Index

Alborn, Tim, 119n16
Aldrich, John, 85n15, 169n9
algorithms
 to analyze fluctuations, 1–2
 of the average, 160
 first differences as monetary algorithms, 71
 monetary, 15–16
 used to veil fluctuations, 2
 uses of, 154–5, 285
Allardyce, Alexander, 78, 79
Anderson, Oskar, 210–11, 228n18, 274n9
 specification of univariate models, 71, 72, 296
 spurious cycles of, 280
 variate difference method, 55, 65, 66t, 223t, 247–9, 265, 283
Arbuthnot, John, 146
ARIMA (autoregressive integrated moving averages), 55, 196, 209n13, 270, 279, 296–8
arithmetic
 See also monetary arithmetic; political arithmetic;
 Rule of Three, or Merchant’s Rule; scientific arithmetic
 Grammont’s use of, 25–30, 46–7, 55–6, 163n2, 182n25
 Pearson’s use of geometry to deal with, 10, 18
Arrow, Kenneth, 302
Atick, Joseph, 127n24
autoregression
 random walk, 270–4
 vector (VAR), 270n19
 Yule’s notion of, 260, 261, 264–70, 281
autoregressive stochastic process
 foundation for concept of, 263–4
 Galton’s formulation, 193
 models of stationary, 213
average, instantaneous
 See also moving average
 Hooker’s use of, 101–2
 of Pointing, 99, 101
average, the
 concept of, 141, 144–5, 163t
averaging
 process of, 101
Babbage, Charles, 107, 199n2, 201n3
Bacheler, Louis, 272–3
Bagehot, Walter, 57, 59
Banking School, 76n2, 107
Bank of England
 Morgan’s and Tooke’s breaking of scaled series of, 80–5
 public information and moving averages of bullion movements, 85–91, 93t
 scaled series of, 76–9, 86, 296
Barlett, M., 302
 Bateson, William, 184n26, 191–2
 Baxandall, Michael, 26
 Bayes, Thomas, 143t, 157
 Beatty, John, 148n4
 Bell, G. M., 107–9
 Bell, John, 35n5, 39, 40
 Bell, Terry, 90n20
 Bernoulli, Daniel, 150t, 167n5
 Bernoulli, Jakob, 139
 on art of conjecturing, 5t, 8, 145–7
 on expectation, 144
 on law of large numbers, 143t, 145–6
 Beveridge, William, 223t, 232, 253t, 254n22, 255
biometricians
 correlation techniques, 261–2
 deviation, 192–3
 interpretations of variation, 190–2
 investigations of evolution, 193
 linking of logical and historical variation, 10
 use of term “normal,” 208
 using laws of chance, 192–3
birth control, 291n3
Black, Collins, 111n10
Blakeman, John, 271n5
Block, Maurice, 198f, 199
Boag, Peter, 194n29
Boltzmann, Ludwig, 5t, 167, 168
Bonar, James, 43n15
Bourne, Stephen, 16
Bouvard, A., 106f, 122n18
Bowditch, Henry Pickering, 3, 125–9

© Cambridge University Press www.cambridge.org
Index

Bowley, Arthur
Marshall’s letter to (1901), 289
relation of wheat prices and foreign trade to marriage rate, 232–5
Elements of Statistics, 225
study of wages, 92
Box, George E. P., 55, 295–6
Bravais, Auguste, 154
Brown, Robert, 169
Brownian motion
of Kendall, 273
of motion, 166–70
Brush, Stephen, 168, 169
Burns, Eveline, 20, 195, 214
Business Conditions Digest, 102n31
business cycles, or trade cycles
focus of theorists on stationary process of cycles, 196
periodicity in, 278
plots in relative cycle time, 133
plotting average values in, 134
Buys Ballot, Christopher Hendrik, 5t, 106f, 113,
 122n18, 170, 252–4, 302

Candlestick charts, 56n3, 291n2
Cardano, Girolamo, 142f, 145n2
Cargill, Thomas, 253t
Cartwright, Nancy, 170n10
Carvalho, José, 301
Cave, Beatrice, 69–70, 72, 223t
Cave-Browne-Cave, F. E.
first differences, 66t, 67, 72
meteorological studies using correlation, 5t,
 250t, 262–4, 268
plots of time lags, 236
central limit theorem, 157–9, 282n18
certainty
in gambling, 145
trials for specific level of, 139, 162
chance
See also games of chance; laws of chance
absence in nature of, 166–70
Jevons on, 169
Poincaré on, 165–6
change
analysis of, 15
in idea of variation and deviation in, 170–1
rates of change in comparison of different se-
 ries, 92
using first differences to track, 57–9
in Yule’s study of paupersm, 227
Charles I (king of England), 27, 35n6
Charles II (king of England), 27, 28
Chebyshev, Pafnuty Lvovich, 3, 157–9
Cheysson, M. Émile, 17–18
Chuprov, A. A., 218n19, 275, 282n18
Clapham, John, 78n4, 86n16
Clarke, Hyde, 113, 254n22
Clautius, Rudolph, 167
Clayton, Helm., 263n2
cointegration, 55, 285n21, 292, 296
coint tossing
as game of chance, 149f
Quetelet’s law of accidental causes, 165
Commercial and Financial Chronicle, 56, 57, 59f,
 71
competition
market prices with (Smith), 207
normal results of (Marshall), 207–8
Cootner, Paul, 272n7
correlation
conception of, 184
nonsense correlation, 266
in study of discontinuous process, 192
use of frequency surfaces in, 186–90
correlation, serial
in meteorological studies, 262–4
Yule’s applications of, 266–70, 280–1
 correlation coefficients
deviation from mean in, 300
of Hooker, 235–7
of L. Fisher, 240
meteorological event analysis, 262–4
Pearson product moment, 187, 300
Wold’s graphs of, 284
correlograms (Wold), 102, 284–5
Cotes, Roger, 152t
Cournot, Augustin, 236n7
Cowles Commission, 19n6
Crâmer, Harold, 102, 285n21, 302
Creighton, Charles, 37–8
Cullen, Walter, 91n22
Currency School, 76n2, 107
cycles
See also business cycles, or trade cycles
Anderson’s spurious, 280
capturing laws of, 216
of Quetelet, 129–30
of Slutsky, 278–9
in time series, 102
use of moving average to create or eliminate,
 102
Yule’s spurious, 279–80

cycle time
See also seasonal variation
analysis, 111–19
in commercial practice, 107–9
Jevons’s use of, 299
plots in, 134
in relative time framework, 105–6, 298
Dahllstrom, Nancy, 127n26
Darwin, Charles
inspired by Malthus, 43
Origin of Species, 183
theory of evolution and natural selection,
 172–6, 183
use of Rule of Three, 27
variation across species, 130n28
Darwin, George, 157n10
Dasgupta, Amiya, 206
Daston, Lorraine, 76n6, 142t, 143i, 144, 145n1,
 147n4
data
See also time series data
in absolute and relative time, 104–5
effect of detrending, 14
generation in target practice, 4, 8
Index

337

Divisia, François, 85n15
Dodson, James, 147
Du Pont de Nemours, Pierre, 207
Durbin, James, 302
economics
Edgeworth’s matching of theories of statistics and, 202–5
links to meteorology, 111–19
Marshall’s interest in evolution of, 201–2
Marshall’s interpretation of laws of, 206
economic theory
idea of equilibrium, 205–12
ideas of flow, motion and rest, 205–6
role of disturbance, 212–16
Economist, The, 56, 57–9, 71, 91
Edgeworth, Francis Ysidro, 207n12, 218n19
on applied economics, 203–4
central limit theorem, 225
connection of probability and utility, 202–5
on geometric reasoning, 18–19
index numbers, 84n13, 85n15
objective and subjective mean, 163t, 177
on statistics, 42n11, 68n16, 219
Einstein, Albert, 167, 169
Eisenhart, Churchill, 152t, 155n7
empirical work
measurement in, 216–17
equilibrium
in economic theory, 205–9
Marshall’s analysis of, 202, 206
Marshall’s groping toward, 213
Walras’s groping toward, 213
equations of observation, 148–54
See also law of error
eugenics
Galton’s belief in, 176n21, 184
Pearson’s belief in, 52, 184–5
Spearman’s factor analysis, 185
Euler, Leonhard, 151n6, 152t
Evelyn, George Shuckburgh, 76–7, 84
evolution
See also natural selection of economics, 201–2
Galton’s investigations, 131–6, 186, 261–2, 301
investigations of biometricians, 193
as statistical problem, 174
theory of Darwin and Wallace, 172–6, 183
using laws of chance to study, 192–3
EWMA (exponentially weighted moving average), 298
expectation, mathematical
concept of, 141–5, 274n9
fact curves, 119, 156
Falkner, Helen, 246
Farr, William, 232
Fechner, Gustav Theodor, 68
Ferber, Marianna, 219n20
Fermat, Pierre de, 1, 5t, 142t
Fetter, Frank, 86n16
Fienberg, Stephen, 19n5

manipulation techniques, 295–9
Mills on, 221
in stationary form, 2
David, Florence, 140, 142t, 143t
Darwin, A., 131
Davis, Harold, 99, 241, 253t, 255, 278n11
decomposition
defined, 101
development of new theories from, 240
Hooker’s method of, 235
Jevons’s method of, 111
Kondratieff’s techniques, 245
March’s use of term, 230t, 236
of stationary time series (Wold), 260
to transform fluctuations to deviations, 13
use of moving average in, 297
Wold’s theorem, 247n15, 260, 283–5
Defoe, Daniel, 35, 37
Dekker, Thomas, 35, 37
De Moivre, Abraham, 143t, 144, 146–7, 157
detrending
development of new theories from, 240
Hooker’s method of, 234–5
Norton’s method. 236
deviation
See also change: law of deviation; standard deviation; variation calculated from trend, 102
Galton’s application of law of, 130, 176–7, 192–3
from moving averages, 101, 297
Norton’s calculation of, 236–7
Poincaré’s calculation of, 99
Wold’s quantification of, 182
deviation from mean
in correlation coefficients, 300
in evolution by natural selection, 171–2
deviation from trend
See detrending
dice throws, 1, 291
Pearson’s frequency curves, 148–9
probabilities in, 145
as random process, 8
as time series analysis, 157
differences
See also first differences: serial differences; variate difference method
Hooker’s correlation of time series differences, 68–9
Norton’s study of seasonal variation, 65–6
used to predict weather, 67
variate difference method, 247–9
differencing
used in ARIMA, 55
uses in manipulating time series, 296
discontinuous process, 192
distributed lag of I. Fisher, 240–1
disturbance
active random (Frisch), 281
in market system, 212–16
Maxwell on, 168
Wold’s random, 283–4, 297
Yule’s understanding of, 280–1
diversity within a population, 183
Index

first differences
- economic laws from time series data, 64–5
- Hooker’s correlation of, 236
- in manipulation of data, 295–6
- manipulation of time series data with, 63–5
- March’s correlation of, 66t, 67–8, 236
- popularization, 71
- to track change, 57–9
- used by Graunt, 55
- uses in regression and correlation of time series data, 66t

Fisher, Irving, 76
- on index numbers, 84n3, 85
- notion of distributed lag, 3, 240–2
- trend avoidance, 240

Fisher, Ronald
- analysis of variance, 194
- as eugenist, 184

fluctuations
- changed to deviations, 101
- Jenyns’s method of analysis of, 111

Fogel, Robert, 292

Forbes, James, 155

forecasting
- Moore on, 54, 250–1
- use of exponentially weighted moving average, 298
- use of moving average in, 297

Fourier, Jean Baptiste, 254

Fourier transformations, 252, 253t, 254

Free Banking School, 107

frequency distribution
- effect of natural selection on, 177–82
- normal, 4, 6, 7n2, 156, 157, 158, 181n24, 299–300
- of Quetelet, 163
- skewed, 7, 10, 164, 181, 182, 186, 193, 225, 226, 228, 256, 262
- frequency domain, 252
- frequency surfaces
 - to quantify laws of inheritance, 186–90

Frickey, Edwin, 241, 243t

Frissch, Ragnar, 208n12, 285n21
- active random disturbance notion, 213, 281
- on index numbers, 85n15
- on Slutsky effect, 279

Fullarton, John, 107

Gabaglio, Antonio, 198f, 199

Galilei, Galileo, 142t, 145, 149, 150t, 153, 259

Galton, Francis, 198f
- bimodal distributions of, 10
- civic worth concept, 184
- experiment time, 106f
- intergenerational correlation of heights, 186
- law of deviation, 163t, 176–7, 192–3
- quantification of laws of heredity, 131–6
- regression line of, 131–6, 301
- on role of biometry, 192
- sweet pea seed investigations, 131–6, 186, 261–2, 301
- use of frequency surfaces, 186–7
- use of regression, 261–2

games of chance, 1, 4, 7, 8
- historical analyses of, 140–5
- Pearson’s frequency curves for, 148–9

Gauss, Carl Friedrich
- law of error, 5t, 150t, 152t, 160, 192, 222,
 - 299–300
- least squares algorithm, 154–7, 300–1
- work on time series data, 95–7

geometry
- of biometric investigations, 193
- change in purpose of, 18
- of least squares algorithm, 154–7, 300–1
- of static comparison, 162

Georgesca-Roegen, Nicholas, 15, 174n16

German historical school, 201

Giffen, Robert, 198f, 199n2
- journalistic use of financial data, 55, 57,
 - 59–62
- Marshall’s investigation of Giffen goods, 215
- statistical textbook of, 17, 61
- on tools to discover economic causation, 61–2

Gigerenzer, Gerd, 147–8n4

Gilbert, James, 107–9

Gillispie, Charles, 168

Glyn, George, 87

Gnedetiko, Boris Vladimirovich, 7, 157–9

Gosset, William
- See Student (William Gosset)

Gould, Stephen Jay, 172f, 185

Grant, Peter, 194n29

graphs
- change in use and nature of, 16–19
- Hooker’s use of, 232, 236
- Jenyns’s semi-log, 59, 94f
- substituted for tables, 104

Graunt, John, 198f
- analysis of seasonal and annual variations, 34–5
- life tables of, 43–6
- Observations on the Bills of Mortality, 43, 46,
 - 103–4
- serial difference determination, 55–6
- stable ratio contribution, 46
- time series analysis, 25–34
- use of shop and political arithmetic, 25–30,
 - 46–7, 163n2, 182n25
- using Rule of Three, 43, 56
- weekly variations in London burials, 38, 40

Grether, David, 301

Griffen, Paul, 127n24

Grote, George, 87–8

Gurney, Samuel, 87

Haberler, Gottfried von, 85n15

Hacking, Ian, 142t, 145t, 161n1, 165n3, 169n8,
 - 176n21

Hald, Anders, 44n17, 142t, 143t, 147n4

Hall, Lincoln, 246

Hankins, Frank, 122n19

harmonic analysis, 252–5, 280

See also periodicity

Harvey, Andrew C., 55, 279n13, 292, 301

Hayek, Friedrich von, 209n14

Heberden, W., 40
Index

339

index numbers of, 59–60, 84n13, 85n15, 91–4
on merchants’ rule of thumb methods, 103 study of Brownian motion, 169–70 on time, 221 use of cycle time, St. 106f, 254n22, 299 use of moving averages, 91–4, 93t
Jones, Richard, 199n2, 201n3
Jordan, Karl, 244
Journal of the Institute of Actuaries, 59t, 60
Journal of the Royal Statistical Society, 59–60

Kay, Geoffrey, 42
Kendall, Maurice, 63n10, 140, 142t, 150t, 152t, 253t
hist of index numbers, 76, 84n13, 85 on oscillations and time series analysis, 255–6 random walk discovery, 273
Keynes, John Maynard, 85n15, 91n22, 204
Keynes, John Neville, 201
Khinchin, Aleksandr Y., 272n7
identification of stationary stochastic processes, 158–9, 196, 260, 282–3, 286 modeling of stationary process, 196
King, Wilfrid, 98t27
Klein, J., 81, 91, 110n9, 113n11, 119n17, 156n19, 246n13
Klein, L., 19–20n6
Kluwyer, J. C., 271n5
Kolmogorov, Andrei N., 272n7, 285n21, 302 approach to probability theory, 158 contributions to theory of ballistics, 3 properties of general random processes, 282–3
Kondratieff, Nikolai, 245, 278n12
Koopmans, Tjalling, 19
Kreuger, Philip, 43n14
Krüger, Lorenz, 148n86, 168
Kuznets, Simon, 223t, 242–3, 279n14
Kydland, Finn, 20t76

Lambert, Johann Heinrich, 150t, 155
Laplace, Pierre Simon, 198f daily change in barometric pressure, 104, 106f, 122n18 law of error, St. 150t, 152t, 154, 157, 160, 222, 299–300
Lardner, Dionysius, 109, 201n3
Larson, Henrietta, 56n6
Laspeyres, Pierre, 84n13
law of accidental causes, 162–6, 192, 300 law of accidental variation, 127
law of deviation, 13–14, 111, 156, 161, 176–7, 192–3, 222, 300 visual form, 13–14
law of error, 150t, 154 curves, 119, 135
Galton’s use of, 135–6 of Gauss and Laplace, 155n7, 157n11, 299–301
law of large numbers
Bernoulli on, 145–6
Chebyshev’s contribution, 158
Queelet on, 165

Henderson, James, 119n17, 199n2, 201n3
Hendry, David, 240n9, 265n3, 285n21
Herapath, John, 167n5
heredity
See also eugenics
Galton’s investigation, 131–6, 186, 261–2, 301 laws of inheritance, 185–90
Herschel, John
comparative measurements of marksmen’s skill, St. 6–7 on probabilities, 8–9 on Rule of Three, 56
Hicks, John, 209n14, 292
Higgs, Henry, 61
Hils, Victor, 122n19, 161n1, 172n13, 176n21
Hitler, Adolf, 52n24, 185
Hodgkin-Prescott filter, 279n13
Holt, C. C., 298
home oxygenics, 219
Hooker, Reginald
coefficient curves, 237f correlation coefficients, 235–6 correlation of first differences, 66t, 72, 236 correlation of time series data, St. 68 deviations from moving average, 93t, 233, 235–6 relation of wheat prices and foreign trade to marriage rate, 101, 230t, 232, 234–7 smoothing process, 100–2 trends and destrending, 115n13, 223t, 233–5 use of graphs, 232
Hooper, Wynnard, 199
Hotelling, Harold
differential method, 66t, 243–4, 280n15 tendency toward periodicity, 70n20
Hull, Charles H., 35n5, 39, 40, 44
Huygens, Christiaan, St. 142t, 144

index numbers
Bowley’s series, 92
composite indices, 296–7 of Evelyn, 76
Jevons’s composite price index, 92
Jevons’s construction, 59–60, 91–4 in manipulation of data, 296–7
Mills on, 76
Ingram, John, 199n2
Ingrao, Bruno, 206n10, 209n14
integration
See also cointegration; differences
order of time series integration, 55, 296 Wold integration of statistical theory, 260–1, 283
Israel, Giorgio, 206n10
Jaeger, Albert, 279n13
Jenkins, Gwilym M., 55, 295–6
Jevons, William Stanley, 199n2
average, 141n1, 163t
on chance, 169
charts of seasonal variation, 109–13
Index

laws of chance, 142t, 143t
 See also law of accidental causes
 applications to social and natural processes, 161–3
 Poincaré on, 166
 used by biometricians, 192–3
 used to model laws of motion, 192
laws of motion
 explanations of, 193
 laws of chance used to model, 192
 laws of deviation to explain, 161
least squares method, 150t
 in analysis of stationary time series, 285
 association with regression analysis, 155–6, 300–1
 Gauss’s algorithm, 154–5
 to minimize error, 154, 156–7
 Yule’s regression analysis using, 186, 225–8
Lee, Alice, 7n2, 230t, 262
Legendre, Adrien Marie, 152t, 156, 300
Leslie, Cliff, 199n2
Levy, Paul, 209n13, 272n7
Lexis, Wilhelm, 198f, 210–11, 216–20, 283
life tables (Graunt), 43–6
 limit theorems
 See also central limit theorem
 of probability theorists, 282
 Slutsky’s sinusoidal, 277–8, 284
long run concept, 208–9
long waves of Kondratieff, 245, 278n12
Lorenz, Paul, 242
Loschmidt, Josef, 167
Lowe, Joseph, 84, 91
Loyd, Samuel Jones, 87–8, 107
Lubbock, John, 5t, 106f, 119–21, 201n3
Lyapunov, Aleksandr M., 7, 158–9

Macaulay, Frederick, 246–7
McCulloch, J. R., 107, 143–4
MacKenzie, Donald, 176n21, 185
MacKenzie, George, 5t, 106f, 113–15, 254n22
Maistrov, L. E., 140, 142t, 143t, 150t, 152t
Makridakis, Spyros, 247n14, 253t
Malef, Edouard, 44, 46
Malthus, Thomas, 43, 173, 182n25, 199n2, 292
Mandelbrot, Benoît, 209n13
March, Lucien
 analyses of financial series, 5t, 67–8, 231t
 correlation of first differences, 72, 223t, 236, 238f
Maréy, Étienne Jules, 17–18, 198f
 markets
 Marshall’s analysis, 202, 281n16
 moving toward equilibrium, 207–9
 Walras’s conception of dynamic, 213
Markov, Andrei Andreyevich, 158, 218n19, 274–76, 282n18
Markov chains, or Markov processes, 260, 274–6
Marshall, Alfred
 analysis of markets, 202, 281n16
 difference between statics and dynamics, 63
 index numbers of, 84n13
 on least squares method, 225
 on market equilibrium, 207n12, 212–13
 observation method of, 215
Principles of Economics, 206, 208
 on time, 209
 use of statistical concept, 212–13
 on value and distribution, 206
Marshall, Serjeant, 143
Marx, Karl, 42, 245n13, 292
Mathias, Peter, 86n16
Maxwell, James Clerk, 5t, 95n26, 167–8
Mayr, Johann, 152t
Mayer, Tobias, 151n6
Mayr, Ernst, 163t, 163n1, 174n17
Mayr, Georg, 199
mean, 163t
 See also deviation from mean: Science of Means
 arithmetic, 177
 Bowditch’s use of, 125–8
 deviation from, 171–2, 299
 distribution in central limit theorem, 225
 Edgeworth’s objective and subjective, 163t, 177
 Galton’s connecting means in relative time, 131–3
 Quetelet’s interpretation, 163, 172
 Quetelet’s means in relative time, 122–5, 128–30
 shifting in evolution of, 10, 172–3
 in stationary process, 196
measurement
 analysis of errors in, 150t, 152–3t
 of correlation, 300
 in nineteenth-century empirical work, 216
 Spearman rank correlation coefficient, 224
 in target practice, 159
Yule on, 289, 291
Mendel, Gregor, 184n26
Merchant’s Rule
 See Rule of Three, or Merchant’s Rule
meteorological events
 Cave-Browne-Cave’s weather prediction, 67
 connecting economic activities with, 111–19
 Lubbock’s study of tides and lunar phases, 119–21
 serial correlation to analyse, 262–4
 Mill, John Stuart, 292
 Miller, Dennis, 125n21
Mills, Frederick Cecil, 209n13
 on analysis of chronological variations, 221
 on index numbers, 76
 Statistical Methods (Mills), 241
Mills, Terence, 301
Mirowski, Philip, 118n15, 119n16, 206n9, 209n13
Mitchell, Wesley Clair, 84n13, 106f, 133, 232n5.
 240n11, 249n18, 278
monetary arithmetic, 55–9
 See also first differences: Rule of Three, or merchant’s Rule
 defined, 15
 linked to political arithmetic, 27
Moore, Henry L., 54, 115
 on forecasting, 250–1
 on trade cycles, 216
 use of harmonic analysis, 223t, 252–3
 work on economic cycles, 249–50
Morgan, Mary, 118n15, 134n12, 215n17, 240, 249n18, 253t, 254n22, 265n3, 281n16, 285n21
Morgan, William, 79–85, 147
Morris, Corbyn, 44–6
mortality data
Graunt’s use of bills of mortality, 28–47, 55
Pearson’s mortality curve, 47–53
motion
See also Brownian motion
kinetic theory of gases, 166–70
uniform, 260
using geometry to explain, 162
Wold’s definition of normal, 285
Mott, J., 42
moving average
See also smoothing
developments in use of, 92–3
exponentially weighted, 298
Hooker’s use of, 235
isolating trend as, 241
Jevons’s use of, 91–4
in mapping data points, 95–7
Pearson’s conception of, 52
Poynting’s use of, 95, 97–100
of random causes (Slutsky), 276–9
used by Bank of England, 85–91
in Wold’s discrete stationary process, 283–4
Yuile’s summation, 280
Muth, John, 298
Napier, Christopher, 91n22
National Bureau of Economic Research (NBER), 1996, 133
natural selection
See also evolution
biological evolution by, 171–6
biometricians’ investigations of, 193
deviation from mean in theory of, 171–2
effect on frequency distribution, 177–82
theory of Darwin and Wallace, 172–6, 183
Weidt’s Napoleonic crab studies, 177–9, 181–2
Nelson, Charles, 248n16
Nelson, Julie, 219n20
Nerlove, Marc, 301
Newmarch, William, 55, 57, 59–61
Neyman, Jerzy, 3
nonstationary process
random walk on, 271
taxation, 196
Norman, George Wade, 87
Norton, John, 302n1
analysis of fluctuations, 5t, 223t, 230t
growth axes, 236, 238–40
study of seasonal relationships, 106f, 113, 115–18
on use of differencing algorithms, 54, 56, 64–6
observations
combinations of, 154–7
errors of, 148–54, 160
nonstationary (Wold), 8–9
Poynting’s studies of drunkenness and crop fluctuation, 97–101
of random events, 157–9
relation to law of large numbers, 145–6
Russian mathematicians’ analysis of, 157–9
science of, 56, 148
as sequence of independent random quantities, 7
in target practice, 4
in terrestrial magnetism, 95–7
Ogle, William, 232
oscillations
in decomposition, 13–14
of differentiated series, 63–4
in economic activity, 205–9, 213–14
in Hooker’s detrending method, 234–5
identified, 282
theories of, 13–14
of time series, 281–2
using moving averages to specify, 102
in Wold’s stationary process, 284–5
Paasche, Hermann, 84n13
Pacioli, Luca, 142t
Palgrave, Ingib, 110
Palmer, John Horsley, 87, 88
Pareto, Vilfredo, 209
Pascal, Blaise, 1, St., 142t
Pearson, Egon, 47, 176n21, 178n22, 225n1
Pearson, Karl
age distribution of chance of death (1871–80), 3, 4, 6, 47–53, 147
analysis of infant mortality, 51–2
arguing for statistics as branch of abstract science, 199–200
bimodal distributions of, 10
collection of death as massman, 47–53, 241
don concept of force, 183
don correlation of sizes of organisms, 224
definition of statistics, 165
definition of variation, 191
don evidence of natural selection, 181
don evolution as problem in statistics, 174, 176n21
descriptive curves for games of chance, 142t, 148–9
descriptive of death by age, 47–8
descriptive of illness by age, 51–2
Grammar of Science, 183
history of definition of statistics, 198–9
on laws of inheritance, 185
on least squares method, 150t, 152t, 163t, 226
on measurement and Rule of Three, 27
meteorological study using correlation, 230t, 246t
product-moment correlation coefficient, 187, 300
random walk model, 270–2
recognition of Graunt’s contribution, 18n4, 46
on target practice, 5t, 10
on use of graphs, 17
on using geometry to deal with arithmetic, 10, 18
on variate difference correlation method, 69–70, 72, 223t
Index

Pearson, Maria Sharpe, 47, 49
Peart, Sandra, 118n15, 170n9
Peel, Robert, 91
Penrose, Roger, 260n1
Pentz, Lundy, 194n29

Periodicity
- Buys Ballot’s exploration of, 252–4
- hidden and flexible (Wold), 256–8, 282, 284
- Lexis on, 218
 in moving averages of random disturbances, 278
- Quetelet’s laws of, 131
 of Schuster, 254–5, 280
- Yule’s flexible, 256–8
- Perman, Roger, 55, 292, 296
- Perozou, Luigi, 188f, 198f

Persons, Warren
- on correlation of deviations from trend, 70
- on decomposition approach, 223t, 229, 232
 on Edgeworth, 228n2
- *Handbook of Mathematical Statistics*, 229
- link relatives method, 246
- Petty, William, 42, 163n2, 198f
- Philosophical Transactions, 60
- Playfair, William, 17, 198f
- Plosser, Charles, 248n16
- Poincaré, Henri, 161, 165–7
- Poisson, Siméon-Denis, 51, 157, 165

Political arithmetic
- description (Palgrave), 16
 - link to political economy and statistics, 197–8
 - price indices, 91
 - used by Graunt, 26–8, 46
 - used by men in public life, 59–62
 - uses for, 15–16

Political economy
- application of regression analysis to, 224–5
 - deductive, inductive, or historical methods, 200–2
 - as empirical science, 216–17
 - link to political arithmetic and statistics, 195–200

Population as statistical concept, 42–3, 193

Porter, Theodore, 27, 122n19, 128, 148n4,
 161n1, 172n13, 176n21, 204n5, 218n19

Port Royal, 142t

Poynting, John, 292
- studies of drunkenness and crop fluctuation, 97–101, 113
- use of moving averages, 93t, 95, 97–100
- Prescott, Edward, 206n6, 279n13

Prices
- market and normal (Marshall), 207–8
- Smith on observation of natural price, 212
 variations in (Du Pont), 207–8

Probability
- beyond games of chance, 146
- Edgeworth’s connection of utility and, 202–5
- Keynes’s exploration of, 204
 - in Markov stochastic process, 274–6
- probabilistic theory of errors, 154
- structure in stationary process, 2, 196
- W. Morgan’s work on, 79

Probability theory
- See also dice throws: target practice; urns

as component of statistical analysis, 139
- contributions of Russian mathematicians to, 157–9
 - early theorists, 141–4
 - emergence and diffusion of, 140–1, 147
- Lexis’s inductive approach, 216–18
 - search for algorithm in, 155

Quetelet, Adolphe, 198f, 199n2, 206n11
- average man (l’homme moyen), 3, 105–6,
 122–31
- idea of progress of human civilization, 171–2
 - law of accidental causes, 162–5, 192, 222
 - on observation process, 5t, 159

Rainfall
- See meteorological events

Randomness
- investigation of independent random variables, 157–9
- of molecular motion, 169
 - Pearson’s conception of death as marksmen,
 47–53
 - random-difference series (Bachelier and Working), 272–3, 276
 - random element in linear regression, 280–4
 - in sequence of dice throw outcomes, 157
 - Slutsky’s random cause, 276–9

Random walk
- of Bachelier, 272–3
 - of Kendall, 273
 - Pearson’s specification of, 260, 270–2
 - vector (VAR), 19n, 270
 - Wold’s analysis of, 283n20
 - Rao, B. Bhaskara, 55, 296

Ratiocination
- of Bernoulli, 139, 145–6
 - of De Moivre, 146
- Graunt’s stable ratio, 46

Lexis’s use of, 218

Redlich, Norman, 127a24

Regression analysis
- conception of, 184
 - earliest application to time series, 230–1
 - Galton’s use of, 131–6, 261–2
 - least squares association with, 155–6
 - use of first differences in, 666
 - Wold’s linear regression models, 283–5
 - Yule’s use of ordinary least squares, 186,
 225–8

Reid, Constance, 3

Ricardo, David, 79, 200, 201n3, 219n20

Richards, Joan, 18n4

Roberts, Harry, 62n10

Robinson, Joan, 105

Rogers, Edward, 201n3

Roggen, Lott, 127n25

Ross, Charles, 244–5

Roscher, William, 200, 201

Ross, Donald, 271n5

Ross, Dorothy, 205n7

Rothschild, Nathan Meyer, 86–7
Index

target practice (cont.) as random process, 8, 159, 291
Yule’s imagery, 281
Yule’s sketch of frequency distribution, 10–11
Tartaglia, Niccolò, 142f
tattement
Anderson’s empirical test for, 211
as nonstationary convergence process, 210, 196
Taylor, John, 84–5, 91
temperature
See meteorological events
temporal patterns
Graunt’s search for, 34–41, 55–6
Lexis’s work on distortions of change in, 218–19
Thomas, Dorothy Swaine, 232n5, 277
Thompson, D’Arcy W., 125n22
Thompson, T. Perronet, 201n3
Tikhonov, V. M., 3
tilling, Laura, 148, 150f, 152t, 154, 155n8
time
See also cycle time; seasonal variation; temporal patterns
Jevons on, 221
relative time frameworks, 298–9
structures in analyses of Graunt and Pearson, 53
time-statistical and time-correlation problem, 222–3, 229, 265–6
variables as functions of, 249–57
time, absolute, 104–5, 116
fact curves in, 119
studies in, 133
time, relative, 298–9
Bowditch’s studies of human development, 125–9
cycle and logical time, 105–11, 119
defined, 104–5
fact curves in logical time, 156
Galton’s leap from cycle to logical, 131–3
in Graunt’s life table, 43–6
Lubbock’s law curves, 119–21
plots in cycle time, 133
Quetelet’s graphing of processes in, 122–5
in Quetelet’s studies of L’homme moyen, 106
railway statistics, 109
Thucydides’ use of narrative in, 133–4
as tool, 133–5
time series
in absolute time, 104–5, 116
accepted oscillation of, 281–2
Anderson’s method of differencing, 211
application of regression analysis to, 228–30
in approaches to time-statistical problem, 223
Bank of England scaled, 76–7
decomposition to capture trade cycle, 215, 228, 231–2
Hooker’s use of smoothing and moving average, 235
indexed, 76–7, 84
Mills on, 221
moving average, 297
moving summation of random, 276–9
oscillatory, 13–14
random-difference series, 273, 276
in relative time, 105–11, 116–19
scaling, 296
seasonal components, 246–7
stationary, 282–4
used by Graunt, 25
used for law of accidental causes, 164–5
use of differencing in ARIMA, 55
using moving average to create cycles in, 102
variate difference method, 217
Wold’s stationary, 260
Yule’s dangerous series, 266–8, 280
time series data
first difference manipulation of, 63–5
harmonic analysis on, 252–5, 280
in investigations of meteorological and economic phenomena, 10
terrestrial magnetism project, 95–7
use of differences in regression and correlation of, 65–9

time-statistical problem, 223f, 229, 265–6
Tooke, Thomas, 78, 79, 81, 88, 107
Tozer, John E., 201n3
trade cycles
economists’ focus on, 215–16, 229
Jevons’s study of, 113
trend
See also detrending
Anderson’s treatment of, 247–8
avoidance in economic data, 240
definitions of, 241–2
deviations calculated from, 102
fitting, 241–2
Frickey’s attempts to fit, 241, 243t
generalization of, 244
Hooker’s coming of word, 101, 236
I. Fisher’s questions about, 241
isolation of, 229, 241
Kuznets’s requirements for, 243
line, 297
linking with time, 251–2
trend analysis, 310f
criticism of, 244–5
Schumpeter on, 245
Trotzky, Leon, 265n13
Turner, H. A., 253t
uncertainty
in gambling, 145
settling cases of, 144
urns, 274, 282n18, 291
Usher, Abbot Payson, 244
utility
Edgeworth’s connection of probability and, 202–5
value
Marshall’s treatment of normal value, 206–8
natural value of Smith and Quesnay, 207
normal value of Du Pont, 208
variance
R. Fisher’s analysis of, 194
in stationary process, 196
variate difference method (Anderson and Student), 65, 69–70, 247–9, 265, 280
Index

345

variation

See also change; deviation; seasonal variation
in biological evolution by natural selection, 172–6
Darwin on, 185
deviation and change in, 170
different interpretations of term, 190–2
in distribution, 177–82
geometric study of, 162
logical variation in outcome of target practice, 4, 6
measurement of, 176–7
in theory of natural selection, 172–6
Wallace on, 175
weaving of logical and historical, 2, 4–13
Veblen, Thorstein, 56
Viner, Jacob, 86n16
Vining, Rutledge, 19
von Thumen, Heinrich, 200

Wald, Abraham, 314
Walker, Gilbert, 213–14
generalization of autoregressive model, 270
model of stationary autoregressive stochastic process, 213–14, 223n, 270, 281
Walker, Helen, 133n30, 176n21
Wallace, Alfred Russel, 198f
on evidence of natural selection, 178, 180f
natural selection theory, 171–6
theory of evolution and natural selection, 172–5
Walls, John, 25, 123n20
Walras, Leon, 196
on market equilibrium, 207n12, 213
total moment of, 210, 281n16
use of mathematics, 209
Wash, C. M., 76, 84n13
weather
See meteorological events
Weber, Wilhelm, 95–7
Weintraub, Roy, 207n12, 281n16
Weiss, George, 272n6
Weldon, Raphael
bimodal distributions, 10
on evolution as problem in statistics, 5t, 174
on quantification of deviation, 182
work on distribution (Naples crabs), 176–82
Whewell, William, 153, 199n2, 200–1
Whitaker, John, 207
White, Lawrence, 107
Whittaker, E. T., 152t
Wicksell, Knut, 213
Wicksteed, B. H., 207n12
Wiener, Norbert, 3
Wilcox, Donald, 134
Wilson, James, 76n2, 90–2, 93t
wind patterns
See meteorological events
Wise, Norton, 201n3, 206n11, 217n18, 276n10, 301
Wold, Herman, 102, 196
decomposition theorem, 247n15, 285n21
integration of strands of statistical analysis, 260–1, 283
linear regression models, 283–5
nonstationary observation process, 8–9
stationary random process of, 282–4
stationary stochastic processes, 2, 20, 223n, 260–1, 282–6, 289
Working, Holbrook, 223n7, 272n7, 273, 276
Wright, Sewall, 176
Young, Arthur, 84, 91
Yule, George Udny, 314
correlation of first differences, 65
correlation, 223t, 260–70
correlation matrix, 190
classification of time series, 283
correlation of time series, 66t, 72, 248n16, 250n19
dangerous series of, 55, 93t, 266–8, 280
early example of pendulum used for target practice, 4, 280
giving credit to Poincet, 99
idea of flexible periodicity, 4, 256, 281
least squares regression analysis, 61–2, 186, 225
on measurement, 7n2, 289, 291
model of stationary autoregressive stochastic process, 213
nonstationary processes, 70–1
regression line of, 156, 176n21
regression using ordinary least squares, 225–6
on Rule of Three, 27
statistical study of paupers, 64n13, 226–8, 230
study of trade and marriage relationship, 232
on trend, 101n30
use of moving average, 102
using mathematics to discover economic causation, 61–2
variables as functions of place, 134
Yule-Sluksy effect, 265n4, 278, 279