The B-Book
The B-Book

Assigning Programs to Meanings

J.-R. Abrial
to Hélène Villers
Tribute

Those who have the privilege of friendship with Jean-Raymond Abrial have long been aware of the great work in which he has been engaged. It is no less than a complete understanding of the nature of software engineering, from the capture and analysis of requirements, the formalization of specifications, the evolution of designs, the generation of programs and their implementation on computers. The publication of this book is the culmination of his work, and the complete fulfilment of our fondest hopes.

There will now be a much wider class of readers, for whom the book will come as a revelation, their first introduction to the power of its author's innovative intellect, their first appreciation of the clarity and masterful simplicity of his writing. His achievement is to reconcile the concepts of mathematics with the promptings of intuition, and harness both to solve the problems of modern programming practice. There is much to enjoy learning from the text, and even more to be learnt by putting its lessons into practice. Read, learn, enjoy and prosper!

C.A.R. Hoare
Foreword

This book is much more than a new programming manual. It introduces a method in which the program design is included in the global process that goes from understanding the problem to the validation of its solution.

The mathematical basis of the method provides the exactness while the proposed notation eliminates the ambiguities of the vernacular language. At the same time, the process is simple enough for an industrial use. “Industrial” is in fact the key word.

The general aim of formal methods is to provide correctness of the problem specification. Here we can see how the solution can be found, step by step, by a continuously monitored process. The mathematical verification of each step is so closely bound to the refinement activity that it is no longer possible to separate the design choices from the checking process. Imagination is helped by exactness!

But how about the efficiency? Isn’t the design too long? Are the design people able to do this work? Are the machines powerful enough to implement the method? The answers are easy to give. Let me tell you.

My company has been involved, since the sixties, in the realisation of train control systems, which must meet stringent safety requirements. As soon as we began to use programmed logic (and of the seventies) we had to solve the problem of software correctness. Together with other methods, we chose to use the program proving method proposed by C.A.R. Hoare. In 1986, J.-R. Abrial introduced us to the B method. We decided to learn it and to use it. The tools did not exist at the time. We contributed to their elaboration by offering a real-world benchmark with our applications, and proposed some improvements. Now the tools can be found on the market, and the method can be used with its full efficiency. What did we learn?
Foreword

- First, understanding the principles of the method is quite easy and expertise comes in less than a year.
- Then the method encourages and facilitates re-usability, based on use of a growing library of already proven abstract machines.
- The time saved during test and validation phases is very important, resulting in a global economic balance that is quite positive.
- The produced programs are efficient in spite of their structure being organised in layers of increasing abstraction.
- The tools can be implemented on simple workstations.

The use of the method has been a decisive element by increasing our confidence when using software for safety related applications. Moreover, the new international standards recommend the use of formal methods for the specification and design of safety-related software.

Thanks to J.-R. Abrial, we now have an industrial method to build correct programs. We hope that this book will convince the readers to save their money by using this method.

Pierre Chapront
Technical Director
GEC-ALSTHOM Transport
Introduction

This book is a very long discourse explaining how, in my opinion, the task of programming (in the small as well as in the large) can be accomplished by returning to mathematics.

By this, I first mean that the precise mathematical definition of what a program does must be present at the origin of its construction. If such a definition is lacking, or if it is too complicated, we might wonder whether our future program will mean anything at all. My belief is that a program, in the absolute, means absolutely nothing. A program only means something relative to a certain intention, that must predate it, in one form or another. At this point, I have no objection with people feeling more comfortable with the word “English” replacing the word “mathematics”. I just wonder whether such people are not assigning themselves a more difficult task.

I also think that this “return to mathematics” should be present in the very process of program construction. Here the task is to assign a program to a well-defined meaning. The idea is to accompany the technical process of program construction by a similar process of proof construction, which guarantees that the proposed program agrees with its intended meaning.

Simultaneous concerns about the architecture of a program and that of its proof are surprisingly efficient. For instance, when the proof is cumbersome, there are serious chances that the program will be too; and ingredients for structuring proofs (abstraction, instantiation, decomposition) are very similar to those for structuring programs. Ideally, the relationship between the construction of a program and its proof of correctness should be so intimate as to make it impossible to detect which of the two is driving the other. It might then be reasonable to say that constructing a program is just constructing a proof.

Today, very few programs are specified and constructed in this way. Does this correlate with the fact that, today, so many programs are fragile?

Jean-Raymond Abrial
Acknowledgements

The writing of this book spreads over a period of almost fifteen years. During that period, I have met many people, among which certain have had a positive influence on the work presented in this book. I would like to thank them all.

Clearly, the main source of influence, without which this book could not have been brought into existence, lies in the ideas conveyed by C.A.R. Hoare and E.W. Dijkstra. The view of a program as a mathematical object, the concepts of pre- and post-conditions, of non-determinism, of weakest pre-condition, all these ideas are obviously central to what is presented in this book.

The B method, being a “model oriented” method of software construction, is thus close to VDM and to Z. Obviously, many ideas of both these methods can be recognized in B. This is reasonable for Z, since I was one of its originators before and during my visit at the Programming Research Group in Oxford from 1979 to 1981. This is also reasonable for VDM since I shared an office with C.B. Jones during that same period. From him, I learned the idea of program development and the concept of refinement and its practical application, under the form of proof obligations.

Discussions with C.C. Morgan on specification and refinement have had a significant influence on the material of this book. His idea of enlarging the concept of program to embody that of specification has had a seminal effect on this work.

The collective work done at the Programming Research Group during the eighties on the notion of refinement has been directly borrowed in my presentation of refinement. To the best of my knowledge, the people concerned were P. Gardiner, J. He, C.A.R. Hoare, C.C. Morgan, K.A. Robinson, and J.W. Sanders.

During the practical elaboration of the method, certain people have had a significant influence on this work. Belonging to that category are G. Laflitte, F. Mejia,
Acknowledgements

I. McNeal, P. Behm, J.-M. Meynadier and L. Dufour, whom I thank very warmly.

G. Laffitte influenced this work by his careful reviews, his accurate criticisms, and the sometimes very serious rearrangements he proposed for some of the mathematical developments of this book.

F. Mejia proposed some important improvements in the area of structuring large software constructions. Together with B. Dehbonei, he developed a complete tool set for B, now commercialized as Atelier B.

I. McNeal has made various contributions to the early development of the method. This has had some beneficial influence on the mechanization of proofs.

P. Behm, J.-M. Meynadier and L. Dufour made very interesting suggestions and constructed a prototype prover whose mechanisms are extremely useful.

The magnificent team of DIGHLOG, which is industrializing and commercializing Atelier B, and developing software systems with it, deserves special congratulations. Their competence, enthusiasm, and kindness make it a real pleasure to work with them. I would like to thank F. Badeau, F. Bustany, E. Buvat, P. Lartigue, J.-Ph. Pitzalis, C. Roques, D. Sabatier, T. Servat, C. Tognetty, and C. Zagoury.

A number of other people have been working indirectly on the B project by reviewing this book, by teaching this work, by applying it, or by promoting it. I would like to thank them all, particularly an anonymous reviewer and also P. Bieber, P. Chartier, J.-Y. Chauvet, C. Da Silva, T. Denvir, P. Desorges, R. Docherty, M. Ducassé, M. Elkoursi, Ph. Facon, H. Habrias, N. Lopez, I. Mackie, L. Mussat, P. Ozello, J.-P. Rubaux, P. Ryan, S. Schuman, M. Simonot, and H. Waeselynck.

Casual meetings and discussions with B. Meyer and M. Sintzoff have had an indirect influence on this work. Meeting them is always an intellectual pleasure, which, to my regret, does not happen often enough.

In the industrial world, a number of institutions have made possible, in one way or another, the writing of this book. I am particularly indebted to ADI, BP, DIGHLOG/groupe STERIA, DIGITAL, GEC-ALSTOM Transport, GIXI, INRETS, INSEE, MATRA Transport, RATP and SNCF. These institutions, at various stages of the many years of the development of this project, supported it in various ways. I would like to thank particularly the following persons: P. Barrier, P. Beaudelaire, J. Betteridge, P. Chapront, A. Gazet, A. Guillon, C. Hennebert, J.-L. Lapeyre, J.-C. Rault, and O. Sebilleau.
The publishing of this book has been a long and sometimes painful process, especially at the end of it, where a number of unusual difficulties emerged. Bertrand Meyer, Cliff Jones, and Tony Hoare played a significant contribution in trying to solve these difficulties. May they be very warmly thanked for their help.

In conclusion, I would like to give many thanks to David Tranah from Cambridge University Press. I am particularly indebted to him for making possible the publication of my book while respecting the independence within which this scientific work has been performed.
What is B?

B is a method for specifying, designing, and coding software systems.

Coverage
The method essentially deals with the central aspects of the software life cycle, namely: the technical specification, the design by successive refinement steps, the layered architecture, and the executable code generation.

Proof
Each of the previous items is envisaged as an activity that involves writing mathematical proofs in order to justify its results. It is, precisely, the collection of such proofs that makes one convinced that the software system in question is indeed correct.

Abstract Machine
The basic mechanism of this approach is that of the abstract machine. This is a concept that is very close to certain notions well-known in programming, under the names of modules, classes or abstract data types.

Data and Operations
A software system conceived with that method is composed of several abstract machines. Each machine contains some data and offers some operations. The data cannot be reached directly; they are always reached through the operations of the machine. They are said to be encapsulated in the machine.

Specification of Data
The data of an abstract machine are specified by means of a number of mathematical concepts such as sets, relations, functions, sequences and trees. The static laws that the data must follow are defined by means of certain conditions, called the invariant.
xvi What is B?

Specification of Operations
The specification of the operations of an abstract machine is expressed as a non-executable pseudo-code that does not contain any sequencing or loop. In this pseudo-code one describes each operation as a pre-condition and an atomic action. The pre-condition expresses the indispensable condition without which the operation cannot be invoked. The atomic action is formalized by means of a generalization of the notion of substitution. Among these generalized substitutions is the non-deterministic choice that leaves room for some later decision to be taken in the refinement phase. The formal definition of the pseudo-code allows one to prove that the invariant of an abstract machine is always preserved by the operations it offers.

Refinement towards an implementation
The initial model of an abstract machine (its specification) may be refined in an executable module (its code). This passage from specification to code is carried out entirely under the control of the method. It is thus necessarily concluded by some proofs, whose goal is to show that the final code of a machine indeed satisfies its initial specification.

Using refinement as a technique of specification
Besides the previous (classical) one, there exists another practical use of refinement. It consists in using refinement as a means of including more details of the problem into the formal development. Thus the formal translation of the initial problem statement is performed gradually rather than all at once.

Refinement Techniques
Refinement is conducted in three different ways: the removal of the non-executable elements of the pseudo-code (pre-condition and choice), the introduction of the classical control structures of programming (sequencing and loop), and the transformation of the mathematical data structures (sets, relations, functions, sequences and trees) into other structures that might be programmable (simple variables, arrays, or files).

Refinement Steps
In order to carefully control the previous transformations, the refinement of an abstract machine is performed in various steps. During each such step, the initial abstract machine is entirely reconstructed. It keeps, however, the same operations, as viewed by its users, although the corresponding pseudo-code is certainly modified. In the intermediate refinement steps, we have a hybrid construct, which is not a mathematical model any more, but certainly not yet a programming module.

Layered Architecture
Experience shows that it is preferable to have a small number of refinement steps. As soon as its level of complexity becomes too high, it is recommended to
What is B?

decompose a refinement into smaller pieces. The last refinement of a machine is thus implemented using the specification of one, or more, abstract machines that are, themselves, refinable. This is done by means of calls to the operations offered by the machines in question. As you can see, the “user” of an abstract machine is, thus, always the ultimate refinement of another abstract machine. In this way, the layered architecture of our software system (or of its translated informal specification) is constructed piece by piece.

Library

The machines on which the last refinement of a given machine is implemented may exist prior to that refinement. In fact, together with the method, a series of pre-defined abstract machines are proposed, which constitutes a library of machines, whose purpose is to encapsulate the most classical data structures.

Re-use

For a given project, it is advisable to extend that library so as to organize the basis on which the future abstract machines of higher level will be implemented. As you can see, the method allows one to choose either a purely top down design, or a bottom up one, or, better, a mixed approach integrating the re-use of specification and that of code.

Code Generation

The ultimate refinement of a machine may be easily translated into one or several imperative programming languages. By doing so, the method provides a solution to the problem of porting an application from one language to another.

B User Group

There exists a user group, called the BUG, for discussions and exchange of information on B. Here is its electronic address: bug@esta1.inrets.fr. A mailing list for this book is also available at bbook@esta1.inrets.fr.
What is the B-Book?

The **B-Book** is the standard reference for the B method and its notations.

It contains the mathematical basis on which the method is founded and the precise definition of the notations used. It also contains a large number of examples illustrating how to use the method in practice. The book comprises four parts and a collection of appendices:

<table>
<thead>
<tr>
<th>Part</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II</td>
<td>Abstract Machines</td>
</tr>
<tr>
<td>Part III</td>
<td>Programming</td>
</tr>
<tr>
<td>Part IV</td>
<td>Refinement</td>
</tr>
</tbody>
</table>

Part 1

Part 1 contains a systematic construction of predicate logic and set theory. It also contains the definition of various mathematical structures that are needed to formalize software systems. A special emphasis is put on the notion of proof. Part 1 consists of the following chapters:

xix
What is the B-Book?

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Mathematical Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2</td>
<td>Set Notation</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Mathematical Objects</td>
</tr>
</tbody>
</table>

Part II

Part II contains a presentation of the Generalized Substitution Language (GSL) and the Abstract Machine Notation (AMN). These notations are the ones we use in order to specify software systems. They are presented together with a number of examples showing how large specifications can be built systematically. A set-theoretical foundation of GSL and AMN is also presented. Part II consists of the following chapters:

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Introduction to Abstract Machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 5</td>
<td>Formal Definition of Abstract Machines</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Theory of Abstract Machines</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Constructing Large Abstract Machines</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Examples of Abstract Machines</td>
</tr>
</tbody>
</table>

Part III

Part III introduces the two basic programming features, namely sequencing and loop. After a theoretical presentation, an important chapter is devoted to the study of the systematic construction of a variety of examples of algorithm developments. Part III consists of the following chapters:

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Sequencing and Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 10</td>
<td>Programming Examples</td>
</tr>
</tbody>
</table>
What is the B-Book?

Part IV

Part IV presents a notion of refinement for both generalized substitutions and abstract machines. Refinement is given a mathematical foundation within set theory. The construction of large software systems by means of layered architectures of modules is also explained. Finally, a number of large examples of complete development are studied with a special emphasis on the methodological approach. Part IV consists of the following chapters:

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 12</td>
<td>Constructing Large Software Systems</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Examples of Refinement</td>
</tr>
</tbody>
</table>

Appendices

A collection of appendices contains a summary of all the logical and mathematical definitions. It also contains a summary of all the rules and proof obligations:

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Summary of Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>Syntax</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Definitions</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Visibility Rules</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Rules and Axioms</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Proof Obligations</td>
</tr>
</tbody>
</table>
How to use this book

This book can be used by people having very different concerns.

For instance, you might intend to learn the method as a formal method practitioner. In this case, you are probably not (although you might be) interested in the detailed mathematics presented in the book. It is then recommended to read the book as follows:

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Summary of Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2</td>
<td>Set Notation (section 2.7)</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Introduction to Abstract Machines</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Constructing Large Abstract Machines (sections 7.2 and 7.3)</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Examples of Abstract Machines</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Refinement (sections 11.1.1, 11.2.1, 11.2.5, 11.2.7 and 11.2.8)</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Constructing Large Software Systems (sections 12.1 and 12.2)</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Examples of Refinement</td>
</tr>
</tbody>
</table>

At the other extreme of the spectrum, you are a computer scientist and you are interested in the mathematical foundation of the method. In that case, you might be reading the book as follows:
How to use this book

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Summary of Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Mathematical Reasoning</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Set Notation</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Mathematical Objects</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Theory of Abstract Machines</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Sequencing and Loops</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Refinement</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Definitions</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Rules and Axioms</td>
</tr>
</tbody>
</table>

In between, there might be people interested in looking at how the method can be used in order to structure large specifications and large designs. The following reading can then be recommended:

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Summary of Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4</td>
<td>Introduction to Abstract Machines</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Theory of Abstract Machines</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Constructing Large Abstract Machines</td>
</tr>
</tbody>
</table>
How to use this book

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 12</td>
<td>Constructing Large Software Systems</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Examples of Refinement</td>
</tr>
</tbody>
</table>

People interested in developing small programs in a systematic fashion can read the book as follows:

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Summary of Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4</td>
<td>Introduction to Abstract Machines</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Programming Examples</td>
</tr>
</tbody>
</table>

For people interested in the formal details of the notations, it is recommended to read the book as follows:

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Formal Definition of Abstract Machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7</td>
<td>Constructing Large Abstract Machines (section 7.4)</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Refinement (section 11.3)</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Constructing Large Software Systems (section 12.6)</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Visibility Rules</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Proof Obligations</td>
</tr>
</tbody>
</table>
Contents

1 Mathematics 1

1 Mathematical Reasoning 3

1.1 Formal Reasoning 4
 1.1.1 Sequent and Predicate 4
 1.1.2 Rule of Inference 5
 1.1.3 Proofs 6
 1.1.4 Basic Rules 6

1.2 Propositional Calculus 9
 1.2.1 The Notation of Elementary Assertions 9
 1.2.2 Inference Rules for Propositional Calculus 11
 1.2.3 Some Proofs 14
 1.2.4 A Proof Procedure 22
 1.2.5 Extending the Notation 26
 1.2.6 Some Classical Results 27

1.3 Predicate Calculus 29
 1.3.1 The Notation of Quantified Predicates and Substitutions 29
 1.3.2 Universal Quantification 32
 1.3.3 Non-freeness 32
 1.3.4 Substitution 34
 1.3.5 Inference Rules for Predicate Calculus 35
 1.3.6 Some Proofs 36
 1.3.7 Extending the Proof Procedure 38
 1.3.8 Existential Quantification 39
 1.3.9 Some Classical Results 41

1.4 Equality 42

1.5 Ordered Pairs 47

1.6 Exercises 51
2 Set Notation

2.1 Basic Set Constructs 56
 2.1.1 Syntax 57
 2.1.2 Axioms 60
 2.1.3 Properties 62

2.2 Type-checking 64

2.3 Derived Constructs 72
 2.3.1 Definitions 72
 2.3.2 Examples 72
 2.3.3 Type-checking 73
 2.3.4 Properties 75

2.4 Binary Relations 77
 2.4.1 Binary Relation Constructs: First Series 77
 2.4.2 Binary Relation Constructs: Second Series 79
 2.4.3 Examples of Binary Relation Constructs 82
 2.4.4 Type-checking of Binary Relation Constructs 84

2.5 Functions 85
 2.5.1 Function Constructs: First Series 86
 2.5.2 Function Constructs: Second Series 89
 2.5.3 Examples of Function Constructs 90
 2.5.4 Properties of Function Evaluation 90
 2.5.5 Type-checking of Function Constructs 93

2.6 Catalogue of Properties 94
 2.6.1 Membership Laws 95
 2.6.2 Monotonicity Laws 96
 2.6.3 Inclusion Laws 97
 2.6.4 Equality Laws 99

2.7 Example 115

2.8 Exercises 120

3 Mathematical Objects 123

3.1 Generalized Intersection and Union 123

3.2 Constructing Mathematical Objects 130
 3.2.1 Informal Introduction 130
 3.2.2 Fixpoints 131
 3.2.3 Induction Principle 136

3.3 The Set of Finite Subsets of a Set 141

3.4 Finite and Infinite Sets 144

3.5 Natural Numbers 145
 3.5.1 Definition 145
 3.5.2 Peano’s “Axioms” 148
 3.5.3 Minimum 153
 3.5.4 Strong Induction Principle 156
 3.5.5 Maximum 158
Contents

3.5.6 Recursive Functions on Natural Numbers 158
3.5.7 Arithmetic 161
3.5.8 Iterate of a Relation 166
3.5.9 Cardinal of a Finite Set 167
3.5.10 Transitive Closures of a Relation 168

3.6 The Integers 170

3.7 Finite Sequences 174
3.7.1 Inductive Construction 174
3.7.2 Direct Construction 176
3.7.3 Operations on Sequences 177
3.7.4 Sorting and Related Topics 182
3.7.5 Lexicographical Order on Sequences of Integers 187

3.8 Finite Trees 188
3.8.1 Informal Introduction 188
3.8.2 Formal Construction 190
3.8.3 Induction 192
3.8.4 Recursion 194
3.8.5 Operations 197
3.8.6 Representing Trees 199

3.9 Labelled Trees 202
3.9.1 Direct Definition 203
3.9.2 Inductive Definition 203
3.9.3 Induction 205
3.9.4 Recursion 206
3.9.5 Operations Defined Recursively 206
3.9.6 Operations Defined Directly 208

3.10 Binary Trees 208
3.10.1 Direct Operations 209
3.10.2 Induction 209
3.10.3 Recursion 210
3.10.4 Operations Defined Recursively 210

3.11 Well-founded Relations 211
3.11.1 Definition 212
3.11.2 Proof by Induction on a Well-founded Set 213
3.11.3 Recursion on a Well-founded Set 214
3.11.4 Proving Well-foundedness 217
3.11.5 An Example of a Well-founded Relation 219
3.11.6 Other Examples of Non-classical Recursions 219

3.12 Exercises 221

II Abstract Machines 225

4 Introduction to Abstract Machines 227
4.1 Abstract Machines 228
4.2 The Statics: Specifying the State 229
Contents

4.3 The Dynamics: Specifying the Operations 230
4.4 Before-after Predicates as Specifications 231
4.5 Proof Obligation 232
4.6 Substitutions as Specifications 232
4.7 Pre-conditioned Substitution (Termination) 234
4.8 Parameterization and Initialization 236
4.9 Operations with Input Parameters 238
4.10 Operations with Output Parameters 240
4.11 Generous versus Defensive Style of Specification 241
4.12 Multiple Simple Substitution 243
4.13 Conditional Substitution 244
4.14 Bounded Choice Substitution 244
4.15 Guarded Substitution (Feasibility) 246
4.16 A Substitution with no Effect 247
4.17 Contextual Information: Sets and Constants 248
4.18 Unbounded Choice Substitution 252
4.19 Explicit Definitions 256
4.20 Assertions 260
4.21 Concrete Variables and Abstract Constants 261
4.22 Exercises 262

5 Formal Definition of Abstract Machines 265

5.1 Generalized Substitution 265
5.1.1 Syntax 265
5.1.2 Type-checking 270
5.1.3 Axioms 271
5.2 Abstract Machines 272
5.2.1 Syntax 272
5.2.2 Visibility Rules 274
5.2.3 Type-checking 275
5.2.4 On the Constants 278
5.2.5 Proof Obligations 278
5.2.6 About the Given Sets and the Pre-defined Constants 280

6 Theory of Abstract Machines 283

6.1 Normalized Form 283
6.2 Two Useful Properties 287
6.3 Termination, Feasibility and Before-after Predicate 288
6.3.1 Termination 289
6.3.2 Feasibility 290
6.3.3 Before-after Predicate 292
6.4 Set-Theoretic Models 295
6.4.1 First Model: a Set and a Relation 295
6.4.2 Second Model: Set Transformer 298
6.4.3 Set-theoretic Interpretations of the Constructs 301
Contents

6.5 Exercises 303

7 Constructing Large Abstract Machines 307

7.1 Multiple Generalized Substitution 307
7.1.1 Definition 308
7.1.2 Basic Properties 308
7.1.3 The Main Result 311

7.2 Incremental Specification 312
7.2.1 Informal Introduction 312
7.2.2 Operation Call 314
7.2.3 The INCLUDES Clause 316
7.2.4 Visibility Rules 318
7.2.5 Transitivity 319
7.2.6 Machine Renaming 320
7.2.7 The PROMOTES and the EXTENDS Clauses 320
7.2.8 Example 320

7.3 Incremental Specification and Sharing 322
7.3.1 Informal Introduction 322
7.3.2 The USES Clause 323
7.3.3 Visibility Rules 324
7.3.4 Transitivity 324
7.3.5 Machine Renaming 325

7.4 Formal Definition 325
7.4.1 Syntax 325
7.4.2 Type-checking 326
7.4.3 Proof Obligations for the INCLUDES Clause 331
7.4.4 Proof Obligations for the USES Clause 334

7.5 Exercises 336

8 Examples of Abstract Machines 337

8.1 An Invoice System 338
8.1.1 Informal Specification 338
8.1.2 The Client Machine 339
8.1.3 The Product Machine 341
8.1.4 The Invoice Machine 343
8.1.5 The Invoice..System Machine 348

8.2 A Telephone Exchange 349
8.2.1 Informal Specification 349
8.2.2 The Simple..Exchange Machine 352
8.2.3 The Exchange Machine 355

8.3 A Lift Control System 358
8.3.1 Informal Specification 358
8.3.2 The Lift Machine 358
8.3.3 Liveness Proof 364
8.3.4 Expressing Liveness Proof Obligations 366
Contents

8.4 Exercises 369

III Programming 371

9 Sequencing and Loop 373

9.1 Sequencing 374
 9.1.1 Syntax 374
 9.1.2 Axiom 374
 9.1.3 Basic Properties 374

9.2 Loop 377
 9.2.1 Introduction 377
 9.2.2 Definition 378
 9.2.3 Interpretation of Loop Termination 382
 9.2.4 Interpretation of the Before-after Relation of the Loop 385
 9.2.5 Examples of Loop Termination 386
 9.2.6 The Invariant Theorem 387
 9.2.7 The Variant Theorem 388
 9.2.8 Making the Variant and Invariant Theorem Practical 390
 9.2.9 The Traditional Loop 392

9.3 Exercises 398

10 Programming Examples 403

10.0 Methodology 403
 10.0.1 Re-use of Previous Algorithms 403
 10.0.2 Loop Proof Rules 406
 10.0.3 Sequencing Proof Rule 407

10.1 Unbounded Search 408
 10.1.1 Introduction 408
 10.1.2 Comparing two Sequences 411
 10.1.3 Computing the Natural Number Inverse of a Function 416
 10.1.4 Natural Number Division 420
 10.1.5 The Special Case of Recursive Functions 422
 10.1.6 Logarithm in a Given Base 424
 10.1.7 Integer Square Root 425

10.2 Bounded Search 427
 10.2.1 Introduction 427
 10.2.2 Linear Search 430
 10.2.3 Linear Search in an Array 431
 10.2.4 Linear Search in a Matrix 433
 10.2.5 Binary Search 435
 10.2.6 Monotonic Functions Revisited 437
 10.2.7 Binary Search in an Array 442

10.3 Natural Number 446
 10.3.1 Basic Scheme 446
 10.3.2 Natural Number Exponentiation 447
Contents

10.3.3 Extending the Basic Scheme 448
10.3.4 Summing a Sequence 450
10.3.5 Shifting a Sub-sequence 451
10.3.6 Insertion into a Sorted Array 453

10.4 Sequences 455
10.4.1 Introduction 455
10.4.2 Accumulating the Elements of a Sequence 458
10.4.3 Decoding the Based Representation of a Number 461
10.4.4 Transforming a Natural Number into its Based Representation 462
10.4.5 Fast Binary Operation Computations 465
10.4.6 Left and Right Recursion 469
10.4.7 Filters 473

10.5 Trees 482
10.5.1 The Notion of Formula 483
10.5.2 Transforming a Tree into a Formula 484
10.5.3 Transforming a Tree into a Polish String 487
10.5.4 Transforming a Formula into a Polish String 488

10.6 Exercises 496

IV Refinement 499

11 Refinement 501

11.1 Refinement of Generalized Substitutions 501
11.1.1 Informal Approach 501
11.1.2 Definition 503
11.1.3 Equality of Generalized Substitution 503
11.1.4 Monotonicity 504
11.1.5 Refining a Generalized Assignment 506

11.2 Refinement of Abstract Machines 507
11.2.1 Informal Approach 507
11.2.2 Formal Definition 511
11.2.3 Sufficient Conditions 512
11.2.4 Monotonicity 516
11.2.5 Example Revisited 522
11.2.6 The Final Touch 523
11.2.7 An Intuitive Explanation of the Refinement Condition 530
11.2.8 Application to the Little Example 532

11.3 Formal Definition 533
11.3.1 Syntax 533
11.3.2 Type-checking 534
11.3.3 Proof Obligations 537

11.4 Exercises 540

12 Constructing Large Software Systems 551

12.1 Implementing a Refinement 551
Contents

12.1.1 Introduction 551
12.1.2 The Practice of Importation 556
12.1.3 The IMPLEMENTATION Construct 559
12.1.4 The IMPORTS Clause 561
12.1.5 Visibility Rules 561
12.1.6 Machine Renaming 563
12.1.7 The VALUES Clause 563
12.1.8 Comparing the IMPORTS and the INCLUDES Clauses 565
12.1.9 The PROMOTES and EXTENDS Clauses 565
12.1.10 Concrete Constants and Concrete Variables Revisited 566
12.1.11 Allowed Constructs in an Implementation 566

12.2 Sharing 574
12.2.1 Introduction 574
12.2.2 The SEES Clause 579
12.2.3 Visibility Rules 579
12.2.4 Transitivity and Circularity 583
12.2.5 Machine Renaming 583
12.2.6 Comparing the USES and the SEES Clauses 583

12.3 Loops Revisited 584
12.4 Multiple Refinement and Implementation 584
12.5 Recursively Defined Operations 587
12.5.1 Introduction 588
12.5.2 Syntax 591
12.5.3 Proof Rule 591

12.6 Formal Definition 594
12.6.1 Syntax of an IMPLEMENTATION 594
12.6.2 Type-checking with an IMPORTS Clause 595
12.6.3 Type-checking with a SEES Clause 596
12.6.4 Proof Obligations of an IMPLEMENTATION 597
12.6.5 Proof Obligation for a SEES Clause 601

13 Examples of Refinements 603

13.1 A Library of Basic Machines 603
13.1.1 The BASIC CONSTANTS Machine 604
13.1.2 The BASIC IO Machine 604
13.1.3 The BASIC BOOL Machine 605
13.1.4 The BASIC enum Machine for Enumerated Sets 606
13.1.5 The BASIC FILE VAR Machine 607

13.2 Case Study: Data-base System 608
13.2.1 Machines for Files 611
13.2.2 Machines for Objects 623
13.2.3 A Data-base 630
13.2.4 Interfaces 637

13.3 A Library of Useful Abstract Machines 647
13.3.1 The ARRAY VAR Machine 647
Contents

13.3.2 The SEQUENCE_VAR Machine 647
13.3.3 The SET_VAR Machine 647
13.3.4 The ARRAY_COLLECTION Machine 648
13.3.5 The SEQUENCE_COLLECTION Machine 648
13.3.6 The SET_COLLECTION Machine 650
13.3.7 The TREE_VAR Machine 650

13.4 Case Study: Boiler Control System 655
13.4.1 Introduction 655
13.4.2 Informal Specification 656
13.4.3 System Analysis 661
13.4.4 System Synthesis 673
13.4.5 Formal Specification and Design 676
13.4.6 Final Architecture 693
13.4.7 Modifying the Initial Specification 694

Appendix A Summary of Notations 701
A.1 Propositional Calculus 701
A.2 Predicate Calculus 702
A.3 Equality and Ordered Pairs 702
A.4 Basic and Derived Set Constructs 702
A.5 Binary Relations 703
A.6 Functions 705
A.7 Generalized Intersection and Union 706
A.8 Finiteness 706
A.9 Natural Numbers 707
A.10 Integers 709
A.11 Finite Sequences 711
A.12 Finite Trees 713

Appendix B Syntax 715
B.1 Predicate 715
B.2 Expression 716
B.3 Substitution 716
B.4 Machine 717
B.5 Refinement 719
B.6 Implementation 720
B.7 Statement 721

Appendix C Definitions 725
C.1 Logic Definitions 725
C.2 Basic Set-theoretic Definitions 726
C.3 Binary Relation Definitions 726
C.4 Function Definitions 728
C.5 Fixpoint Definitions 728
C.6 Finiteness Definitions 729
C.7 Natural Number Definitions 730
C.8 Integer Extensions 732
C.9 Finite Sequence Definitions 734
Contents

C.10 Finite Tree Definitions 736
C.11 Well-founded Relation Definition 738
C.12 Generalized Substitution Definitions 738
C.13 Set-theoretic Models 741
C.14 Refinement Conditions 742

Appendix D Visibility Rules 743
D.1 Visibility of a Machine 743
D.2 Visibility of a Refinement 747
D.3 Visibility of an Implementation 750

Appendix E Rules and Axioms 753
E.1 Non-freeness Rules 753
E.2 Substitution Rules 754
E.3 Basic Inference Rules 756
E.4 Derived Inference Rules 758
E.5 Set Axioms 760
E.6 Generalized Substitution Axioms 761
E.7 Loop Proof Rules 761
E.8 Sequencing Proof Rule 762

Appendix F Proof Obligations 763
F.1 Machine Proof Obligations 763
F.2 INCLUDES Proof Obligations 765
F.3 USES Proof Obligations 767
F.4 Refinement Proof Obligations 769
F.5 Implementation Proof Obligations 771

Index 775