈ f (x) + f ′(x)h, (1.2.10)

where both f (x) and f ′(x) are two fixed numbers for a given value of x .
From a geometrical viewpoint this approximate description of the value
f (x + h) of the function y = f (x) at the point (x, y) means that the curve
of f (x) is replaced by the tangent and that the expression for the increment
of the function

�y = � f = f (x + h) − f (x),

corresponding to the increment �x of the independent variable, can be
written approximately as

�y = � f ≈ f ′(x)�x, (1.2.11)

provided �x is sufficiently small to make the term ε�x negligible relative
to the term f ′(x)�x .
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8 1. Mathematical prelude

1.2.5 Differential

The approximate description of the increment �y by the linear part f ′(x)h =
f ′(x)�x can also be used to put the term differential on a firmer logical basis.
The original meaning of differentials as infinitely small quantities – different
from zero – very soon turned out to have no precise meaning. One of the
founders of differential calculus G.W. Leibniz (1646–1716) tried, without suc-
cess, around 1680 to define the differential quotient as the ratio between two
infinitely small increments dy and dx that were considered just before both
quantities assumed the value zero. More than 100 years passed before the
Bohemian priest B. Bolzano (in 1817) sharpened the definitions of such con-
cepts as limits, continuity, etc., and then described the derivative by the limiting
process in Eq. (1.2.4). However, Leibniz’s notation has turned out to be the most
suitable for handling calculations in physics and chemistry. For that reason, it
is of value to attempt to give an unambiguous description of the identity

f ′(x)
def≡ dy

dx
,

in such a way that the expression dy/dx need not be regarded only as a symbol
for the limiting process

dy

dx
= lim

h→0

f (x + h) − f (x)

h
,

but can also be considered as a quotient between two actual, well-defined,
quantities.

Starting from the definition of the derivative f ′(x) as a limiting process, as
in Eq. (1.2.4), we then assign a fixed value to the independent variable x and
consider the increment h = �x as the variable (see Fig. 1.1). The quantity
h = �x is then called the differential of x , and is designated as dx . We then
define the quantity

dy
def≡ f ′(x) dx, (1.2.12)

as the differential dy of the function y = f (x) corresponding to the differential
dx of the independent variable. Thus, by means of this definition the derivative
f ′(x) is regarded as the ratio between two quantities dy and dx , which can
have any value provided their ratio is constant and equal to f ′(x). Comparing
Eq. (1.2.9) with Eq. (1.2.10) shows that the differential dy is equal to the
linear portion of the increment �y that corresponds to the increment dx of the
independent variable x (compare Fig. 1.1).

The introduction of the differentials dy and dx due to S.-F. Lacroix (1765–
1843) and A.L. Cauchy (1789–1857) does not represent a new idea. But their
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1.2. Basic concepts of differential calculus 9

merit is to make more precise the wording of “infinitesimal quantity”: these
quantities are now of finite magnitude, and not quantities “just differing from
zero”. Hence, when considering a particular problem, they may be chosen to
be small enough so that one can, with confidence, replace the increment �y of
the function with its differential dy and write

�y ≈ dy = f ′(x) dx =
(

dy

dx

)
dx, (1.2.13)

and

f (x + dx) ≈ f (x) + f ′(x) dx = f (x) +
(

dy

dx

)
dx . (1.2.14)

The validity of the above approximation depends on the special character
of the physical situation in question. In general, the error introduced will be
insignificant for the solution of the physical problem as long the infinitesimal
quantities introduced are smaller than the actual error of measurement that are
related to the physical situation.

1.2.5.1 The chain rule

One often finds that the dependent variable y is a function of the independent
variable u that again is a function of the independent variable x , e.g.

y = u3 and u = sin x .

This situation is described by saying that y is a function of a function or that y
is a compound function of x . In general we write this as

y = f (x) = F(u) = F{u(x)}.
If both derivatives

dF

du
and

du

dx

exist it can be shown that

f ′(x) = F ′(u) u′(x),

or, in terms of Leibniz’s notation,

dy

dx
= dF

dx
= dF

du

du

dx
, (1.2.15)

which illustrates both the flexibility and suggestive strength of this notation.
It appears as if the symbols dy and dx are quantities that can be considered
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10 1. Mathematical prelude

and manipulated as if they were real numerical quantities. In fact, they can.
According to Eq. (1.1.10) we have

dF = dF

du
du, and du = du

dx
dx,

so that

dF = dF

du

du

dx
dx,

which on division on both sides by dx becomes Eq. (1.2.15). In the above
example we have dy/du = 3u2 and du/dx = cos x . Hence

dy

dx
= dy

du

du

dx
= 3 sin2 x cos x .

For the function y = sin3 αx we obtain dy/dx = 3α sin2 αx cos αx , since

d(sin αx)

dx
= d(sin αx)

d(αx)

d(αx)

dx
= α cos αx .

If y = sin
√

x = sin u, where u = √
x = x1/2 we have

dy

dx
= d sin u

du

du

dx
= cos

√
x

d

dx
(
√

x) = cos
√

x

(
1

2

)
x− 1

2 = 1

2

cos
√

x√
x

.

1.2.5.2 The derivative of the inverse function

It has previously been stated that if a continuous function y = f (x) is either
increasing or decreasing monotonically in an interval (say a ≤ x ≤ b) then
the inverse function x = g(y) also exists as a single-valued function that is
continuous and monotonic in the same interval. If the function y = f (x) is
differentiable in the interval, the function increases monotonically if f ′(x) > 0
in the interval and, correspondingly, can decrease monotonically if f ′(x) < 0.
Knowledge of the differentiability of a function in a given interval provides a
tool for deciding whether the function also possesses an unambiguous inverse
function as expressed in the following statement.

If the function y = f (x) is differentiable in the interval a < x < b and
f ′(x) > 0 everywhere or f ′(x) < 0 everywhere, then the inverse function x =
g(y) also has a derivative x ′ = g′(y) in the whole interval. The derivative of
the original function y = f (x) and that of the inverse function x = g(y) are for
the values of x and y belonging together connected by the following relation:

f ′(x) · g′(y) = 1, (1.2.16)
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