Lightning: Physics and Effects

Lightning: Physics and Effects is the first book that covers essentially all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as with the environment. It is written in a style that will be accessible to the technical non-expert and is addressed to anyone interested in lightning and its effects. This will include physicists, engineers working in the power industry and in the communications, computer, and aviation industries, meteorologists, atmospheric chemists, foresters, ecologists, physicians working in the area of electrical trauma, and architects. This comprehensive reference volume contains over 300 illustrations, 70 tables containing quantitative information, and over 6000 references and bibliography entries.

Vladimir A. Rakov worked as Assistant Professor of Electrical Engineering at Tomsk Polytechnical University, Russia from 1977 to 1979 and was awarded a Ph.D. in 1983. In 1978 he became involved in lightning research at the High Voltage Research Institute, a division of Tomsk Polytechnic, where, from 1984 to 1994, he held the position of Director of the Lightning Research Laboratory. Professor Rakov received the rank of Senior Scientist in High Voltage Engineering in 1985, was named an Inventor of the USSR in 1986, and received a Silver Medal from the (USSR) National Exhibition of Technological Achievements in 1987. He joined the faculty of the Department of Electrical and Computer Engineering at the University of Florida in 1991 and has also held visiting professorships at the Technical University of Vienna and at the Swiss Federal Institute of Technology in Lausanne. Professor Rakov is the author of over 30 patents and in excess of 200 papers and technical reports on various aspects of lightning.

Martin A. Uman received his Ph.D. degree from Princeton University in 1961 and subsequently worked as an Associate Professor of Electrical Engineering at the University of Arizona in Tucson from 1961 to 1964. Following seven years as a Physics Fellow at Westinghouse Research Laboratories in Pittsburgh, in 1971 he joined the University of Florida Faculty, where he is now Professor and Chair of the Department of Electrical and Computer Engineering. Professor Uman co-founded and served as President of Lightning Location and Protection, Inc. (LLP) from 1975 to 1985. He has been honored many times for his contributions to lightning research including the 1996 IEEE Heinrich Hertz Medal for “outstanding contributions to lightning detection and protection” and the 2001 American Geophysical Union John Adam Fleming Medal for his “outstanding contribution to the description and understanding of electricity and magnetism of the Earth and its atmosphere.” Professor Uman has written three other books on the subject of lightning as well as almost 300 journal articles and technical reports.
Rakov’s dedication

To my wife Lucy and our son Sergei

Uman’s dedication

To my wife Dorit, our children Mara, Jon, and Derek, and our grandchildren Sara, Hunter, Hayden, Summer, and Isabella
Contents

Preface

1. Introduction
 1.1. Historical overview
 1.2. Types of lightning discharge and lightning terminology
 1.3. Summary of salient lightning properties
 1.4. The global electric circuit
 1.5. Regarding the utilization of lightning energy
 1.6. Summary

References and bibliography

2. Incidence of lightning
 2.1. Introduction
 2.2. Characterization of individual storms and storm systems
 2.3. Thunderstorm days
 2.4. Thunderstorm hours
 2.5. Lightning flash density
 2.6. Long-term variations in lightning incidence
 2.7. Ratio of cloud flashes to cloud-to-ground flashes
 2.8. Characteristics of lightning as a function of season, location, and storm type
 2.9. Lightning incidence to various objects
 2.10. Summary

References and bibliography

3. Electrical structure of lightning-producing clouds
 3.1. Introduction
 3.2. Cumulonimbus
 3.3. Non-cumulonimbus
 3.4. Summary

References and bibliography

4. Downward negative lightning discharges to ground
 4.1. Introduction
 4.2. General picture
 4.3. Initial breakdown
 4.4. Stepped leader
 4.5. Attachment process
 4.6. Return stroke

References and bibliography

5. Positive and bipolar lightning discharges to ground
 5.1. Introduction
 5.2. Conditions conducive to the occurrence of positive lightning
 5.3. Characterization of positive lightning
 5.4. Bipolar lightning discharges to ground
 5.5. Summary

References and bibliography

6. Upward lightning initiated by ground-based objects
 6.1. Introduction
 6.2. General characterization
 6.3. Overall electrical characteristics
 6.4. Impulsive currents
 6.5. Lightning current reflections within tall objects
 6.6. Electromagnetic fields due to lightning strikes to tall objects
 6.7. Acoustic output
 6.8. Summary

References and bibliography

7. Artificial initiation (triggering) of lightning by ground-based activity
 7.1. Introduction
 7.2. Rocket-triggered lightning
 7.3. Other lightning triggering techniques
 7.4. Concluding remarks

References and bibliography

8. Winter lightning in Japan
 8.1. Introduction
 8.2. Formation of winter thunderclouds
 8.3. Evolution of winter thunderclouds

References and bibliography
Contents

8.4 Characteristics of natural winter lightning 311
8.5 Rocket-triggered lightning in winter 314
8.6 Summary 316
References and bibliography 317

9. Cloud discharges 321
9.1 Introduction 321
9.2 General information 322
9.3 Phenomenology inferred from VHF–UHF imaging 326
9.4 Early (active) stage 329
9.5 Late (final) stage 338
9.6 Comparison with ground discharges 340
9.7 Summary and references 341

10. Lightning and airborne vehicles 346
10.1 Introduction 346
10.2 Statistics on lightning strikes to aircraft 348
10.3 Major airborne research programs 350
10.4 Mechanisms of lightning–aircraft interaction 353
10.5 Lightning test standards 362
10.6 Accidents 364
10.7 Summary 369
References and bibliography 370

11. Thunder 374
11.1 Introduction 374
11.2 Observations 374
11.3 Generation mechanisms 377
11.4 Propagation 386
11.5 Acoustic imaging of lightning channels 387
11.6 Summary 389
References and bibliography 390

12. Modeling of lightning processes 394
12.1 Introduction 394
12.2 Return stroke 394
12.3 Dart leader 415
12.4 Stepped leader 417
12.5 M-component 419
12.6 Other processes 420
12.7 Summary 420
References and bibliography 421

13. The distant lightning electromagnetic environment: atmospherics, Schumann resonances, and whistlers 432
13.1 Introduction 432
13.2 Theoretical background 435
13.3. Atmospherics (sferics) 443
13.4. Schumann resonances 449

14. Lightning effects in the middle and upper atmosphere 480
14.1. Introduction 480
14.2. Upward lightning channels from cloud tops 481
14.3. Low-luminosity transient discharges in the mesosphere 482
14.4. Elves: low-luminosity transient phenomena in the lower ionosphere 492
14.5. Runaway electrons, X-rays, and gamma-rays 493
14.6. Interaction of lightning and thundercloud electric fields with the ionosphere and the magnetosphere 495
14.7. Summary 497
References and bibliography 497

15. Lightning effects on the chemistry of the atmosphere 507
15.1. Introduction 507
15.2. Mechanism of NO production by return-stroke channels 511
15.3. Laboratory determination of NO yield per unit energy 514
15.4. Ground-based field determination of NO yield per lightning flash 514
15.5. Estimation of global NO production using the flash extrapolation approach (FEA) 516
15.6. Estimation of NO production from airborne measurements 516
15.7. Estimation of NO production from extrapolation of nuclear explosion data 518
15.8. Transport of lightning-produced trace gases 518
15.9. Production of trace gases in the primitive Earth atmosphere and in the atmospheres of other planets 519
15.10. Summary 520
References and bibliography 521

16. Extraterrestrial lightning 528
16.1. Introduction 528
16.2. Detection techniques 530
16.3. Venus 531
16.4. Jupiter 536
16.5. Saturn 543
16.6. Uranus 544
16.7. Neptune 545
16.8. Concluding remarks 546
References and bibliography 547

© Cambridge University Press www.cambridge.org
Preface

In this text, the first monograph to cover essentially all aspects of lightning, every effort has been made to present a balanced review of the present knowledge of lightning physics and lightning effects. The end-of-chapter reference and bibliography lists (a total of over 6000 entries) are essentially complete on most topics up to spring 2002. The Appendix contains a list of other books on lightning and related topics. Each of the authors has contributed to all chapters of the book; however the primary authorship by chapter is as follows. Chapters 1–9 and 12 were written by Rakov; Chapters 10, 13–15, and 18–20 by Uman; and Chapters 11, 16, and 17 were jointly written. General coordination of the work resulting in this book was conducted by Rakov.

Portions of the content of this book have been used for several years as the textbook for a one-semester senior- and graduate-level course on lightning at the University of Florida. The suggested content for a similar one-semester course would include Sections 1.2, 2.5, 2.9, subsections 3.2.1–3.2.7, Chapter 4, Section 7.2, and Chapters 12 and 17. The prerequisite for such a course would be an undergraduate course in electromagnetics or an undergraduate general physics course that covered electromagnetics in moderate detail.

The authors would like to thank colleagues who read various parts of the manuscript and provided useful comments and suggestions, including, in alphabetical order: M. Baker (Chapter 3); C.E. Baum (Chapter 12); M.A. Cooper (Chapter 19); K.L. Cummins (Chapters 2, 17 and sections 6.5, 6.6); R.R. Dickerson (Chapter 15); J.E. Dye (Chapter 15); U. Dyudina (Chapter 16); F. Heidler (Chapter 6); R.L. Holle (Chapter 19); R.H. Holzworth (Chapter 1); V. Idone (Chapter 4); M. Miki (Chapter 7); J.P. Moreau (Chapter 10); K. Nakamura (Chapter 8); C.A. Nucci (Chapter 18); R.E. Orville (Chapter 2); V.P. Pasko (Chapter 14); D.E. Crawford (Fig. 2.12); M. Rakov (Chapter 14); D.B. Walen (Chapter 10); D. Wang (Chapters 7, 8); C.J. Marshall (Chapter 3); V. Mazur (Chapter 10); D.R. MacGorman (Chapter 5); M. Miki (Chapter 7); J.P. Moreau (Chapter 10); K. Nakamura (Chapter 8); C.A. Nucci (Chapter 18); R.E. Orville (Chapter 2); V.P. Pasko (Chapter 14); D.E. Proctor (Chapter 9); F. Rachidi (Chapter 18); V. Shostak (Sections 6.5, 6.6); R. Solomon (Chapter 3); M. Stolzenburg (Chapter 3); R. Strangeway (Chapter 16); D.B. Walen (Chapter 10); D. Wang (Chapters 7, 8); J.C. Marshall (Chapter 7, subsections 4.4.6, 4.4.8, 5.3.2, 5.3.3, and Sections 12.3, 12.4); E.R. Williams (Chapters 2, 13); and W. Zischank (Chapter 18). Of course, the opinions we express in the text should not necessarily be interpreted as the views of these colleagues. Thanks also go to those who provided original figures for the book: J. Autery (cover), P.P. Barker (Fig. 7.31c), Ruth and Ken Bateman (Fig. 19.4), H. Bine and G. Storf (Figs. 6.2–6.4), D.J. Boccippio and H.J. Christian (Fig. 2.12), W. Brooks (Fig. 2.3), D.E. Crawford (Fig. 5.10), S. Cummer (Fig. 14.6), K.L. Cummins (Figs. 2.11 and 17.6), R.J. Fisher (Fig. 7.24), J. Hendry (Fig. 4.1), R. Holle (Fig. 19.3), V.P. Idone (Figs. 7.5–7.7), D.M. Jordan (Figs. 4.37a and 4.53), Z.I. Kawasaki (Fig. 10.1), P.R. Krehbiel and W. Rison (Fig. 3.1), C.T. Mata (Figs. 7.30 and 18.7), K. Nakamura (Fig. 8.8a), T. Nelson (Fig. 14.2), W.D. Rust (Fig. 5.7c), D. Sentman (Fig. 13.11), D. Sentman and E. Wescott (Fig. 14.3), M. Stolzenburg (Figs. 3.11 and 3.15); G.N. Aleksandrov, E.I. Dubovoy, B.N. Gorin, A.V. Orlov, and Ya. M. Shvarts forwarded a number of papers in Russian that were not readily accessible. An exceptional level of secretarial support was provided by R. Crosser. Help with the drafts of some chapters of the book, figures, and references was given by M. Bryant, J.E. Jerauld, A.S. Mata, M. Moore, S.V. Rakov, and K. Thomson. The final figures were prepared by G. Vu.