abortion, spontaneous, 252, 254
acquired immunodeficiency disease see AIDS
Acyrthosiphon pisum, 457
adaptive dynamics, 3, 9, 39–59
canonical equation, 46
models, 46–47
pathogen evolution, 45–54
pathogen–host coevolution, 54–57
relating theory to experiment, 379–398
theory, 42–43, 44–45
adenovirus (Ad), 190, 192
death protein (ADP), 190, 192
E1A protein, 184
E1B gene, 184
Aedes aegypti, 37
aggregated (clustered) distribution, 33
contact networks and, 93–94, 95–97, 101
plant–herbivore–predator interactions and, 299–300
aggressive virulence, 2, 234, 389, 438
evolution, 439–440
agricultural crop pathogens see plant–pathogen systems
AIDS, 1, 41, 211
see also human immunodeficiency virus
alpha virus chimera, 184, 189, 193
anastomosis, hyphal, 281, 284, 292, 380–381
ancestor, most recent common (MRCA), 269–270
anemia, malarial, 170, 353, 354
anthrax, 32
animal husbandry, 377, 425–335
antibiotic resistance, 61, 234, 326–338, 410
conjugate vaccine design and, 374
de novo, 332, 333, 334, 336
fitness costs, 328, 330, 331–332, 333, 334–335, 337
large-scale therapy and, 163
models, 327–335
multiple (MDR), 233–234, 247, 383
plasmids, 441–442
prevention, 60, 233–234, 247, 326
primary, 332
time to evolve, 414
transmission, 333–334, 335, 336
antibiotic therapy combination (COT), 334, 335, 336–337
comparing policies using two agents, 336–337
cycling (CAT), 334, 335, 336–337, 338
ethical dilemmas, 61, 69, 338, 411
evaluation of strategies, 327
intermittent, 330
large-scale, 162, 163
models, 327–335
extended, 331–335
simple, 327–331
steady state, 328
multiple, 333–335
optimal strategies, 328, 335–338, 462
pathogen evolutionary responses, 65–68, 390
simultaneous single (SSAT), 334, 335, 336–337
with two agents, 331–333
antibodies anti-cell-death, 195
in malaria, 354, 357–358
Streptococcus pneumoniae, 372
antigenic determinants, polymorphic, 356–357
antigenic diversity, 325, 347–361, 362
despite cross-immunity, 356–357, 358
Haemophilus influenzae, 363–364
malaria case study, 353–358
multilocus model with genetic exchange, 349–352
in single-locus systems, 347–349
Streptococcus pneumoniae, 363–364
vaccination impact, 358–360, 373
see also genetic diversity
antigenic drift, 268
antigenic types, 347
in malaria, 354–355
antimalarial drugs, 405–406, 415
antioxidants, 195
antisense oligonucleotides, 195
aphids, corn leaf, 314–315
Aphidus ervi, 457
© Cambridge University Press
www.cambridge.org
Apopemus sylvaticus, 421
apoptosis (programmed cell death), 180, 183–184
autophagic (type II), 183
evolutionary trajectories, 183–196
experimental case studies, 189–192
lessons from case studies, 192–193
mathematics, 184–187, 195–196
medical implications, 194–195
testing the model, 193–194
threshold reversals, 188
within-host competition and, 187–188
heterophagic (type I), 183
arms races, evolutionary, 41, 182, 430–431
biogeographical perspectives, 197–209
in gene-for-gene systems, 235, 240–241
medical treatment and, 61, 68
see also coevolution
artificial selection see breeding
asexual reproduction, 222–223, 230–231
disadvantages, 248–249
impact of parasitism, 32–323
plant pathogens, 441–442
Asobara tabida, 206
assisted reproductive technology (ART), 259–260
associational protection, 315–317
attendant-borne transmission, 13, 17–18, 25
attractiveness, sexual, 251, 252–253
Autographa californica, 81
Autographa californica multiply-embedded nuclear polyhedrosis virus (AcMNPV), 190, 191–192
autoinfection, 438–439
Avena, 206
avian hemangiomavirus (AHV), 190, 192
avian influenza, 267, 268–273, 275–276
avirulence, 389
genes, 388–389
evolutionary stability, 242
in gene-for-gene systems, 235, 237, 238–239
trend towards (“conventional wisdom”), 1–3, 48, 124
Bacillus thuringiensis, 454
bacteremia, 363
bacteria, 27, 29
antibiotic resistance see antibiotic resistance
host cell apoptosis and, 194
hyperparasites, 286
molecular phylogenies, 262–263, 267
mutator phenotypes, 380
nasopharyngeal interactions, 372
plant pathogens, 438
population structure, 442
transformation, 351, 371, 380
see also specific bacteria
bacterial infection, 326
dynamics: simple model, 327–328
steady state, 328
see also antibiotic therapy
bacteriophages, 206, 381, 391
baculoviruses (BV), 184, 191–192
barberry, 441
basic reproduction ratio see reproduction ratio, basic
bcl-2 protein, 184, 189, 190, 193
behavior
antipredator, 449–450
biocontrol agents, 455
parasite-induced host, 395
Berberis, 441
bighorn sheep, 36–37
biocontrol see biological control
biocontrol agents
hyperparasites as, 286, 290–291, 296
natural enemies as, 208–209, 448–449
virulence, 378, 448–458
desirability of high, 451–452
ecological and evolutionary pest responses, 457–458
to herbivores and their predators, 456–457
individual- versus patch-level, 449–450
manipulation in field, 454–455
mass rearing effects, 455–456
stability of high, in practice, 452–454
biogeographical approach, 197–209
model of predator–prey interaction, 199–203
natural enemy impacts, 198–199, 204–206
potential applications, 207–209
biological control (biocontrol) agents see biocontrol agents
chestnut blight, 293, 294–296
classical, 449, 450, 451–452, 453, 457
conservation, 449, 453–454
inoculative, 449, 450, 453
inundative, 449, 450, 453, 457
local adaptation and, 422
in tritrophic systems, 319–320
bird pox, 30
blight, corn, 107, 110–112, 117
boomerang coevolution, 317–318, 319
Bordetella pertussis, 345
Index

Borrelia burgdorferi, 38
Botryllus, 253
bovine papilloma virus (BPV), 190
bovine spongiform encephalopathy (BSE), 432
bovine virus–diarrhea virus (BVDV), 428–429, 432
breeding
 captive, 260, 261, 421
 chestnut blight resistance, 292–293
 lineage-exclusion, 446
 for plant resistance, 319–320, 444–446
 in veterinary setting, 432
Cakile edentula, 105
caloric restriction, 195
cancer, 192, 208, 280
canine distemper virus, 30, 382, 420
capsular polysaccharide, 363, 364, 374
Castanea dentata see chestnut
Castanea mollissima see chestnut
Castanea sativa see chestnut
castration, 388, 451–452
cattle, 31, 107, 113, 118–119, 163, 428
cell death, programmed see apoptosis
Central America, 401, 402–403, 404
cerebral malaria (CM), 353, 354, 355
cestodes, 257–258
chaotic behavior, in pathogen diversity models, 352, 353
“cheats”, 64, 69, 318
checkerspot butterfly, Edith’s, 105–106
chestnut
 American, 291, 292–293, 294–295
 Asian, 291
 European, 291–292, 293, 294, 295, 296
chestnut blight fungus (Cryphonectria parasitica), 278, 286–296, 443
hyperparasitism, 291–292
hypovirus, 292, 293, 294–296, 443
pandemic in USA, 291
virulence management, 292–296
chicken flu, Mexican, 268–272, 275–276
cholera, 381, 401–404
toxin production, 401, 402
 see also Vibrio cholerae
Ciona intestinalis, 253
classic swine fever virus (CSFV), 433
clearance rate see recovery rate
climate
 change, 398
 plant disease epidemics and, 436, 437
cloned, 347
ClustalW, 269, 270–271, 273
clustered distribution see aggregated (clustered) distribution
coevolution
 boomerang, 317–318, 319
 effect on sexuality, 249
 impact of natural enemies, 199–203
 MHC polymorphism, 210–221
 parasite virulence and dispersal, 156, 158
 pathogen–host, 54–57, 180–182, 385
 in biological control, 457
 computer simulation, 212–214
 future research needs, 395–397
 in gene-for-gene systems, 233–247
 modeling host genetic response, 222–232
 sexual selection and, 251, 260–261
 in plant–herbivore–predator interactions, 317–318
 rabbit and myxoma virus, 33–34, 41, 55–56
 sex and, 248–250
 virus and host cell-death signals, 183–196
 see also arms races, evolutionary
coevolutionarily stable strategy (CoESS), 67–68, 202–204
 predator–prey interactions, 202, 204
coevolutionary attractor, 56, 57
coevolutionary trajectories, 55, 56–57
coexistence
 superinfection function and, 143–147, 148–149
 see also coinfection; superinfection
coinfection, 88, 122, 125
 function, 136–137, 139, 140
 HIV, 351
 in malaria, 172, 173, 174
 more detailed models, 138–149
 SI models, 133
 simplified models, 131–134, 135–137
 virus apoptotic strategy and, 187, 193
coinvasion, predator, 317
Colletotrichum lindemuthianum, 445
community
 medical treatment strategies, 60–69
 structure
 impact of parasitism, 29–31
 variations in, 197–198
 vaccination, 370
compartmentalization, host, 429
competition
 apparent, 172–173, 393
 between biocontrol agents, 320
 between-host, 392–393
 between serotypes, 366–368, 369, 371
Index

exploitation, 172, 311, 393
interference, 105, 106, 172, 393, 455
for mates, 251
resource, 172–173, 176–177
scramble, 427
within-host see within-host competition

competitive ability, 138
competitive exclusion, 122, 138, 176
antigenic diversity and, 351–352, 356–357
conditional preferences, in mate choice, 255–257
conditional virulence strategies, 166–171
field correlations, 167–170
laboratory experiments, 170–171
conservation
biocontrol, 449, 453–454
endangered natural enemies, 207–208
sexual selection and, 260
wildlife translocations, 421–423
see also endangered species

conservatism, evolutionary, 104–106
conspiracy, 278–279
in tritrophic systems, 279, 297–299, 318–319
contact networks, 85–103, 397
across-network, 92–94
epidemics on, 90–91
evolutionary stability, 99–101
implications, 97–99
mean-field dynamics, 91–92
multiple infections and, 160–161
pair dynamics, 94–97
random vs regular, 85–86, 98–99
contact rates
in multiple infections, 160–161
reducing, 160
continuously stable strategy (CSS), 43
convergence stability, 42, 43
copepods, 257–258
corn, blight resistance, 107, 110–112, 117
correlation dynamics (pair dynamics) approach, 89, 94–97, 98
Corynebacterium diphtheriae, 411
critical point, 144, 145, 146
CrmA gene, 184
crop pathogens see plant–pathogen systems
cross-fostering studies, 250
cross-immunity
in multilocus systems, 350–351
pathogen diversity despite, 356–357, 358
in single-locus systems, 347–349
cross-protection
in multilocus systems, 350
vaccine-mediated, 360
cross-reactivity
serotype antibodies, 372
vaccines, 340–341, 342–343, 344
Cryptosporidium parasitica see chestnut blight fungus
cryptic female choice, 251, 252, 259
culling, 414, 420
“curse of the pharaoh” hypothesis, 157–160
cyclical behavior
in pathogen diversity models, 352, 353
see also evolutionary cycles; oscillatory transients
cystic fibrosis gene, 223
cytoadherence, malaria parasites, 335, 354, 355
cytopathicity, virus, 184, 192–193, 195
cytotoxic lymphocytes (CTL), 353, 358
death rate, disease (parasite)-induced, 2, 4–5, 45, 387–388
biological control aspects, 453, 454, 455
geneic variation, 222
parasite relatedness and, 161
basic reproduction ratio and, 14–15
waterborne transmission, 19–20, 23–24
in wildlife, 416, 417–418
deer mouse, 37
demographic rates, density dependence, 49–51, 57–59
dengue, 37, 405, 408
density
host
contact networks and, 94–95, 102
genetic modeling and, 228
hyperparasitism and, 287
source–sink populations, 114, 115, 116
virulence management and, 420
prey, in predator–prey interactions, 200, 201
regulation, 40
pathogen–host coevolution, 55, 56–57
virulence evolution, 49–54
virulence management and, 58–59
diabetes, 194
diarrheal disease, 8
antibiotic therapy, 337
hospital neonatal ward, 107, 113, 118
level of virulence, 15–17
virulence management, 399–404
waterborne transmission model, 19–24
different rate (DR) model, 266, 270, 273
diphtheria, 411
diploid hosts, sexually reproducing, 212, 222–232
Index

Diplosoma listerianum, 253
direct transmission, 13, 25, 385
modeling waterborne transmission and, 19–24
SI models, 12–13
virulence and, 15, 17
discrete-time genetic models, 224–228
disease, 425
control, 425, 426–427
eradication see eradication, disease prevention, 425–426
dispersal
coevolution with virulence, 156, 158
effective costs, 158–159
evolution of parasite, 155–156, 157
in natural enemy–victim interactions, 205
passive, 105
see also emigration; immigration; migration
dispersal
emergent diseases, 38, 380, 381–382
changing contact patterns, 103
phylogenetic studies, 262
source–sink dynamics and, 118–119
virulence management, 397–398
emigration
herbivore, 312–315, 320–321
predator, 306, 308, 309, 310–311, 313
see also dispersal; immigration; migration
endangered species, 30
captive breeding, 260, 261, 421
conservation see conservation
endemic diseases
genetic models, 226–227
two-bag model, 434, 435
endoparasites, 27
endosymbionts, cytoplasmic, 391
enemies, natural see natural enemies
entomological inoculation rates (EIR), 407
environment, pathogen durability in, 18, 157–160, 409, 453
environmental feedback loop, 41, 52–53
epidemics
cycles, in plants, 436, 437, 438
genetic models, 222–227, 228–230
epidemiological rates, density dependence, 49–51, 57–59
epistatic fitness effects, 255
Epstein–Barr virus (EBV), 190, 191
LMP-1 protein, 184
nuclear antigen EBNA 1, 191
eradication, disease, 410, 425, 426, 432
Escherichia coli
antibiotic resistance, 441–442
diarrheal diseases, 17–18, 25, 107
phages, 206, 391
ESS see evolutionarily stable strategy
evolutionary dilemmas, 9, 60–69, 162–163
antibiotic therapy, 61, 69, 338, 411
in virulence management, 60–69, 410–411
Euphydryas editha, 105–106
epidemics
host immune responses, 210, 211, 218, 380
presentation on MHC molecules, 217–218
host, 397
disease-induced, 222
source–sink populations, 110–113
pathogen, 45–54, 347–361
antibiotic therapy and, 65–68, 390

in sink populations, 113–116

see also virulence evolution

sex, 234, 244, 249
time scales, 382–384

in tritrophic interactions, 297–321

see also coevolution

evolutionarily stable coalition, 143–147, 148

evolutionarily stable strategy (ESS), 15, 42, 69, 74

drug combination therapy, 65–68, 390

chestnut blight virus hypovirus, 295
contact networks and, 92, 99–101

in hyperparasitism, 289–290

in tritrophic interactions, 297–321

see also coevolution

evolutionarily stable coalition, 143–147, 148

evolutionarily stable strategy (ESS), 15, 42, 69, 74

evolutionary cycles

asynchronous, 243, 244–245

in gene-for-gene systems, 240–241, 243, 244–245

see also oscillatory transients

evolutionary endpoints, 42–43

evolutionary epidemiology, 389–393

evolutionary invasion analysis, 45–48, 57

evolutionary isolines, 46, 55, 56, 57

evolutionary singularity (critical point), 144, 145, 146

evolutionary stability, 42, 43–44, 66–67

biocontrol agents, 453

in gene-for-gene systems, 242–243

herbivore emigration rates, 312–315, 320–321

kin selection approach, 151, 154–156, 157 reducing, 87

see also evolutionarily stable strategy

evolutionary suicide, 56, 57, 58

evolutionary trajectories, 46–47

experimental design, poor, 392

exploitation

competition, 172, 311, 393

factor, per-host (Q), 66, 67

resource, 319

in tritrophic interactions, 297–321

extinction

local, plant pathogens, 437, 440–441

pathogen, 56, 58, 64–65

in predator–prey (herbivore) dynamics, 302–303, 304

reservoir hosts and, 420

facultative life-history strategies, 167

(E)-β-farnesene, 314–315

fecundity

longevity and, 284–285 parasite-induced decrease, 2

feline immunodeficiency virus (FIV), 190

ferret, black-footed, 30, 420

fertilization, nonrandom, 252, 253, 255–257

fitness, 3, 386–387

host

in coevolution of MHC polymorphism model, 213, 215, 216

effects of parasites, 2

in gene-for-gene systems, 238, 239–240

in genetic models, 224–225, 227–228

rare MHC alleles and, 211–212

invasion, 42, 44–45, 47

metapopulation, 387

pathogen, 4, 65, 81, 386–387

antibiotic resistance and, 328, 330, 331–332, 333, 334–335

in coevolution of MHC polymorphism model, 213, 215–216

in gene-for-gene systems, 238, 239–240

in genetic models, 81–83, 84

in kin-selection models, 151

in virulence models, 10–11

within-host competition and, 172–175

see also reproduction ratio, basic fitness-proportional reproduction, 213–214

food webs, 298, 317

foot-and-mouth disease, 433

force of infection

optimal medical treatment strategy and, 63–64

vaccination and, 60

frequency-dependent selection, 25, 34–35, 41, 223

in gene-for-gene systems, 237

genetic modeling, 227, 228

matching virulence, 438

MHC polymorphism and, 211–212, 219–220, 221

virulence management and, 461

fruit fly (Drosophila melanogaster), 206, 245, 395

fungi

hyphal anastomosis, 281, 284, 292, 380–381

mitochondrial mutations, 281

plant pathogens, 234–235, 281, 286, 438, 442–443, 452

senescence plasmids, 281–283, 284
Index

see also chestnut blight fungus

game theory
defense against parasites, 63, 67, 69
in tritrophic interactions, 307–318

game theory

defense against parasites, 63, 67, 69
in tritrophic interactions, 307–318

game-theoretic self-incompatibility, 253

gametocytes, malaria, 405–406

Garden-of-Eden configuration, 43

gene(s)
complementary, in mate choice, 253–257
deleterious, removal, 248, 249
"good", mate choice, 251
habitat interactions, 202–203
resistance see resistance, genes
therapy, 194

virulence see virulence genes
gene-for-gene (GFG) systems, 181, 233–247, 437, 462
asymmetric, 234, 236, 244–245
basic concepts and characteristics, 234–236
coevolutionary dynamics, 237–244
multilocus models, 234, 236, 237, 238–240, 246–247
single-locus model, 237–238
versus matching genotype, 236
generalist strategy, 395
generation times, 26, 29, 41
coevolution of MHC polymorphism and, 213, 215–216
tritrophic interactions and, 299
in wildlife populations, 413–414
genetic algorithm, 212
genetically fixed virulence strategies, 167, 171–172
genetic dissimilarity, mating preferences, 253–255, 260

genetic diversity (polymorphism), 380–381
gene-for-gene interactions and, 246
kin selection approach, 152, 167–171
MHC, 181, 210–221, 223, 398
plant defenses, 315–316
role of sex, 249, 250
in wildlife populations, 32–33, 415

see also antigenic diversity; genetic variation

genetic drift, 436, 437, 439, 440, 441
genetic engineering
insect viruses, 77–83, 84
virus apoptosis genes, 194

genetic exchange
antigenic diversity model with, 349–352
mechanisms, 380–381

genetic models
coevolution, 230–231
continuous, 228–230
discrete-time, 224–228
host response, 181, 222–232
senescence plasmids, 282–283
genetic structure, natural enemy impact and, 198, 205
genetic variation, 18, 222, 250, 400
in genetic models, 224, 225, 229–230
in sink populations, 112, 117
sources, in virulence-related traits, 380–381

see also genetic diversity

genotype
matching, 234, 236, 246
universally susceptible, 244, 245

genotypic cycles, 244, 245, 246
geographical variation, 197–198
virulence management and, 406–407

see also biogeographical approach
gerbil (Gerbillus andersoni allenbyi), 421
glume blotch, 442–443, 444
gonorrhea, 337
"good genes", 251
gorilla, mountain, 420–421
grouse, red, 31, 421
growth rate
predator, 302–303, 305, 308
prey (herbivore), 302–303, 305
gypsy moth, 27–83
fitness and genetically engineered virulence, 81–83
predicting virus epidemics, 79–80

habitats, 197
gene interactions, 202–203
patches see patches, habitat
productivity, 202, 206, 207–208
suitability, 180–181, 202, 204–205

Haemophilus influenzae, 362–374, 430
biology, diversity and impact, 363–364
serotype b (Hib), 363–364
serotype b (Hib) conjugate vaccines, 362, 364–374, 411
clinical trial design, 370
modeling effects, 366–368
model limitations/future research needs, 372–374
optimal design, 370–371
serotype replacement, 365–366
versus pneumococcal vaccines, 368–370
serotypes, 363–364

Haemoproteus, 171
hantaviruses, 37, 262, 395
haploid genotypes, 212
coevolution, 222–223, 230–231
gene-for-gene interactions, 235, 237–238
Hardy–Weinberg proportions, 224, 228–229
health
in mate choice, 252–253
policies see public health policies
health tax/insurance, 61–62, 63, 64, 67
helminth parasites, 27, 30, 33
hemagglutinin (HA) gene
influenza virus, 268, 269, 273–275
measles virus, 344
hemangiomas, 192
hemoglobin S (sickle) variant, 223, 355
hepatitis B vaccine, 345
herbivores, 297, 298–299
emigration rate, 312–315, 320–321
pathogen virulence toward, 456–457
plant defenses see plant defenses
stay or leave dilemma, 312–315
virulence, 449, 450
see also plant–herbivore–predator interactions
herd immunity, 69, 161, 364, 370
herpes simplex virus 1 (HSV-1), 190
γγ 34.5 gene, 189–191
heteroclinic cycle, 238, 246
heterozygosity
mate choice and, 254–257
selection for, 211–212, 216–217, 219–221
heterozygote advantage (overdominance), 223
maintaining MHC polymorphism, 181,
211–212, 220–221
sickle cell anaemia, 223
Hib see Haemophilus influenzae, serotype b
HIV see human immunodeficiency virus
HLA see human leukocyte antigens
honeymoon period, post-vaccination, 340
horizontal gene transfer, 380–381
horizontal transmission, 385, 392, 453, 461
antibiotic resistance, 335
chestnut blight fungus hypovirus, 292,
294–296
hyperparasites, 286, 289, 290–291
senescence plasmids, 282, 284
versus vertical transmission, 391
hospital-acquired (nosocomial) infections,
17–18, 25, 337–338
hospital neonatal ward, 107, 113, 118
host defenses, 427–428, 429
see also immune response; plant defenses
housing see dwellings
human diseases
virulence management, 377, 399–412
conceptual basis, 399
diarrheal diseases, 399–404
in dwellings, 409
vectorial diseases, 404–409
within intervention spectrum, 409–412
wildlife diseases and, 37–38
see also specific diseases
human granulocytic erlichiosis (HGE), 190
human immunodeficiency virus (HIV), 78,
382
coinfection, 351
contact networks and, 87, 102, 160
heterozygote advantage, 211
immune evasion, 210, 380
induction of apoptosis, 184, 190, 195
intrahost evolution, 41, 246
mutation rates, 262
see also AIDS
human leukocyte antigens (HLA), 223
malaria associations, 353–357
see also major histocompatibility complex
human papilloma virus (HPV), 190
human T-cell lymphotrophic virus (HTLV),
190, 382
hyperparasites, 286
as biological control agents, 286, 290–291,
296
ecology and virulence evolution, 287–291
hyperparasitism, 286, 296
modeling, 288–289
hypersensitive plant response, 380
hypozoites, 406
Hypoxaspis aculeifer, 456
hypovirus, chestnut blight fungus, 292, 293,
294–296, 443
iap (inhibitor of apoptosis) genes, 184
identity-by-descent coefficients, 152
immigration, 105–106
host, 111–113
pathogen, 114–116
see also dispersal; emigration; migration
immune response
evasion, 210, 211, 218, 380
in malaria, 354
MHC function, 210
polymorphic antigenic determinants,
356–357
Streptococcus pneumoniae, 372
immune selection
sexual reproduction, 249, 257
vaccine-mediated, 360, 373
immune system, 393, 427–428, 429
immunity acquired, 246
in antibiotic resistance models, 328
antiparasite versus antidisease, 169
herd, 69, 161, 364, 370
malaria, 169, 170, 176–177, 353–358, 407
in pathogen diversity models, 347–349, 350–352, 353
vaccine-induced, 342
virulence evolution and, 427–429, 430–431
within-host competition and, 176–177
see also cross-immunity; resistance, host
impala, 32
inbreeding avoidance, 254, 257–258, 260
individual-level virulence, 449–450, 451–452, 458
infection, 425
infectious agent, 425
infectious bursal disease virus (IBDV), 190
infectivity see transmission rate
influenza, 210
1918 “Spanish” (H1N1), 87, 262, 268, 272–275, 297
1957 “Asian” (H2N2), 268
1997 Hong Kong (H5N1), 272–275
avian, 267, 268–273, 275–276
Mexican chicken (H5N2), 268–272, 275–276
pandemics, 267, 276
swine, 268, 273–274
influenza A virus molecular phylogenies, 267–276
mutation rates, 262
insect–pathogen interactions, 74–84
genetically engineered viruses, 77–83, 84
multigenerational epidemics, 75–77
interleukin-1β-converting enzyme, 184, 194
intrasexual selection see mate choice
interspecific transmission, 35–36, 382
intragenomic conflict, 278, 280–285
Neurospora poky mutations, 281
senescence plasmids, 281–283
virulence management and, 283–284
intrasexual selection, 251
introductions (and reintroductions)
accidental, 36
disease transmission risks, 421–422
minimizing disease risks, 422–423
natural enemies, 207–209
resistant varieties of crop plants, 234–235
see also biological control; myxomatosis;
rinderpest invasion
analysis, evolutionary, 45–48, 57
fitness, 42, 44–45, 47
potential, 42
in vitro fertilization, 254
IpadB gene, 194
island biogeography, 198, 205
isoclines, evolutionary, 46, 55, 56, 57
Kermack–McKendrick models see SIR models
killer strategy, 307–312, 313, 451
kin selection, 122–123, 150–164
contact networks and, 95–97, 102
indirect effects, 157–161
models, 150, 151–152, 166–167
malaria, 165–178
parasite virulence and dispersal and, 153–156, 157
strengths and limitations, 152
virulence management and, 161–163
kinship, sexual selection and, 254, 255
Lacerta agilis, 253
Lagopus lagopus, 31, 421
landscape, 204–205
ruggedness, 205–206
“landscape-dynamic” models, 199
leaf blotch, 443
leaf spot, 444
Leporipoxvirus, 33
Leptopilina boulardi, 206
life history, parasite, 166
likelihood analysis, 263–236, 267
methods, 264–265
“unconstrained”, 266
likelihood ratio tests (LRTs), 263–266, 267, 272, 275
limit cycle, 238
limit to similarity, 131, 136
Linum marginale, 440–441
livestock, virulence management, 377, 425–435
lizards, sand, 253
local adaptation, 106, 205, 208, 422
in sink habitats, 107, 111–112, 113, 115–116, 117
longevity, fecundity and, 284–285
Lotka–Volterra equations, 125, 128
“lottery model”, 249, 258
Lycan pictus, 420
Lymantria dispers (gypsy moth), 77–83
Lyme disease, 38
lymphocytes, 184, 213
cytotoxic (CTL), 353, 358
see also T lymphocytes
lysis, virus-induced, 184, 193
experimental studies, 189, 191–192
modeling, 185–186, 187
Macrocyclops albidus, 257–258
macroparasites, 8–9, 27–29, 383
detecting impact in wildlife, 416, 418
basic reproduction ratio, 27, 28–29
regulation of host population, 31
Magnaporthe grisea, 444, 445–446
major histocompatibility complex (MHC)
evasion of presentation on, 217–218
in mate choice, 253–255, 256–257
odor preferences and, 253–254
peptide presentation, 212–213
polymorphism, 181, 210–223, 223, 398
coevolutionary simulation model, 212–221
mechanisms of evolution, 211–212, 220–221
population diversity, 210–211
rare alleles, 211–212, 220
malaria, 1, 60
antigenic diversity, 353–358, 361
avian, 30, 171
cerebral (CM), 353, 354, 355
drug resistance, 415
epidemiological modeling, 11
evolutionary explanations, 165–178
conditional virulence strategies, 167–171
genetically fixed virulence strategies, 171–172
management implications, 177–178
within-host competition and between-host fitness, 172–175
immunity, 169, 170, 176–177, 353–358, 407
mouse (rodent), 170–171, 173–175, 389, 392
sickle-cell disease and, 223, 225–226, 355, 398
therapy of neurosyphilis, 172
vaccination impact, 358–360
virulence management, 398, 405–409
see also Plasmodium falciparum
Marburg virus, 37
mass action assumption, 4, 12, 51, 184–185
mass rearing
biocontrol agents, 449
field virulence and, 455–456
matching genotype, 234, 236, 246
matching virulence, 2, 234, 389, 437–438
evolution, 438–440, 442
strategies to overcome, 444–445
mate choice, 251, 252, 260–261
conditional preferences, 255–257
genetically variable preferences, 253–255
in parasites, 258, 261
preference for health and vigor, 252–253
virulence management implications, 259–260
mates, competition for, 251
maximum likelihood (ML), 263–265
estimates (MLEs), 265
mean-field dynamics, 91–992
measles, 410
basic reproduction ratio, 340
vaccine resistance, 344–345
virus (MV), 190
mechanistic resource–consumer theory, 176
medical treatment
costs, 63
ethical dilemmas, 60–69, 162–163
in multiple infections, 162–163
optimal strategies, 62–65
parasite evolutionary responses, 65–68
see also antibiotic therapy; drug treatment;
vaccination
meiosis, second division, 255, 256
Melampsora lini, 440–441
meningitis, 363, 395, 430
merozoitcs, malaria, 353–354
metapopulation
biocontrol, 458
fitness, 387
models, 131
tritrophic interactions, 307–318, 319
parasites, 151
structure, 72, 307, 384, 440–441
virulence, 388
see also population(s)
Metarhizium flavoviride, 450
Mexican chicken flu, 268–272, 275–276
MHC see major histocompatibility complex
microparasites, 8–9, 27–29, 382–383
detecting impact in wildlife, 416, 418
host population regulation, 30–31
sexual selection, 257
within-host interactions, 122–123
see also bacteria; fungi; viruses; specific organisms
Microphallus, 422
microsporidia, 390, 396
midges, biting, 38
migration
natural enemies, 208
plant pathogens, 437, 439, 440–441
see also dispersal; emigration
miller strategy, 307–312, 313, 451
mites, 33, 452
herbivorous (spider), 304, 305–306, 315, 450
predatory, 304, 305–306, 310–311, 315, 450, 451, 456
mitochondria
membrane potential, 195
mutations, 278, 281–282
mixed-genotype infections see multiple infection
mobility
herbivore, 316
host, 11–19, 20–21, 25, 404–405, 409
molecular clock, 266, 271–272
monkeypox, 345
Mononychellus tanajoa, 451
Monoterpenic, 314–315
moose, 30
morbilliviruses, 30–31
mortality rate see death rate
mosquitoes, 34, 37, 398
proofing of housing, 405, 406–409
virulence and, 406
mosquito nets, impregnated, 355–357, 398
most recent common ancestor (MRCA), 269–270
moth, gypsy see gypsy moth
mouse
malaria, 170–171, 173–175, 389, 392
odor-based mate choice, 253–254
pneumococcal carriage model, 366
virulence management, 421
white-footed, 421
mouse hepatitis virus (MHV), 256–257
MSP-1, 358
mucosal disease, 428
Müller’s ratchet, 248, 249
multigenerational epidemics, theory of, 75–77
multi-host pathogens, 395, 419
multilevel selection, 278–279
intragenomic conflict, 280–285
multiple drug resistance (MDR), 233–234, 247, 383
multiple infection, 122, 384, 392
biocontrol aspects, 453, 454, 456–457, 458
hyperparasitism and, 287
kin selection approach, 150–164, 166–171
in malaria, 167–175
more detailed models, 138–149
plants, 437, 439
by predators, 312
simplified models, 124–137
virulence evolution and, 88, 453, 461
virulence management, 161–163, 461
in wildlife, 29, 35
see also coinfection; superinfection;
within-host competition
mutation rates, 262
mutator phenotypes, 380
mutual invasibility, 42
mutualism, 396–397
plant–predator, 279, 298–299, 318–319
Mycobacterium tuberculosis (tuberculosis), 60, 337, 409
myxomatosis, 26, 32, 33–34, 228
see also myxoma virus
myxoma virus, 33, 448
coevolution with rabbits, 33–34, 41, 55–56
reduction in virulence, 74, 383, 385–386, 452–453, 457
nasopharynx, bacterial interactions in, 372
natural enemies, 197
as biocontrol agents, 208–209, 448–449
biogeographical perspective, 198–199, 204–206
conservation, 207–208
model of predator–prey interactions, 199–203
monophagy, 205
in virulence management, 454, 455
see also predators
natural selection, 10, 379
see also evolution
necrosis, 183
neighborhood
host’s interaction, 90
size, 86, 89, 90, 97–98, 99, 100, 101–102
nematode parasites, 31, 257, 392, 421, 452
Nematospiridoids dubius, 421
neonatal ward, hospital, 107, 113, 118
neuraminidase (NA), influenza virus, 268, 273, 274
Neurospon crassa
poky mutations, 281
senescence plasmds, 281, 284
Neurospon intermedia, senescence plasmds, 281, 284
neurosyphilis, 172
Newcastle disease virus (NDV), 190
nosocomial (hospital-acquired) infections, 17–18, 25, 337–338
nuclear polyhedrosis virus (NPV) *Autographa californica* multiply-embedded (AcMNPV), 190, 191–192
genetically engineered, 77–83
oats, wild, 206
odors in mate choice, 253–254, 255, 260 in predation avoidance, 315
one-bag model virulence evolution, 427–429, 431
virulence management, 432–434
optimization principle, 40, 52, 54
Oropouche fever, 38
Oryctolagus cuniculus see rabbit, European
oscillatory transients, 57, 58 in genetic models, 230, 231 in pathogen diversity models, 349, 352, 353 see also evolutionary cycles otitis media, 363, 364, 365–366 outbreeding, preference for, 254, 257–258, 260 overdominance see heterozygote advantage *Ovis aries*, 421
p35 protein, 184, 191–192
p53 tumor suppressor, 184, 194
Index

population structure and, 443–446
plant–predator mutualisms, 279, 298–299, 318–319
plasmids, 383
antibiotic resistance, 441–442
senescence see senescence, plasmids
Plasmodium chabaudi, 170–171, 173–175
Plasmodium falciparum, 168, 170, 171–172, 223
antigenic diversity, 349, 351, 353–358, 361
drug resistance, 415
PfEMP antigens, 354, 355, 357–358, 361
vaccination impact, 358–360
virulence management, 406–407
see also malaria
Plasmodium vivax, 406
plasticity of virulence, 453–454, 455
pneumococcus see Streptococcus pneumoniae
pneumonia, 363
Podospora anserina, 281
poky mutations, 281
poliomyelitis), 60–61, 340, 410
polymerase chain reaction (PCR), 263
population(s)
dynamics
biocontrol and, 457, 458
role of species and space, 198–199
level, virulence management at, 420–421
mobility-limited, 89
regulation, parasite-mediated, 30–31
sink, 104, 105–106
source, 104, 105–106
structure, host, 2, 72–73, 384
contact networks and, 85–103
insect–virus interactions and, 74–84
source–sink dynamics, 104–119
structure, pathogen, 361
impact of vaccines, 360, 373
in plant–pathogen systems, 442–443
virulence management and, 443–446
viscous, 89, 95–97, 160, 450
see also metapopulation
positive selection, influenza virus, 269
Potamopyrgus antipodarum, 422
predation risk, plant signaling, 314–315
predator–prey interactions, 451
modeling, 199–203
within-host, 300–307
predators
as biocontrol agents, 319–320, 448
coinvasion, 317
herbivore, 297, 298–299
herbivore defenses, 312–315
milkers or killers, 307–312, 313, 451
multiple invasions, 309–310
mutualistic plant interactions, 279, 298–299, 318–319
pathogen virulence toward, 456–457
virulence, 449–450
see also plant–herbivore–predator interactions; predator–prey interactions
prevention, disease, 425–426
prion protein, 190
probabilistic cellular automaton (PCA) models, 89, 90
productivity, host, 180–181, 202, 206, 207–208
propagules, infectious
ambient density, 51
long-surviving, 157–160, 453
Pseudomonas, 194
Pseudomonas syringae, 442
psororabies virus, 426, 430, 434
pseudosinks, 105–106
public health policies
ethical dilemmas, 60–66, 163, 338
in multiple infections, 161–163
Puccinia coronata, 206
Puccinia graminis tritici, 234–235, 441
quarantine, 423
quasi-equilibrium see dynamic equilibrium
quasi-species, parasite intrahost, 246
quorum sensing, 394, 454
R0 see reproduction ratio, basic rabbit
coevolution with myxoma virus, 33–34, 41, 55–56
declining myxoma virus virulence, 74, 383, 452–453
European, 32, 33, 228
South American, 34
radiotagging studies, 417, 421
rare alleles, major histocompatibility complex, 211–212, 220
rats, 37, 257, 381–382
reaction–diffusion type, 47
reciprocal selection, 205, 395–396, 463
recombination, 380–381
phylogenetic analyses, 266, 267, 275, 276
sexual, 41, 223, 382–383
recovery rate (clearance rate), 45
in coinfection and superinfection, 140–141, 143
contact networks and, 99–100
in genetic models, 224–225
medical treatment and, 62–64, 67, 68, 162–163
in multiple infections, 161, 162–163
virulence trade-offs, 90
in waterborne transmission model, 19–20
Red Queen hypothesis, 34–35, 181, 236, 244, 249
re-emerging diseases, 381–382, 397–398
see also emerging diseases
reinfection, plants, 437
reintroductions
see introductions
relatedness, pathogen, 88, 122–123
coefficient of, 151–152
contact networks and, 95–97, 101, 102
derivation, 152
effects of vaccination, 161
indirect effects via, 154, 155, 157–161
virulence evolution and, 150, 154–155, 166
reovirus, 190
replication, between-host, 394–395
reproduction
seasonality in host, 75–77
see also asexual reproduction; sexual reproduction
reproduction ratio, basic, 4–5, 11, 387
alternative fitness term, 81
in antibiotic treatment models, 328
coinfection, 133–134, 135, 136
definition, 14–15, 39, 76
disease eradication and, 432
disease with reservoir hosts, 419
from serological data, 340
in genetic models, 225, 226
macroparasites, 27, 28–29
malaria, 359
maximization, 9, 39–49, 66–67, 138
limitations, 40–44, 53–54, 58
pathogen evolution and, 45–54
pathogen–host coevolution and, 54–57
mutant strain, 66–67, 86, 91
superinfection, 130, 132, 136
vaccination and, 339–340, 342–344, 426, 434
virus, 185
waterborne and direct transmission, 21–23
reservoirs, disease, 113, 381–382, 419–420
resistance
antibiotic see antibiotic resistance
chestnut blight, 292–293
genes, 249, 389
coevolution, 235, 237, 238–239, 240–241
in plant breeding, 444–446
host, 180, 382–383
to biocontrol agents, 457–458
in coevolutionary models, 54–57
costs, 56, 240, 242–243, 245, 457–458
dominant and recessive, 227
in gene-for-gene systems, 233–247
genetic models of evolution, 222–232
multiline versus multiple, 246–247
to myxomatosis, 34, 36
in plant–pathogen systems, 234–235, 444–446
in tritrophic systems, 319–320
see also coevolution; immunity
to pesticides, 414
to vaccines see vaccines, resistance (escape mutants)
resistance-is-futile scenario, 56–57
resource
competition, 172–173, 176–177
exploitation, 319
respiratory transmission, 13, 102, 409
Rhizoglyphus robini, 456
Rhynchosporium secalis, 443
ribonucleic acid, double-stranded (dsRNA), 292, 443
rinderpest, 26, 31–32, 397–398, 423
rosetting, 171
rotavirus, 190
rust diseases, 206, 440–441, 444
Salmonella, 194, 381
Salvinia molesta, 422
sampling
errors, in phylogenetic analyses, 266–267
wildlife, 417
sanitation, 162
saproxytes, 439
Schistoscephalus solidus, 257–258
scramble competition, 427
scrapie, 230, 432
seals, 228
harbor, 30
harp, 30
Lake Baikal, 30–31
seasonality
host reproduction, 75–77
plant disease epidemics, 436, 437, 438
selective regimes, 439–440
transmission, 406
seed sources, 117
segregation–recombination process, 223
self-incompatibility, 253
selfish strategy, 150, 166
self-organization, 397
“self-structuring”, models of, 199
senescence
host, pathogen virulence and, 284–285
plant differential, 439
plasmids, 278, 281–283
generic modeling, 282–283
horizontal transfer, 282, 284

Septoria nodorum, 442–443
serial passage experiments (SPE), 36, 390–391, 394, 395
serotype replacement, 362–374
beneficial effects, 368, 371
clinical trial design, 370
evidence for, 365–366
mathematical models, 366–368
model limitations/future research issues, 372–374
pneumococcal versus Hib vaccines, 368–370
vaccine design issues, 370–371
serotypes, 363–364
competition between, 366–368, 369, 371
in conjugate vaccines, 370–371
sex see sexual reproduction
sexual recombination, 41, 223, 382–383
sexual reproduction (sex), 32–33, 212, 222–232
evolution, 234, 244, 249
parasite virulence and, 257–258, 259
plant pathogens, 441–442
pros and cons, 248–250
sexual selection, 180, 181–182, 248–261, 398
hypotheses, 252–257
inter see mate choice
intra, 251
levels, 251, 252
pathogen’s view, 257–258
virulence management implications, 259–260
sheep, 230, 432
bighorn, 36–37
Soay, 421
Shigella, 194, 400
sickle-cell disease, 223, 225–226, 355, 398
simian viruses (SIV and STLV), 382
similarity, limits to, 131, 136
SI models, 11, 45–54, 58
coinfection, 133
directly transmitted diseases, 12–13
host genetic response, 228–230
pathogen diversity, 126–127
source–sink dynamics, 110–116
superinfection, 128
transmission modes studied, 13
waterborne transmission, 19–24
Sindbis (SINV) virus, 189, 190
single rate, fossil sequence (SRFS) model, 266, 270, 271–272
sink populations, 104, 105–106
SIR models (Kermack–McKendrick models), 11, 75, 76
gypsy moth virus dynamics, 77, 78–79
host genetic response, 224–227
host seasonality in reproduction, 75–77
pair approximation approach, 96–97
socially structured, 100–101
transmission modes studied, 13
two-strain, 89, 90
vaccination of livestock, 434
SIS models
host genetic response, 227–228
medical treatment, 62–65
with recovery, 62–63
sit-and-wait hypothesis, 157–160
sit-and-wait transmission, 13, 18, 24–25
smallpox, 339, 340, 345, 410
social networks see contact networks
source populations, 104, 105–106
source–sink dynamics, 104–119
evolutionary models, 108–116
hypothetical situations, 107–108
practical implications, 116–118
South America, 401–403, 404
soybean dwarf virus, 439
spatial variation, 197–198
in plant–herbivore–predator interactions, 299–300, 450
in predator–prey interactions, 201
see also biogeographical approach
SPAT-ULA, 271, 275
sperm
nonrandom fertilization, 252, 253, 255–257
selection, 252, 253
spiteful effect, 391
Spodoptera frugiperda, 192
sporozoites, malaria, 353, 358
stabilizing selection, 245
Stagonospora nodorum, 442–443
Stenella coeruleoalba, 30
strain, 347
Streptococcus pneumoniae (pneumococcus), 362–374
biology, diversity and impact, 363–364
conjugate vaccines, 362, 364–374
clinical trial design, 370
modeling effects, 366–368
model limitations/future research needs, 372–377
optimal design, 370–371
serotype replacement, 365–366
versus Hib vaccines, 368–370

serotypes, 364
stress, host, 454
Strongylus ratti, 257
substitution models, 263–266
case studies, 269–270, 271–272
sources of error, 266–267
suicide, evolutionary, 56, 57, 58
superinfection, 88, 122, 124
antibiotic-resistant bacteria, 328
effect of vaccination, 136, 137
function
coeexistence and, 143–147, 148–149
manipulation potential, 149
shape, 139, 142–143
limit, 139–143
more detailed models, 138–149
SI models, 128
simplified models, 125–131, 132, 135–136
super-race, 438–439
superseding infections, 172, 173
super-strain, 241, 243–244, 245, 247
susceptibility
alleles, 237, 238–239
host heterogeneity, 74–84
susceptible–infected models see SI models
susceptible–infected–recovered models see SIR models
susceptible–infected–susceptible models see SIS models
swine
cold, 433
influenza, 268, 273–274
pseudorabies, 426, 430, 434
Sylvilagus brasiliensis, 34
syphilis, 103, 172
temporal dynamics
impact of natural enemies, 206
in plant–herbivore–predator interactions, 299–300
tetracycline resistance, 441–442
Tetranychus urticae, 304
Theiler’s murine encephalomyelitis virus (TMEV), 190
ticks, deer, 38
time
generation see generation times
for resistance to evolve, 413–414
scales, evolutionary, 382–384
tissue damage, virus-induced, 183–184, 185, 195
T lymphocytes (T-cells), 184, 213, 233
“top-down” models, 212
toxins, plant, 303–305
trade-offs, 5, 10–11, 74

clearance rate–virulence, 90
coevolutionary, 180–181
competitive ability–virulence, 138
gineered gypsy moth viruses, 81–83
fecundity and longevity, 284–285
transmission modes and, 11–18, 19
Tragedy of the Commons, 166, 460, 461
transformation, bacterial, 351, 371, 380
transgenic modification, viruses, 194
transmissibility see transmission rate
transmissible spongiform encephalopathies (TSE), 432
transmission, 394–395
antibiotic resistance, 333–334, 335, 336
bypassing natural, 390–391
factor, per-host, 92, 100
interspecific, 35–36, 382
intervention, 87, 162, 390, 409–410, 432–433
modes, 8, 10–25, 385, 394–395
chestnut blight fungus hypovirus, 292, 294–296
studies using SI or SIR models, 13
virulence and, 11–19, 160–161
see also specific transmission modes
one-bag versus two-bag model, 431
success, mixed malaria infections, 173–175
versus virulence, 388
transmission rate (coefficient, infectivity), 4, 45, 65
in coinfection models, 133, 134, 135, 139–140
in contact networks, 90–91, 92, 99–100, 101
in genetic models, 230
gypsy moth viruses, 79–80, 81–83
in hyperparasitism, 288–289, 290
basic reproduction ratio and, 14–15
source–sink dynamics, 109, 114–115, 118
in superinfection models, 130, 140
virulence evolution and, 160
Index

in waterborne transmission model, 20
treatment see drug treatment; medical treatment
Trichostrongylus tenuis, 31, 421
tritrophic interactions, 279, 297–321
evolution of conspiracy, 279, 297–299, 318–319
see also plant–herbivore–predator interactions
Trypanosoma brucei, 421
Trypanosoma cruzi, 193–194
trypanosomes, 349, 389, 396, 421
tuberculosis (Mycobacterium tuberculosis), 60, 337, 409
tumor necrosis factor alpha (TNF alpha), 195
Tunicata, 253
two-bag model
highly virulent diseases, 433–434
less-virulent endemic diseases, 434, 435
virulence evolution, 429–432
Typhlodromalus aripo, 451
typhoid fever, 223
ungulates, 31, 423
Uromyces appendiculatus, 444
vaccination, 324–325, 339, 411, 462
antigen targets, 374
effects on pathogen diversity, 358–360, 373
ethical issues, 60–61, 411
honeymoon period, 340
impact in malaria, 358–360
in livestock, 426, 433–434
in multiple infections, 161, 162, 163
serotype replacement and, 362–374
in superinfection models, 136, 137
wildlife populations, 414–415, 420–421
vaccines
bivalent/polyvalent, 368
conjugate, 325, 362–374
see also Haemophilus influenzae, serotype b (Hib) conjugate
vaccines; Streptococcus pneumoniae
(pneumococcus), conjugate vaccines
cross-reactivity, 340–341, 342–343, 344
resistance (escape mutants), 163, 324–325, 339–346, 373, 410
case studies, 344–345
modeling, 341–344
theoretical framework, 339–344
vaccinia, 345

var genes, 171
vectorborne diseases
virulence management, 404–409
see also malaria
vectorborne transmission, 13, 385, 453
modeling, 16
virulence and, 15, 17, 18
virulence management and, 454, 456–457
vegetative compatibility groups, 292, 293, 294
veneralearg management, 13
Venezuelan equine encephalitis (VEE), 190
ventilation systems, 409
vertical transmission, 385, 391, 392, 461
chestnut blight fungus hypovirus, 292, 295, 296
hyperparasites, 288, 290–291
veterinary epidemiology, 377, 425–435
Vibrio cholerae, 17, 381, 401–404, 410
vigor, in mate choice, 252–253
viral backlash, 55
viral vectors, 194
virulence
aggressive see aggressive virulence
biocontrol agents see biocontrol agents, virulence
costs, 233, 240, 242–243, 245
definitions, 2, 3, 250, 364, 388
genetic variation, 380–381
herbivoroust and predatory arthropods, 298–299
host contact networks and, 90
matching see matching virulence
at metapopulation level, 388
notions, 2, 3, 377, 387–399
in plant–pathogen systems, 2, 389, 437–438
sexual selection and, 259–260
“virulence–antigen” strategy, 371
virulence evolution, 376, 379–398, 460–461
conceptual issues, 386–389
contact networks and, 85–103
density dependence, 49–54
future research needs, 393–397
historical background, 10–11
in hyperparasites, 287–291
indirect effects, 157–161
in insect viruses, 74–84
kin selection models, 154–155, 165–178
molecular phylogenies and, 262–285
one-bag model, 427–429, 431
overview, 380–386
in plant–pathogen systems, 438–443
practical caveats, 385–386
sexual selection and, 257–258, 259
Index

theory, 4–5, 45–54
caveats, 384–385
towards benignity (“conventional wisdom”), 1, 3, 48, 124
two-bag model, 429–432
in wildlife, 26–38
see also coevolution
virulence genes, 388–389
in gene-for-gene systems, 235, 237, 238–239
prevention of spread, 242–243
virulence management, 3, 4–5, 376–378, 397–398
biocontrol agents, 378, 449–458
chestnut blight fungus, 292–296
definition, 85
emerging options, 461–462
ethical dilemmas, 60–69, 410–411
future research needs, 462–463
human diseases, 377, 399–412
impact on host genetics, 181, 222–232
intragenomic conflict and, 283–284
kin selection models and, 177–178
in multiple infections, 161–163
one-bag model, 432–434
in plant–pathogen interactions, 377–378, 436–437
research programme outline, 6
theoretical basis, 4–5, 58
time-scale perspective, 383–384
as transmission intervention, 390
in tritrophic systems, 319–320
in veterinary epidemiology, 377, 425–435
in wildlife populations, 377, 413–424
viruses, 27, 29
coevolution of host cell-death signals, 183–196
intra-host evolution, 246
molecular clock, 266
molecular phylogenies, 262–263, 266, 267–276
plant, 442
see also specific viruses
volatile compounds, plant, 314–315
wasps, fig, 392
waterborne transmission, 8, 13
modeling virulence evolution, 19–25
reducing potential for, 399–404
virulence and, 15–17, 18, 19, 23–24
water fleas, 390, 392, 396
webworms, 396
weeds, biological control, 451–452
weevils, 452
weight loss, 170
wheat, 234–235, 441, 442–443, 444
whooping cough (pertussis), 345, 346
wildebeest, 31
wildlife, 8–9, 26–38
captive breeding, 260, 261, 421
capture, 417, 420–421
coevolution, 33–34
community structure, 29–31
evolutionary race between host and parasite, 34–35
host genetic diversity, 32–33
human health aspects, 37–38
interspecific transmission, 35–36
malaria, 165
micro- versus macroparasites, 27–29
multiple infection, 35
translocations

disease risks, 421–422
minimizing disease risks, 422–423
virulence management, 377, 413–424
detecting impact of infectious diseases, 417–418
drug treatment/resistance, 414–415
at population level, 420–421
problems, 415–417
reservoir hosts, 419–420
time for resistance to evolve, 413–414
see also myxomatosis; rinderpest
within-host competition, 25, 122, 392–393
between-host fitness and, 172–175
evolution of apoptosis and, 184, 187–188
future research needs, 393–394
infectious disease agents, 340–341
kin-selection models, 150, 151–152
management implications, 177
models, 176–177
in multiple infection, 35
virulence evolution and, 87, 88
see also co-infection; multiple infection;
superinfection
within-host interactions, 122–123, 176, 384
future research needs, 393–394
predators and herbivores, 300–307
yaws, 103
yellow fever, 37, 405
Yersinia pestis, 381–382
zero contour lines, 42