
CHAPTER ONE

OVERVIEW

ML is a strict higher-order functional programming language with statically checked
polymorphic types, garbage collection, and a complete formally defined semantics.
Standard ML of New Jersey is an optimizing compiler and runtime system for
ML. The intermediate representation that SML/NJ uses for optimization and code
generation—continuation-passing style—is applicable to the compilation of many
modern programming languages, not just ML. This book is about compiling with
continuation-passing style.

Prior knowledge of ML is helpful, but not necessary, to read this book. Since the
Standard ML of New Jersey compiler is itself written in ML, we use ML notation
for many of the examples. But will we use only a simple subset of the language for
illustrations, and we will explain the notation as we go along. Readers completely
unfamiliar with ML should refer to the introduction in Appendix A.

1.1 Continuation-passing style

The beauty of FORTRAN—and the reason it was an improvement over assembly
language—is that it relieves the programmer of the obligation to make up names
for intermediate results. For example, we write x = (a + b) ∗ (c + d) instead of the
assembly language:

r1 ← a + b
r2 ← c + d
x ← r1 × r2

The simple, one-line expression is easier to read and understand than the three-
line assembly program; the names r1 and r2 don’t really aid our understanding.
Furthermore, the assembly program spells out explicitly the order of evaluation:
a + b is computed before c + d; this is something we did not really need to know.

The λ-calculus gives us these same advantages for functional values as well.
We can write f(λx.x + 1) instead of (as in Pascal):

function g(x: integer): integer;

begin g := x+1 end;

. . . f(g) . . .

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-03311-4 - Compiling with Continuations
Andrew W. Appel
Excerpt
More information

http://www.cambridge.org/052103311X
http://www.cambridge.org
http://www.cambridge.org


2 Chapter 1. Overview

Here, Pascal forces us to give a name (g) to this function; the name (and the
consequent verbosity of the definition) may not help us understand what’s going
on. The λ-calculus also frees us from needing to know too much about order of
evaluation, even across function-call boundaries.

These conveniences are quite appropriate for humans writing programs. But
in fact, they may be just the wrong thing for compilers manipulating programs.
A compiler might like to give a distinct name to every intermediate value of the
program, so it can use these names for table lookups, manipulating sets of values,
register allocation, scheduling, and so on.

Continuation-passing style (CPS) is a program notation that makes every as-
pect of control flow and data flow explicit. It also has the advantage that it’s closely
related to Church’s λ-calculus, which has a well-defined and well-understood mean-
ing.

We can illustrate CPS informally with an example. Start with a source program

fun prodprimes(n) =

if n=1

then 1

else if isprime(n) then n*prodprimes(n-1)

else prodprimes(n-1)

This is an ML program that computes the product of all primes less than or equal
to a positive integer n. The keyword fun introduces a function definition; the
expression on the right-hand side of the equal sign is the body of the function.
The if-then-else and arithmetic expression notation should be familiar to most
readers.

Now, there are several points in the control flow of this program that deserve
names. For example, when the function isprime is called, it will be passed a return
address. It is helpful to name this return address—let’s call it k. And isprime

will return a Boolean value—call it b. The first call to prodprimes (in the then

clause of the second if) will return to a point j with an integer p, but the second
call to prodprimes (in the else clause) will return to a point h with an integer
q. The first computation of n − 1 will be put in a temporary variable m, and the
second one in a variable i, and so on.

We should also mention that the function prodprimes, when it is called, is
handed a return address; we can call that c and treat it as one of the arguments
(formal parameters) of the function. Then we can use c when it is time to leave
the function.

We can express all of this using continuations. A continuation is a function that
expresses “what to do next;” for example, we can say that prodprimes is given a
continuation c as one of its arguments, and when prodprimes has computed its
result a it will continue by applying c to a. Thus, returning from a function looks
just like a function call!

The following program is a continuation-passing-style version of the program,
written in ML. For those unfamiliar with ML, it will help to explain that let

declaration in expression end declares some local value (a function, an integer,
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1.1. Continuation-passing style 3

etc.) whose scope includes the expression; the result of the let is just that of the
expression. A fun declaration declares a function (with formal parameters) and a
val declaration (in this simple example) binds a variable to a value.

fun prodprimes(n,c) =

if n=1

then c(1)

else let fun k(b) =

if b=true

then let fun j(p)=

let val a=n*p

in c(a)

end

val m=n-1

in prodprimes(m,j)

end

else let fun h(q)=c(q)

val i=n-1

in prodprimes(i,h)

end

in isprime(n,k)

end

Observe that all the control points c, k, j, h discussed above are just continua-
tion functions, and all the data labels b, p, a, m, q, i are just variables. In order to
use continuation-passing style, we didn’t have to change our notation very much;
we just used a restricted form of the existing language. A full explanation of CPS
will be given in Chapters 2 and 3.

The CPS representation is easy for optimizing compilers to manipulate and
transform. For example, we would like to perform tail-recursion elimination: If a
function f calls a function g as the very last thing it does, then instead of passing
g a return address within f , it could pass to g the return address that f was given
by f ’s caller. Then, when g returned, it would return directly to the caller of f .

If we look at the original version of prodprimes, we find that one of the calls
is tail recursive (the last recursive call to prodprimes). In the CPS version of the
program, this is manifested in the fact that the continuation function h is trivial:
h(q) = c(q). Now, whenever we have a function h that just calls another function
c with the same argument, we can say that h is equivalent to c; and we might as
well use c wherever h is referred to. So we can perform this simple transformation

let fun h(q)=c(q)

val i=n-1

in prodprimes(i,h)

end

→
let val i=n-1

in prodprimes(i,c)

end

and now we have accomplished tail-recursion elimination in a clean way.
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4 Chapter 1. Overview

1.2 Advantages of CPS

There are many reasons to use continuation-passing style as a framework for
compiling and optimization. In this discussion we will compare it to several
alternatives:1

λ The lambda calculus (without explicit continuations); this might seem like
an appropriate language for reasoning about languages (such as ML and
Scheme) that are “based on λ-calculus.”

QUAD Register transfers, or “quadruples,” that correspond (approximately) to
the instructions of a very simple von Neumann machine.

PDG Program-dependence graphs, that can represent both control flow and data-
flow without intertwining them more than necessary.

SSA Static single-assignment form [34], which is particularly designed for the effi-
cient implementation of certain dataflow algorithms. In SSA, each variable is
assigned exactly once; when control paths merge, explicit transfer functions
are used to maintain the illusion of single assignment. SSA and CPS are
similar in important ways, since CPS also has a kind of single-assignment
property.

These intermediate representations are designed to facilitate different transfor-
mations. Let us consider several different kinds of optimizations, and see how easy
they are to perform with each of these representations.

In-line expansion
CPS
�

λ
�

QUAD
�

PDG
�

SSA
�

The λ-calculus has variable-binding and scope rules particularly designed for β-
reduction, or in-line expansion of functions: The body of a function is substituted
for the function call, and the actual parameters of the function are substituted for
the formal parameters.

But there is a problem with using λ-calculus to express the behavior of strict
call-by-value languages (such as ML, Pascal, Lisp, Scheme, Smalltalk, etc.). In the
programming language, the parameters of a function are supposed to be evaluated
before the evaluation of the body begins; but in λ-calculus this is not necessary.
The usual method of β-reduction for λ-calculus will just put a copy of the actual
parameter at each location where the formal parameter had appeared in the body.
This means:

• A program that was supposed to infinite loop (when interpreted strictly)
may now terminate.

1Readers unfamiliar with the literature on compiler optimization might want to skip this
section.
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1.2. Advantages of CPS 5

• An actual parameter that was evaluated once in the original program may
now be evaluated several times (if the formal parameter is used several times
in the original program).

• In a language with side effects (ML, Pascal, Lisp, etc.), the side effects of the
actual parameter may now occur after some of the side effects in the body
of the function, or may not occur at all, or may occur more than once.

It is just as easy in CPS to express substitution, but CPS has none of the
problems listed in the previous paragraph. All actual parameters to functions are
variables or constants, never nontrivial subexpressions. Thus the substitution of
actuals for formals (and the consequent “moving” of the actual parameters into
the body of the function) can’t cause a problem.

As for the other representations—QUAD, PDG, SSA—they are primarily con-
cerned with the representation of individual function bodies, not with optimiza-
tions across function boundaries. It is still possible to do in-line expansion with
these frameworks, if additional mechanisms are added to represent function pa-
rameters and calling sequences; but the problems of termination, and out-of-order
evaluation of side-effects, must still be solved.

Closure representations
CPS
�

λ
�

QUAD
�

PDG
�

SSA
�

In languages with “block structure” or “nested functions”—such as Pascal, Scheme,
ML—a function f may be nested inside a function g, which itself may be nested
inside another function h. Then f may access its own formal parameters and local
variables, but it may also access the formals and locals of g and h. One of the
tasks of the compiler is to implement this access efficiently. Since the λ-calculus
and CPS also have functions with nested scope, it is easier for the compiler to
manipulate these functions and their representations in computing efficient access
methods for nonlocal variables. The other three representations, since they are
primarily concerned with control and dataflow within individual functions, cannot
address this problem very easily.

Dataflow analysis
CPS
−

λ
�

QUAD
−

PDG
−

SSA
�

Dataflow analysis involves the static propagation of values (more precisely, of
compile-time tokens standing for runtime values) around a flow graph. It answers
questions such as “does this definition of a variable reach that use of the variable?”
which is useful when doing certain optimizations. Since the continuation-passing-
style representation of a program contains a fairly faithful representation of the
control-flow graph, dataflow analysis is as easy in cps as it is in more traditional
representations such as QUADruples.

Static single-assignment form is designed to make forward dataflow analysis
particularly efficient, since it is easy to identify the definition that reaches any
use of a variable—each variable is defined (assigned) exactly once. Continuation-
passing style has a property very much like single assignment, as we will discuss
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6 Chapter 1. Overview

later. On the other hand, λ-calculus does not appear to be well suited for dataflow
analysis.

Register allocation
CPS
�

λ
�

QUAD
�

PDG
−

SSA
�

In allocating variables of the program to registers on a machine, it is useful to
have a notation that can conveniently represent the lifetime—the creation and
destruction—of values. This liveness analysis is really a kind of dataflow analysis,
and so the observations of the previous paragraph apply equally well here. We
note in particular that in certain phases of our CPS-based compiler, the variables
of a CPS-expression correspond very closely to the registers of the target machine.

Vectorizing
CPS
−

λ
�

QUAD
−

PDG
�

SSA
−

Program-dependence graphs are particularly designed for such optimizations as
the synthesis of vector instructions out of ordinary loops. Such optimizations are
still possible in other representations, but may in the end require auxiliary data
structures that accomplish much of what is done by PDGs.

Instruction scheduling
CPS
−

λ
�

QUAD
−

PDG
−

SSA
−

Modern, highly pipelined computers require instruction scheduling at the very back
end of the compiler to avoid pipeline interlocks at runtime. Instruction scheduling
requires the manipulation of individual instructions with detailed knowledge of
their sizes, timings, and resource requirements. The representations described in
this chapter are probably a bit too abstract for use in the scheduling phase of a
compiler.

Conclusion

The intermediate representations described here have many similarities. Static
single-assignment form is just a restricted form of quadruples. Continuation-
passing style is a restricted form of λ-calculus. And in fact, there are many simi-
larities between SSA and CPS, since CPS variables have a single-binding property.
With continuations, we get both the clean substitution operations of λ-calculus
and the dataflow and register analyses appropriate for von Neumann machines.

1.3 What is ML?

This book will demonstrate the use of continuations for compilation and optimiza-
tion in a real compiler. Our compiler—Standard ML of New Jersey—compiles
ML; but continuation-passing style is not tied in any way to ML, and has been
used in compilers for several languages [52].
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1.3. What is ML? 7

The programming language ML was originally developed in the late 1970s
as the Meta-Language of the Edinburgh Logic for Computable Functions (LCF)
theorem-proving system [42]. In the early 1980s it was recognized as a useful
language in its own right (even for people who don’t want to prove theorems) and
a stand-alone ML system was implemented [26]. Since then, the Standard ML
language has been defined [64], a formal semantics has been written [65], several
compilers have become available [13, 63], and several hundred programmers at
scores of locations are actively using the language.

ML has several advantages as a practical programming language:

• ML is strict—arguments to a function are evaluated before the function call,
as in Pascal, C, Lisp, and Scheme but not as in Miranda or Haskell, which
are lazy.

• It has higher-order functions, meaning that a function can be passed as an
argument and returned as the result of another function—as in Scheme, C,
and Haskell, but not Pascal and Lisp. But unlike C, ML has nested functions
(so do Scheme and Haskell), which make the higher-order functions much
more useful.

• It has parametric polymorphic types, meaning that a function can be applied
to arguments of several different types as long as it does exactly the same
thing to the argument regardless of the type. Lisp, Scheme, and Haskell
also have parametic polymorphism, but Pascal and C do not. Parametric
polymorphism is different from overloading, with which a function can be
applied to arguments of different types only if a different implementation of
the function is written for each type.

• Types are statically checked at compile time, so there is no need for runtime
type checking (and many bugs may be found before running the program).
Other statically checked languages are Pascal, C, Ada, and Haskell; dy-
namically type-checked (at runtime) languages include Lisp, Scheme, and
Smalltalk. But ML (like Haskell) has type inference, which relieves the pro-
grammer of writing down most type declarations; in Pascal, C, Ada, and
other languages descended from Algol the programmer must declare explic-
itly the type of each variable.

• ML has garbage collection, which automatically reclaims unreachable pieces
of storage; this is typical of functional languages such as Scheme and Haskell,
but Lisp and Smalltalk also have garbage collection; Pascal, C, and Ada
usually do not.

• Variable bindings are statically determined; as in Pascal, C, and Scheme the
variable declaration corresponding to any particular use can be determined
by lexical scope in the program text. This is in contrast to Smalltalk, which
has dynamic binding for functions (“dynamic method lookup”).
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8 Chapter 1. Overview

• ML has side effects: input/output, and reference variables with assignment
and update. In this respect it is like most languages (such as Pascal, C,
Smalltalk, Lisp, and Scheme), but differs from purely functional languages
like Haskell. In ML, however, the updateable variables and data structures
are constrained and statically identifiable by the compile-time type system.
In a typical program, the vast majority of variables and data structures are
not updateable.

• ML has a formally defined semantics [65] that is complete in the sense that
each legal program has a deterministic result, and all illegal programs are
recognizable as such by a compiler. This is in contrast to Ada, for which
formal semantics have been written but are not complete, in the sense that
some “erroneous” programs must be accepted by compilers; Pascal, which
is recognized to have certain “ambiguities and insecurities” [95]; and C, in
which it is very easy for programmers to trash arbitrary parts of the runtime
environment by careless use of pointers. Lisp and Scheme are not too bad
in this respect; in principle, “erroneous” programs are detected either at
compile time or at runtime, though certain things (such as order of evaluation
of arguments) are left unspecified [69].

From this summary we see that the problems and language features that our
compiler must address have much in common with those addressed by other com-
pilers. But there are several ways in which compilers for “modern” languages like
ML must differ from compilers for “traditional” languages like C.

The higher-order functions of ML (Scheme, Smalltalk, etc.) require the com-
piler to introduce runtime data structures to represent the free variables of these
functions. And because the lifetimes of these “closures” are not always deter-
minable at compile time, some form of garbage collection is required.

The presence of garbage collection requires that all runtime data structures
be in a format that the collector can understand; the machine registers and other
temporaries used by the compiled code must also be accessible and understandable
to the collector.

Since a “functional” programming style is encouraged—in which old data is
rarely updated, but instead new data is produced—the garbage collector must be
particularly efficient. In some older Lisp systems, and in some Algol descendents
with garbage collection, much less load is placed on the collector because new
objects are less frequently allocated.

Most control flow is indicated by source-language function calls (instead of
built-in constructs like while and repeat). So function calls—especially tail-
recursive ones—must have very low overhead.

There is no “macro” facility. Macros in C and Lisp are often used for in-line
expansion of frequently executed code fragments. A good compiler for a macro-
free language should do some in-line expansion of functions—a much safer way to
provide this kind of efficiency.

A unique feature of ML, shared by no other commonly used language, is that
most data structures are immutable once created. That is, once a variable—or a
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1.4. Compiler organization 9

list cell, or a record on the heap—is created and initialized, it cannot be modified.
Of course, a local variable of a function will be instantiated each time the func-
tion is invoked, with a different value each time; list cells on the heap eventually
become garbage (because no local variable points to them anymore) as new cells
are created. But the fact that list cells can’t be modified means that the aliasing
problem becomes trivial. In compiling a conventional language, the statements

a ← #1(p); #1(q) ← b

(where #1(x) means the first field of the record that x points to) can’t be exchanged,
because p and q might be aliased—might point to the same object. Similarly,

a ← #1(p); b ← f(x)

can’t be exchanged unless a great deal is known about the behavior of f .
In ML, mutable variables and data structures—those that can be modified

(stored into) after their creation—have a different static type than immutable ones.
That is, they are distinguished by the type-checking phase of the compiler. In a
typical program, the vast majority of variables and data structures are immutable.
Thus, the aliasing problem mostly disappears: If p is an immutable variable (as
is usually the case), the fetch from p commutes with just about anything. Our
compiler exploits this property in several ways.

Lazy languages such as Haskell have immutable variables in principle, but in
fact the update of a variable to replace a thunk by an evaluated result looks very
much like a mutation to some parts of the compiler and runtime system.

Finally, the fact that ML has a rather abstract formal semantics is quite useful
in some ways. Any optimization or change in the representation that leads to the
same computable function is legal. In C, on the other hand, there is no formal
semantics. Even allowing that there is a reasonably good informal understanding
of what a C program is supposed to do, this “semantics” is tied to low-level machine
representations. And there are many C programs that “break the rules” and are
still expected to work in any “reasonable” compiler. In this situation, the compiler
has limited freedom to transform the program.

1.4 Compiler organization

Standard ML of New Jersey [13] is a compiler for ML written in ML. It is a
multipass compiler which transforms a source program into a machine-language
program in a series of phases:

1. Lexical analysis, parsing, type checking, and producing an annotated ab-
stract syntax tree.

2. Translation into a simple, λ-calculus-like representation (described in Chap-
ter 4).

3. Conversion into continuation-passing style (CPS, described in Chapter 5).
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10 Chapter 1. Overview

4. Optimization of the CPS expression, producing a “better” CPS expression
(Chapters 6–9).

5. Closure conversion, producing a CPS expression in which each function is
closed, i.e., has no free variables (Chapter 10).

6. Elimination of nested scopes, producing a CPS expression with one global
set of mutually recursive, nonnested function definitions (Chapter 10).

7. “Register spilling,” producing a CPS expression in which no subexpression
has more than n free variables, where n is related to the number of registers
on the target machine (Chapter 11).

8. Generation of target-machine “assembly-language” instructions—in abstract,
not textual form (Chapter 13).

9. Instruction scheduling, jump-size optimization, backpatching, and the gen-
eration of target-machine instructions (Chapter 14).

The rest of this book is organized very much like the compiler, except that the
first phase—which is specific to the ML language—is not described. In fact, this
“front-end” part of the compiler is much larger than the back-end phases covered
in the book. But our focus here is the use of continuations for optimization and
code generation, not how to compile ML.
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