Index

A9 dopaminergic cells, 430–1, 434
A10 depolarization block, 430–1, 434–5
Abbreviated Dyskinesia Scale, 331
Abnormal Involuntary Movement Scale
children/adolescents, 330–1
nonlinearity, 242–3
reliability, 317, 331
in Yale tardive dyskinesia study, 43–4
accelerometry
anticholinergic drug assessment, 251
apparatus and data analysis, 248–50
dyskinesia and tremor differentiation, 250
rating scale correlation, 245
acetylcholine, 133–5
acute dyskinesia
and D₂-antagonists, 153–5
D₁/D₂ imbalance theory, 146, 153, 155
definition, 142
acute dystonia, see dystonic reactions
acute-in-chronic dyskinesia
and D₁/D₂ imbalance theory, 146–7, 156
definition, 142
adolescence, 311–37
drug-induced parkinsonism, 352
tardive dyskinesia, 311–37; course and
outcome, 323–6; prevalence, 315; treat-
ment, 329–30
adrenocorticotrophic hormone, 185
affective disorders, 69–78
cognitive deficits, 200–4
and phenylalanine, 163–4
versus schizophrenia, 203–4
tardive dyskinesia mechanism, 72
tardive dyskinesia vulnerability, 69–71,
111–12, 162–4; Yale study, 48–9, 53
African-Americans
age factors, tardive dyskinesia, 304–6
diagnosis of psychosis, 300–1
neuroleptic dosage, 301–2, 306
tardive dyskinesia, 275, 300, 304–6; Yale
study, 48–52
age factors
acute dystonia, 385–6
Asian populations, 261
cerebral dysfunction interaction, 232–3
d₃/D₂ receptor imbalance, 150, 153
drug-induced parkinsonism, 352
and ethnicity, 304–6
gender interaction, 31–2, 34
North African studies, 269–70
subclinical motor phenomena, spectral
analysis, 243
tardive dyskinesia, 13–25, 31–2, 49–51, 111
tardive dystonia, 398–9
Yale tardive dyskinesia study, 49–51
agitation, akathisia difference, 419
agranulocytosis, 429
AIDS, and drug-induced parkinsonism,
355
airway obstruction, and dystonia, 385
akinesia, see bradykinesia
alcohol abuse, 112
alpha-adrenergic antagonists, 434
alpha-methyl dopa, 349
alprazolam, 462
amantadine
in drug-induced parkinsonism, 366
prophylactic use, in dystonia, 389
amiodarone, 349
amitriptyline, and dyskinesia, 73
amoxapine, 73
anaphylaxis, 385
animal models, 225–34, 225–37; see also
rat model
anterior cingulate area, 132
anticholinergic drugs, 117–25
abuse potential, 365, 384
acute dystonia treatment, 388
Index

dopaminergic-cholinergic paradigm tests, 120
dosage effects, tardive dyskinesia, 121
in drug-induced parkinsonism, 364–7
hand-force assessment, 251
imaging studies confound, 218
North African study, 270
prophylactic use, 388–9
side effects, 365, 389
and tardive akathisia, 421
tardive dyskinesia risk, 117–20
tardive dyskinesia uncovering/aggravation, 120–1, 251
and tardive dystonia treatment, 402–4
anticonvulsants
chemical structure, 314
and extrapyramidal symptoms, 76–7
antidepressants
chemical structure, 314
and tardive dyskinesia, 73
antihistaminic drugs, 118
arm movements, in akathisia, 417–18
Artane, see trihexyphenidyl
Asian populations
drug-induced parkinsonism, 355
tardive dyskinesia, 259–66, 274–5, 299–300, 303–4
athetoid movements, 318
atypical neuroleptics, 427–52; see also clozapine
decreased extrapyramidal symptoms, 435–8
drug-induced parkinsonism, 353
mechanism of action, 429–35
autism, 313
baclofen, 404, 461
basal ganglia, 129–36
anatomy, 129
circuitry, 130–5, 360–4
drug-induced parkinsonism, 360–4
GABA pathways, 455–6
neurochemistry, 129–36
magnetic resonance imaging, 214–15, 219
tardive dyskinesia, 129–3, 426–7
benzodiazepines
acute dystonia treatment, 388
antidyskinetic effects, 462
tardive dystonia treatment, 404
benztropine
acute dystonia treatment, 388
chlorpromazine augmentation, 435
in drug-induced parkinsonism, 364–5
tardive dyskinesia risk, 118
beta-adrenergic blockers, 420–1
B-HT 920, 440
biofeedback, 470–83
biperiden, 365
bipolar depression
mood-dependent dyskinesia, 72
tardive dyskinesia vulnerability, 70–1, 111
and tardive dystonia, 403
blacks, see African-Americans
blood glucose levels, 82
blood neuroleptic levels
extrapyramidal symptoms, 387
tardive dyskinesia, 110
blue-eyed men, 99
Bombay, India study, 275
butylamine toxin injections, 403
bradykinesia
drug-induced parkinsonism sign, 341–3, 358–9
rating scales, 358–9
brain damage, 289; see also organicity
bretazenil, 441
bromocriptine, 366
buccolingual dyskinesia, see also orofacial dyskinesia
accelerometry, 245, 249–50
cognitive deficits correlation, 201–2
dopamine D1/D2 imbalance theory, 141–60
genetic factors, 99–100
calcium-channel blockers, 401
carbamazepine
chemical structure, 314
and dyskinesia, 76
Casey-Portland EPS scale, 359
catalase, 90
catelepsy model, 429–30, 433
catatonia, 347
caudate nucleus
circuitry, 131–2
magnetic resonance imaging, 64, 214–15, 219
central pattern generator, 232
cerebral cortex dysfunction, 232–3
cerebral dominance, 59–60, 63
cerebrovascular disease, 21
certitude, 403
children, 311–37
drug-induced parkinsonism, 352
tardive dyskinesia, 311–37; course and outcome, 323–6; prevalence, 315; treatment, 329–30
Chinese populations
neuroleptic average dosage, 264
pharmacogenetics, 303
tardive dyskinesia, 259–60, 264, 274, 299–300
cholcerystokinin, 135
cholinergic agonists, 250–1
cholinergic antagonists, see anticholinergic drugs
cholinergic neurons, neostriatum, 133–5
choreiform movements, 318
cinnarizine, 349
citalopram, 433
clonazepam, 462, 464
clorazepate, 462
clozapine
and D1/D2 imbalance theory, 148–9, 155
drug-induced parkinsonism, 353
extrapyramidal symptom decrease, 435–6
mechanism of action, 429–35
norepinephrine effects, 183
phenylethylamine effects, 167
tardive akathisia treatment, 421–2
tardive dyskinesia benefits, 107–8, 435
and tardive dystonia, 403
cognitive deficits, 196–206
motor symptom severity correlation, 200–1
and orofacial dyskinesia, 62, 201–2
tardive dyskinesia relationship, 59–62, 196–206; and aging, 17–18
cohort design, 52–3
computed tomography, 207–24
Asian study, 262
confounding factors, 216–19
measurement methods, 219
medication effects, 218
specificity, 219
tardive dyskinesia, 21, 207–24
computer-scored movelets, 226–9
continuous neuroleptic administration
children/adolescents, 319
rodent model, 228–9
tardive dystonia, 400
conversion disorder, 384
cortical atrophy
computed tomography, 60, 64, 208
magnetic resonance imaging, 215
corticostriatal pathway, 130, 360–4
cultural factors, 259–97
current neuroleptic dosage, 110
cytocrome P-450, 302–3
Deanol, 251
debrisoquine hydroxylase, 302–3
Denmark, tardive dyskinesia, 281–2
dentures, 16
depot neuroleptic administration, 51, 53, 106–8
L-deprenyl, 365
depression
drug-induced parkinsonism difference, 346–7
tardive dyskinesia vulnerability, 69–71, 111–12; Yale study, 48, 53
dexamethasone suppression test, 185–6
diabetes mellitus, 18, 82–98
and drug-induced parkinsonism, 356
family history, 84–5
insulin resistance hypothesis, 88–92
and oxyradicals, 89–93
and tardive dyskinesia, 18, 82–98, 184
diazepam
acute dystonia treatment, 388
antidyskinetic effects, 462
in drug-induced parkinsonism, 349
DiMascio Extrapyramidal Symptom Rating Scale, 358
diphenhydramine
acute dystonia treatment, 388
in drug-induced parkinsonism, 364–5
discontinuation studies, see withdrawal dyskinesia
dopamine
phenylketonuria effect, 166
serotonin interaction, 432–3
dopamine-autoreceptor agonists, 440
dopamine-β-hydroxylase, 177
dopamine D1 agonists
and D1/D2 imbalance theory, 143–7, 231
oral dyskinesia increase, 143, 145, 231
dopamine D2 antagonists
acute dyskinesia role, 153–5
and D1/D2 imbalance hypothesis, 146–56
grooming syndrome effect, 146
primate studies, 144–6
tardive dyskinesia risk, 146, 148–9, 156, 439–40
dopamine D3 receptors
clozapine effects, 432
family of, 156
tardive dyskinesia role, 146, 148–50, 231–2
dopamine D1/D2 imbalance, 141–60, 231–2
clinical studies, 147–9
clozapine studies, 148–9
models, 150–5
nonhuman primate models, 144–7
postmortem studies, 150
rodent models, 143–4, 231–2
dopamine D2 antagonists, 439
antipsychotic properties, 439
and D1/D2 imbalance theory, 143–56
in drug-induced parkinsonism, 360–3
dopamine D2 receptors; see also dopamine supersensitivity hypothesis
clozapine effects, 431–2
and drug-induced parkinsonism, 360–3
family of, 156
and tardive dyskinesia, 141–56
Index

dopamine D₂ receptors (cont.) upregulation in elderly, 22
dopamine D₁/D₂ receptors, 431
dopamine supersensitivity hypothesis
CNS regional factors, 179
and hyperglycemia, 185
lack of support for, 88–9, 141, 147–8, 230–1, 328, 454–5
model characteristics, 151–2
rat model, 230–1
and withdrawal dyskinesia, 328
dopaminergic-cholinergic paradigm, 120
dorsolateral prefrontal circuit, 131–2
dosage effects, see neuroleptic dosage
DR4 antigen, 189
drug-free periods, 196–7
drug holidays, 110
drug-induced Parkinsonism, 341–80
age factors, 352
Asian study, 262
clinical presentation, 341–9
clinical response link, 360
differential diagnosis, 345–9
epidemiology, 349–56
evaluation, 356–9
gender differences, 352–3
genetic factors, 355
idiopathic Parkinson’s disease comparison, 343–5
instrumentation assessment, 244–5, 247–50
lipid-peroxidation products, CSF, 90
and organicity, 355
pathophysiology, 359–64
pharmacologic variables, 353–4
psychiatric syndromes comparison, 346–7
rating scales, 357–9
risk factors, 351–6
and smoking, 101, 262–3, 354
tardive dyskinesia relationship, 356, 366;
and treatment, 366
time course, 344–5
tolerance, 344–5
treatment, 364–7
and ventricular-brain ratio, 218
Dyskinesia Identification System (Coldwater), 331
dysphagia, 19
dystonic reactions, 381–94; see also tardive dystonia
airway obstruction, 385
clinical manifestations, 381–5
differential diagnosis, 382–4
management, 387–90, 435
prophylaxis, 388–9
psychological factors, 384
risk factors, 385–7
tardive dystonia relationship, 400
U-shaped dose-response curve, 386–7
“early” tardive dyskinesia, 52
edentulousness, 20–1
EEG abnormalities, 201–2
elderly
D₁/D₂ receptor imbalance, 148, 150, 153
drug-induced Parkinsonism, 352
and ethnicity, 304–6
gender factors, 31–2
general treatment principles, 23
spontaneous dyskinesia, 14–15, 276–7, 281
subclinical motor phenomena, spectral analysis, 243
tardive dyskinesia, 13–25, 111
electroconvulsive therapy
drug-induced Parkinsonism treatment, 366–7
tardive dyskinesia vulnerability, 77
electroencephalography, 201–2
electromechanical instruments, 241–56
electromyographic feedback, 471–83
electromyography, 245
electron microscopy, 233
ermonapride, 439
endocrine factors, 175–95
enkephalin, 133–4
epidemiology, see incidence; prevalence
estrogens
dopaminergic interaction, 180–1
postmenopausal women, 180
tardive dyskinesia improvement, 34–5, 180
ethnicity, 298–310
and diagnosis of psychosis, 300–1
drug-induced Parkinsonism, 355
neuroleptic dosage, 301–2, 306
pharmacogenetics, 302–3
pharmacokinetics/pharmacodynamics, 304
tardive dyskinesia risk, 298–310; Yale study, 48, 49–52
ethopropazine, 402
Eurasians, 260, 275
extrapyramidal symptoms, see also drug-induced Parkinsonism; dystonic reactions; tardive akathisia and antipsychotic drug blood levels, 353–4
children/adolescents, 320
dose-response curve, 386–7
prophylactic anticholinergics, 389
rating scales, 357–9
facial expression, 342–3, 358–9
family history, 59–60, 63, 99–100

© Cambridge University Press www.cambridge.org
fast Fourier analysis, 243–4
flunitrazepam
drug-induced parkinsonism, 349
tardive dystonia, 401
fluphenazine
dosage effects, 109
tardive dyskinesia correlation, 106–8
force instability measures
apparatus and data analysis, 246–8
pharmacologic studies, 250–2
rating scale correlation, 245
sensitivity, 243–4
France
neuroleptic dosages, 277–9
spontaneous dyskinesia study, 276
tardive dyskinesia prevalence, 274–5, 279–81
free radicals, see oxyradicals
frequency-domain analysis, 247–9
frontal cortex damage, 232–3
frontal-lobe dysfunction, 64
frontalis muscle, biofeedback, 477, 479
GABA
in basal-ganglia-thalamocortical circuitry, 132–5, 455–6
diencephalic interactions, 181
prolactin modulation, 182
and saccadic distractibility, 181–2, 456–7
supersensitivity hypothesis, 181–2, 455–7
and tardive dyskinesia, 181–2, 232, 455–7;
animal models, 232
GABA-mimetic compounds, 441, 451–69
GABA_A-receptor agonists, 458–9
GABA transaminase inhibitors, 459–60
gait, 342, 359
α-acetylenic GABA, 460
γ-vinyl GABA, 459–60
γ-vinyl-γ-aminobutyric acid, 181
gender differences
and aging, tardive dyskinesia severity, 31–2
Asian studies, 261–2
British studies, 288–9
children/adolescents, 320
drug-induced parkinsonism, 352–3
North African studies, 270
phenylalanine tardive dyskinesia risk, 168
tardive dyskinesia, 26–35; Yale study, 48, 51, 53
tardive dystonia, 399
genetic factors
cross-cultural studies, 274–5
drug-induced parkinsonism, 355
neuroleptic metabolism, 302–3
and rat strain differences, 229
tardive dyskinesia, 99–100, 229, 274–5
genetic vulnerability, 63
genioglossus muscle biofeedback, 475, 477
Germany
neuroleptic dosages, 278
tardive dyskinesia prevalence, 285–7
globellar tap, 357
Glazer-Morgenstern criteria, 45
globus pallidus
circuitry, 131–5, 361–4
drug-induced parkinsonism, 361–4
magnetic resonance imaging, 215–16
tardive dyskinesia, 129–35, 215–16
glucose metabolism
and dopamine receptor hypersensitivity, 185
insulin treatment effects, 184–5
and tardive dyskinesia, 18, 82, 184–5
glucose tolerance, 83, 184
glutamatergic compounds, 441
glutamnergic neurons, 132–4
grooming syndrome, 144–6, 155
growth hormone, 185
haloperidol
case reports, tardive dyskinesia, 105–6
children/adolescents, 321–2
extrapyramidal symptoms, dosage, 386–7
pharmacogenetics, 303
rebound tardive dyskinesia, 107
hand dyskinesia
bixial accelerometry, 250
versus tremor, spectral analysis, 244–5
hand-force control
anticholinergics, 251
apparatus and data analysis, 246–8
neuroleptic withdrawal effect, 252
spectral analysis sensitivity, 243–4
handedness
and drug-induced parkinsonism, 356
and tardive dyskinesia vulnerability, 59–60, 63
handwriting, 343, 360
high-dose neuroleptics
extrapyramidal symptoms, 386–7
tardive dyskinesia risk, 51
high-potency neuroleptics
acute dystonia, 386
in children, 326–7
drug-induced parkinsonism, 353
European countries, 278–9
Yale tardive dyskinesia study, 278–9
hispanics
neuroleptic dosage, 302
tardive dyskinesia prevalence, 275, 300
homovanillic acid, 176–8
and children’s tardive dyskinesia, 328–9
and estrogens, 180
orofacial dyskinesia, 177–8
Index

in postmenopausal women, 180–1

tardive dyskinesia levels, 176–7

and withdrawal dyskinesia, 177

Hungary

neuroleptic dosages, 278

tardive dyskinesia prevalence, 284–5

Huntington’s chorea, 74

5-hydroxyindoleacetic acid, 328–9

hyperglycemia

dopamine receptor hypersensitivity, 185

tardive dyskinesia risk, 18, 85

hyperphenylalaninemia, 162

hypogonadism, 180

hypothalamic-pituitary axis, 185–6

idazoxan, 434

idiopathic dystonia, 384, 397–8, 401–2

idiopathic Parkinson’s disease, 343–5

imaging studies, 21–2

incidence

acute dystonia, 385

drug-induced parkinsonism, 349–51

tardive dyskinesia, 41–53; and aging, 16–17; children/adolescents, 321–2

instrumentation measures, 241–56

attributes, 242–6

limitations, 246

euroleptic masking studies, 251–2

tardive dyskinesia, 241–56

insulin metabolism, 18, 184

insulin receptors, 87–8

insulin resistance

antioxidant system effects, 90–2

in brain, 87–8

tardive dyskinesia pathogenesis, 88–92

insulin treatment

Moroccan study, 271

tardive dyskinesia, 184–5, 271

intelligence

children/adolescent risk factor, 319

and motor symptom severity, 201

tardive dyskinesia relationship, 17–18, 59–60

intermittent neuroleptic administration

children/adolescents, 319

rodent model, 228–9

and tardive dyskinesia, 109–10

and tardive dystonia, 400

intrarater reliability, scales, 315, 317, 331

intrarater variability, scales, 317, 331

intravenous haloperidol, 386–7

isometric force procedures, see force instability measures

Italy

neuroleptic dosages, 278

tardive dyskinesia prevalence, 282–3

Japanese populations

neuroleptic average dosage, 264

pharmacogenetics, 303

tardive dyskinesia, 259–64, 274–5, 280, 299

Kemadrin, see procyclidine

lactate levels, 91

larynx, and dystonia, 385

“late” tardive dyskinesia, 52

lateral orbitofrontal circuit, 131–2

laterality

drug-induced parkinsonism, 343, 356

tardive dyskinesia vulnerability, 59–60, 63

lecithin, 329

left-handedness, 59–60, 63

leg movements, in akathisia, 417

lenticonular nucleus, 219

leucine, 168

leucotomy, 287, 289

levodopa

and D1/D2 imbalance theory, 148

in drug-induced parkinsonism, 366

limb-truncal dyskinesia, 62

limbic action, clozapine, 430–1

lipid peroxidation

and diabetes, 90–1

and tardive dyskinesia, 90, 188

lithium, 73–6

drug-induced parkinsonism, 354

dyskinesia worsening, 75

EEG study, 201–2

extrapyramidal effects, 198

neuroleptic potentiation, 198, 202–3

in neurological conditions, 74

preventive use, 75–6

tardive dyskinesia treatment, 73–5

lobotomy

Asian studies, 262

and tardive dyskinesia, 18

Long-Evans rats, 229

lorazepam treatment, in akathisia, 421

low-dosage neuroleptics

acute dystonia management, 390

and tardive dyskinesia, 51, 109, 286–7

low-potency neuroleptics

in children, 326–7

tardive dyskinesia correlates, 106

Madopar, 148

magnetic resonance imaging, 207–24

advantages and limitations, 214

confounding factors, 216–19

measurement methods, 219

medication effects, 218
magnetic resonance imaging (cont.)
specificity, 219
tardive dyskinesia, 21–2, 60–1, 64, 207–24
maintenance-onset tardive dyskinesia, 322, 326
malingering, 384
mania
epidemiology, 70
mood-dependent dyskinesia, 71
phenylethylamine levels, 163
tardive dyskinesia risk, 70, 162–3
tardive dyskinesia improvement, 403
masking effects, 251–2
masseter muscle
biofeedback, 475, 478
relaxation exercises, 472–3
matrix compartment, neostriatum, 135–6
maximum neuroleptic dosage, 110
medial orbitofrontal cortex, 132
medial temporal lobe, 215
melanocyte-stimulating hormone, 186–7
melatonin
and naloxone, 187
and serotonin, in tardive dyskinesia, 186–8
memory deficits
anticholinergic side effect, 389
motor symptom severity correlation, 201
tardive dyskinesia, 200–2
mental retardation
tardive dyskinesia assessment, 313
tardive dyskinesia risk, 112
tardive dystonia, 400
methoxyhydroxyphenylglycol, 182–3
methylphenidate
chemical structure, 314
and thioridazine, in children, 328
metoclopramide
and diabetes, 83
and drug-induced parkinsonism, 349
spontaneous dyskinesia studies confound, 276
tardive dyskinesia cause, 15
mianserin, 365
micrographia, 343, 360
microvascular abnormalities, 91
milacemide, 441
minor physical anomalies, 59–60, 63
mood-dependent dyskinesia
and affective disorder, 71–2
carbamazepine effect on, 76
GABA concentrations, 182
and tardive dystonia, 403
motor instability, measures, 243–4
MPTP-induced parkinsonism, 349

neuroleptic-induced movement disorders

Index

muscimol, 458
muscle-relaxation exercises, 472–3
naloxone
Casablanca study, 271
and tardive dyskinesia, melatonin, 187
Native Americans, 302
negative symptoms
Asian studies, 263
and drug-induced parkinsonism, 346–7
and tardive dyskinesia, 17–18, 59–62, 112; and age, 17–18
neostriatum
anatomy, 127
circuitry, neurotransmitters, 132–5
dopaminergic neurons, 133–6
inputs and outputs, 129–30
neurodevelopmental model, 57, 59–62
neuroendocrine factors, 175–95
neuroleptic discontinuation, see withdrawal
dyskinesia
neuroleptic dosage
acute dystonia, 390
Asian countries, 264
children/adolescents, 319
drug-induced parkinsonism, 353–4
ethnic factors, 301–2, 306
European countries, 277–81, 291
extrapyramidal symptoms, 386–7
imaging studies confound, 218
tardive dyskinesia relationship, 108–9;
Yale study, 46–7, 49
neuroleptic exposure duration
and affective disorders, 71
and age, 111
children/adolescents, 319, 330
determination of, 45–6
European studies, 291
imaging studies confound, 218
inverse relationship to tardive dyskinesia, 50–2
Japanese study, 263
magnetic resonance imaging, 218
North African study, 270
tardive akathisia, 412–13
tardive dyskinesia relationship, 18–19,
49–53, 108–11; unpredictability, 109;
Yale study, 45–6, 48–53
tardive dystonia, 400
unipolar versus bipolar disorder, 71–2
neuroleptic-induced dystonia, see dystonic
reactions; tardive dystonia
neuroleptic-induced parkinsonism, see drug-
induced parkinsonism
neuroleptic malignant syndrome
and drug-induced parkinsonism, 348
lithium role, 198, 202–3
Index

neuroleptic masking
hand-force instability, 252
instrumentation assessment, 251–2
neuroleptic-naive patients, see never-medicated schizophrenics
neuroleptic-threshold concept, 286–7, 360
neuroleptic withdrawal, see withdrawal dyskinesia
Neurologic Rating Scale, 357–8
neuropathology, animal models, 233
neuropeptide Y, 135
neurotensin, 133, 135
never-medicated schizophrenics
Casablanca study, 272
confounding factors, 278
cross-cultural studies, 277
in developing countries, 271–2
nicotine
neurotransmitter effects, 100
and tremors, 101
nifedipine, 349
nigrostriatal dopamine pathway
circuitry, 132–6, 362–4
drug-induced parkinsonism, 362–4
endocrine studies, 176–8
tardive dyskinesia, 132–6, 176–8
nigroctetal pathway, 181–2
noise effects, 229
non-insulin-dependent diabetes mellitus, 82–98
family history, 84–5, 184
and oxyradicals, 89–93
and tardive dyskinesia, 82–98, 184; insulin resistance hypothesis, 88–93
noradrenergic system, 182–3
norepinephrine
clozapine effects, 183, 434
and tardive dyskinesia, 182–3
obstetric complications, 59–60, 63
“occult” dyskinesia, elderly, 14
ocytoclothein, 431
oculomotor circuit, 131
olanzapine, 437–8
ordinal scales, 242–3
organic-vulnerability hypothesis, 62
organicity
Asian studies, 262–3
British study, 287, 289
drug-induced parkinsonism, 355
tardive dystonia, 400–01
oro-facial dyskinesia, see also buccolingual dyskinesia
age factors, 111
biofeedback, 470–83
children/adolescents, 320–1
and cognitive dysfunction, 62, 201–2
homovanillic acid levels, 177–8
never-medicated schizophrenics, 272, 277
outcome, see prognosis
oxyradicals
and diabetes complications, 91
insulin resistance permissive role, 90–2
tardive dyskinesia hypothesis, 89–93, 188
and vitamin E treatment, 188
parallel circuits concept, 360–4
Parkinson’s disease, and smoking, 100–1
partial dopamine agonists, 440
patch compartment, neostriatum, 135–6
perseveration, 59–60
pharmacogenetics, 302–3
phenelzine, 349
phenylacetic acid
in phenylketonuria, 162
and schizophrenia, 167
phenylalanine, 72, 161–74
brain transport, 164–6
challenge studies, 163–4
in phenylketonuria, 164–6
and schizophrenia, 167
tardive dyskinesia risk factor, 161–74, 188–9
phenylethylamine
clozapine blocking effects, 167
and movement disorders, 166–7, 189
in phenylketonuria, 162
and schizophrenia, 167
tardive dyskinesia correlation, 189
phenylketonuria
amino acid transport effects, 164–6
and schizophrenia, 167
tardive dyskinesia risk 161–2
phenyllactic acid, 162
phosphatidylycholine, 329
phospholipase A2, 91
physostigmine, 250–1
pineal calcium
and axial dyskinesias, melatonin, 186
computerized tomography, 214
piracetam
antidyskinetic effects, 462
in drug-induced parkinsonism, 365
pizotifen, 433
plasma neuroleptic levels, see blood neuroleptic levels
pons, 215
positive symptoms, 59–62
positron emission tomography, 150
postmenopausal women, 35
postmortem studies
D1/D2 receptor imbalance, 150
dopamine supersensitivity hypothesis, 230
posture, 342, 359
prazosin, 434
preclamol, 440
© Cambridge University Press
www.cambridge.org
prefrontal circuitry, 131–2
prevalence
acute dystonia, 385
drug-induced parkinsonism, 349–51
tardive akathisia, 414–15
tardive dyskinesia, 15–16, 315–16; and aging, 15–16; children/adolescents, 315, 322–3; cultural factors, 259–61, 268–9, 274–5, 279–91; and ethnicity, 298–300; and gender, 26–31
tardive dystonia, 298–9
primate models, 144–7
probenecid technique, 328–9
procyclidine
abuse potential, 384
in drug-induced parkinsonism, 365
progabide, 232, 458–9, 463
prognosis
drug-induced parkinsonism, 344–5
tardive dyskinesia, 34, 41–53; children/adolescents, 323–6
prolactin
GABA modulation of, 182
in postmenopausal women, 180
and tardive dyskinesia, 178–9; gender differences, 179
prolactin-index values, 179
prophylactic anticholinergics, 388–9
propranolol, and akathisia, 420–1
“pseudoakathisia,” 411, 416
putamen
anatomy, 129
magnetic resonance imaging, 215–16, 219
motor circuit, 131
pyridoxine, 365–6
pyruvate dehydrogenase complex, 91–2
quinpirole, 150
rabbit syndrome, 342, 348
racial discrimination, 300–1
racial influences, see ethnicity
ractopride, 144–7, 439
rapid-cycling disorder
and GABA CSF concentrations, 182
mood-dependent dyskinesia, 71, 76
rat model, 143–4, 225–37
continuous versus intermittent paradigms, 228–9
dopamine receptors, 143–4, 230–2
early-onset dyskinesia conundrum, 227
homology/isomorphism conformity, 226–7
neuropathology, 233
and psychosocial environment, 229
strain differences, 229
tardive dyskinesia, 143–4, 225–37
rate ratio, 47–8, 50–1
rating scales
nonlinearity disadvantage, 242–3
reliability, 315, 317
rebound tardive dyskinesia, 107
reduced haloperidol, 303
relaxation exercises, 472–3
reliability, rating scales, 315, 317, 331
remissions, see prognosis
remoxipride, 439
reserpine treatment
tardive akathisia, 420–1
tardive dyskinesia, adolescents, 329–30
tardive dystonia, 402, 404
respiratory distress, 19
“restless legs syndrome,” 418–19
rigidity
drug-induced parkinsonism sign, 342–3, 357–9
risk (cumulative incidence), 47, 49
risperidone, 438–9
antipsychotic properties, 438
and extrapyramidal symptoms, 353
and tardive dyskinesia, 108, 438–9
ritanserin
in drug-induced parkinsonism, 365, 433
neuroleptic augmentation, 433
Rockland scale, see Tardive Dyskinesia Rating Scale
rodent model, see rat model
roxindole, 440
saccadic distractibility, 181, 456–7
Scandinavian countries, 275–6
schizoaffective disorder, 71
schizophrenia, see also never-medicated schizophrenics
cognitive deficits, 200–4; versus affective disorders, 203–4
comparative tardive dyskinesia risk, 112
and drug-induced parkinsonism, 346–7
duration of, 272
family history, and vulnerability, 59, 63
individual vulnerability, 56–65
neurodevelopmental model, 57
phenylalanine metabolites, 161
Schouler-Kane criteria, 44–5
scopolamine, 250–1
seborrheic dermatitis, 186–7, 342
selective dopamine-autoreceptor agonists, 440
sensitivity (measurement), 243–4
Serquel, 436–7
serotonin
and affective disorders, 72
childhood tardive dyskinesia, 328–9
dopamine interactions, 432–3
Index
Index

and melatonin, 186–8
phenylketonuria effects, 165–6
serotonin antagonists, 438–9
serotonin receptors, clozapine, 431–3
sertindole, 436
serum levels, see blood neuroleptic levels
Shanghai Psychiatric Hospital study, 299
Simpson-Angus Rating Scale, 357–8
Singapore, 259–60, 275
Skale für abnormal unwill kurliche Bewegungen, 287
Smith-TRIMS scale, 358
smoking, 100–1
and drug-induced parkinsonism, 354
Japanese study, 262–3
and Parkinson’s disease, 100–1
and tardive dyskinesia, 101, 262–3
smoking cessation, 101
sodium valproate, see valproate
somatostatin, 133, 135
spectral analysis
apparatus and data analysis, 246–8
differential assessment use, 244–5
pharmacologic studies, 250–2
sensitivity, 243–4
spontaneous dyskinesia, 275–7
and aging, dopamine receptors, 153
definition, 142
in elderly, 276–7, 281
and past neuroleptic use, 275–7
prevalence, 14, 275–7
tardive dyskinesia relationship, 14–15
Sprague-Dawley rats, 229
St. Hans, Denmark hospital, 281–2
St. Hans Rating Scale for Extrapyramidal Side Effects, 358
stereotypes, 313
stroke, 21
subclinical motor phenomena, 243–4
subjective distress, 317
subjective restlessness, 411, 415–16
substance P, 132–4
substantia nigra
anatomy, 129–30
circuitry, 130–4, 363–4
and drug-induced parkinsonism, 363–4
GABA role, 455–7
and tardive dyskinesia, 129–34
subthalamic nucleus, 130, 133, 363–4
suicide attempts, and akathisia, 416
sulpiride, 107–8
superoxide dismutase, 90
survival approach, 47
Sweden
neuroleptic prescriptions, 275–6
tardive dyskinesia prevalence, 282
symptom topography, 89, 320–1
“Syndrome X,” 87
TAKE scale, 358
tardive akathisia, 409–24
acute akathisia difference, 412–13
clinical course, 419–22
clinical features, 414–18
definition, 410–1
diagnostic criteria, 412–14
differential diagnosis, 418–19
history, 6
and low-dose neuroleptics, 109
motor features, 416–18
remission, 419–20
and smoking, 101
subjective state, 411, 415–16
tardive dyskinesia co-occurrence, 244
treatment, 419–22, 435
tremor difference, 348
tardive dyskinesia, see also tardive dyskinesia severity
and affective disorder, 69–78
and aging, 13–25
animal models, 143–7, 225–37
and anticholinergic drugs, 117–25
basal ganglia neurochemistry, 129–40, 360–4, 456–7
biofeedback, 470–83
children/adolescents, 311–37
cognitive deficits, 196–206
computed tomography, 207–24
cultural aspects, 259–97
definition, 13, 318
dopamine receptor imbalance theory, 141–60
drug-induced parkinsonism relationship, 356, 366
ethnic factors, 298–310
gender factors, 26–35
history, 5–7
incidence, 41–53, 16–17, 41–53
individual patient factors, 56–65
instrument assessment, 241–56; differential diagnosis, 244–5
magnetic resonance imaging, 207–24
neuroendocrine studies, 175–95
neuroleptic drug factors, 104–17
phenylalanine role, 161–74
prevalence, 15–16, 33
spontaneous dyskinesia relationship, 15–16
treatment, 427–83
Yale study, 41–53
Tardive Dyskinesia Rating Scale children/adolescents, 331
nonlinearity, 242–3
reliability, 331
tardive dyskinesia severity, see also tardive dyskinesia 249
and aging, 19
gender factors, and aging, 31–2, 34
hand-force measures, 247–8
never-medicated schizophrenics, 272
prolactin levels, 178–9
tardive dystonia, 395–408
acute dystonia difference, 384
and aging, 19
brain imaging, 401
differential diagnosis, 401–2
epidemiology, 398–401
phenomenology, 396–8
prognosis, 402
remission, 402
risk factors, 398–401
tardive dyskinesia difference, 396, 399, 405
treatment, 402–4
targeted neuroleptic treatment, 109–10
Targeting Abnormal Kinetic Effects scale, 358

teguride, 440
tetrabenazine treatment

drug-induced parkinsonism, 349
tardive akathisia, 420–1
tardive dystonia, 402, 404
tetrahydrodioxazolopyridinol, 459
thalamotomy, 403
thioridazine, 105–7
thought disorder, 61
tics
akathisia difference, 417
lithium treatment, 74
time domain analysis, 247–9
Timed Stereotypies Rating Scale, 331
tolerance, in drug-induced parkinsonism, 344–5
torsion dystonia, 384
total lifetime neuroleptic exposure, 319
Trail Making Tests, 59–62
tremor
differential assessment, 244–5, 247–50
drug-induced parkinsonism sign, 342–3, 357–8
and nicotine, 101
rating scales, 358–9
and valproate, 77
trihexyphenidyl
abuse potential, 384
in drug-induced parkinsonism, 364–5
haloperidol augmentation, 435
tardive dystonia treatment, 402, 404
trunk-limb dyskinesia
children/adolescents, 320–1
and cognitive deficits, 201–2
tryptophan, 164–6
tubero-infundibular dopamine pathway, 178–9
twins, and tardive dyskinesia, 99
tyrosine, 164–6
ultrasound, 245
ultrastructural changes, 233
Unified Rating Scale, 358
unipolar depression, 70–1, 111
vacuous chewing movements, 226–8, 231
valproate, 76–7, 460–1
in drug-induced parkinsonism, 365
haloperidol combination, 461
parkinsonism-dementia syndrome, 77
tardive dyskinesia treatment, 460–1
and tremors, 77
ventral striatum, 129–30, 132
ventricular asymmetry index, 60–1, 64, 208
ventricular enlargement
Asian study, 262
British study, 289
computed tomography, 60–1, 64, 208
magnetic resonance imaging, 215–16
verbal learning deficits, 200, 202
videotape assessment, 317
vitamin E, 188
Webster Scale, 358
Wilson’s disease, 401
Wisconsin Card Sort, 59–62
Wistar rats, 229
withdrawal dyskinesia
behavioral symptoms, children, 327
children/adolescents, 320–7; biology, 328–9
definitions, 315–16
dopamine-β-hydroxylase levels, 177
dopamine receptor supersensitivity, 328
hand-force instability, 252
homovanillic acid levels, 177
norepinephrine CSF levels, 183
rat model, 226, 228
women, 26–35; see also gender differences
zimelidine, 349