Index

Abrams, C. R., 154
Abzug, Malcolm J., 15, 21, 127, 158, 206, 260, 282, 347
arbitrary origin of body axes, 284
dyadic equations, semirigid case, 276, 300
ground roll stability, 215–219
inertial coupling analysis, 117, 188
nonelectronic yaw damper, 102, 103
L-39 research airplane, 172
perturbation equations of motion, 262
Ackert, J., 93
actuator remote terminals, 86
Advanced Aircraft Analysis Program, 243, 276
adverse yaw, 63, 64, 66, 127, 253, 343
Advisory Group for Aerospace Research (AGARD), NATO, 18
aerodynamic balance methods
aileron differential, 65, 66
balancing tabs, 66
beveled controls, 66–68, 146
compound internal balances, 73, 74
corded controls, 68, 69
corrected and linked tabs, 74, 75
Friser ailerons, 63–65
Gurney flaps, 69
horn balances, 8, 9, 47–49, 60, 61
internal balances (Westland–Irving), 72–74
overhang balances, 61–63
plug spoiler ailerons, 69–72
slot-lip spoiler ailerons, 70–72, 233, 234, 291–294
spring tabs and geared spring tabs, 74, 75–77, 146
aerodynamic center, 10, 30, 44, 90, 91
aeroelastic analysis methods, 286, 298, 302
elastic-to-rigid ratios, 290
finite-element or panel methods, 296–298
Galerkin’s method, 290
mean and structural axes, 209
method of influence coefficients, 292–294
normal modes, 286, 299, 300
quasirigid equations, 300
quasistatic method, 286, 296–298
reduced-order methods, 302
second-order (nonlinear) models, 302
semirigid method, 287
strip integration method, 290
aileron reversal, 289–291
control system coupling, 300–301
of wing sweep, 288
on dihedral effect, 295, 296
on longitudinal stability, 291, 292, 294
on speed stability, stabilizer rig, 292, 295
Aeromarine–Klemm, 232
AeroVironment, Inc.
Gossamer Albatross, 200
Gossamer Condor, 198, 199, 200–203
Pathfinder, 198
Aeronca K, 27
A. Harrak, Ralph, 347
Aiken, Thomas N., 209, 211
AIM-9 Sidewinder roll damper, 103, 104
Airbus Industrie Gire, 37
Model A310, 37, 291
Model A320, 83, 84, 149, 151, 291
Model A330, 83, 151, 291
Model A340, 83, 151, 291
Model A380, 341
airplane balance
canard airplanes, 91
tail-last airplanes, 90
tailless airplanes, 90
airplane characteristic time τ, 264
airplane relative density μ, 127, 265
Aldrin, E. E., 231
Alford, William J., Jr., 244–246
Allwork, P. H., 130
American Institute of Aeronautics and Astronautics (AIAA), 13
Amer, Milton B., Jr., 58, 59, 67
Ames Research Center, NACA, NASA, 35, 46, 112, 130, 134, 164, 177, 189, 247, 248
analog computers, 119, 123
Anderson, Jean, xviii
Anderson, Mark R., 328
Anderson, Paul H., xix
Andrew, G. A., 270
on Rockwell B-1 variable sweep, 247
on speed stability, 176
Anderson, Seth B., 142, 144, 177–179, 191, 210, 347
angle of attack and sideslip conventions, 270
Antoniette IV, 1, 2
Antonov An-124, 86
apparent mass effects, 93, 190, 199, 203, 285
apparent spiral instability, 237
Approach Power Compensation System, 187, 188
Arcena, Andrew S., Jr., 141, 161
artificial feel systems, 81, 82, 100
artificial horizon, 241, 242
Aukhainen, Irving L., xviii, 15, 32, 300, 347
minimum approach speed, 187, 191, 192, 333
bandwidth-phase delay criteria, 331, 332
ground-based simulators, 38
lateral approximate modes, 149, 272

© Cambridge University Press
www.cambridge.org
Ashkenas, Irving L., (cont.)
rudder to coordinate rolls, 155–157
roll racheting, 311
Ashley, Holt, 17, 287, 290
aspect ratio, 92, 127, 188, 221
Axhdallson, Arthur, 223
Atzhorn, David, 279, 317
automatic pilots, 237, 304
AVRO Canada CF-105 Arrow, 81, 83
Babister, A. W., 17
BAE Systems Harrier, 41
V AAC Harrier, 41
Bairstow, Leonard, 13, 15, 17, 262, 263, 284, 347
Baumann, Benjamin D., 160
Baumann, Benjamin D., 160
Bayer, R. E., 81
Beam, Benjamin H., 266
Beaumont, Ronald, 8
Beckereau, Henri, 3
Bechereau, A. F., 189
Beziou, A. W., 94, 95
Bobweights (artificial feel), 82, 234, 326
Boeing Company, 36, 240
B-17 Fortress, 61, 63, 67
B-29 Superfortress, 47, 61, 62, 67, 79
B-39 Superfortress, 47, 61, 62, 67, 79
B-47 Stratojet, 43, 78, 81, 103, 173, 179, 189,
290–292, 294, 297, 305–307
B-50, 47
B-52 Stratofortress, 73, 75, 101–103, 105–108,
174, 291
Bionics, 32, 33, 34, 35, 36, 37
Bollett, Jean Luc, 18
Bollay, William, Jr., 221, 304, 309
Borsodi, Fred, 167, 168
Bradley, John T., 311, 314
Boundary Layer Research, Inc., 50
Bowen, John, iv, 13, 162, 182, 309
Bowden, J. D., 175–177, 277, 279
Braunschweig, DLR, 36, 37, 159, 225, 229, 267
Bray, Richard S., 175–177, 277, 279
Breuhaus, Waldemar O., 15, 35, 39, 313, 348
Brewer, Walter, 92
Breda, B. E., 65
Brett, Robert W., xix, 112, 115, 117–120, 269, 348
Braunschweig, DLR, 36, 37, 159, 225, 229, 267
Braun, Stuart C., 295
Brown, W. S., 75
Brouettes, Hendrik, 50
Bryan, George H., iv, 13, 162, 182, 309, 348
equations of motion, 9–11, 111, 119, 258
Brist-Sawart law, 95, 97
Bisplinghoff, Raymond L., 287, 290
Byrkmann, Eileen A., 329
Blakeley, J. H., 17
Blériot, Louis, 1, 3, 5
Blériot XI monoplane, 1, 2, 49, 60
Blight, James D., 153, 320
blind flying, 241
Bliiss, Collis, 13
Blimo and Voss B-222 flying boat, 305
Bliss, A. W., 95
Bobweights (artificial feel), 82, 234, 326
Boeing Company, 36, 240
B-17 Fortress, 61, 63, 67
B-29 Superfortress, 47, 61, 62, 67, 79
B-47 Stratojet, 43, 78, 81, 103, 173, 179, 189,
290–292, 294, 297, 305–307
B-50, 47
B-52 Stratofortress, 73, 75, 101–103, 105–108,
174, 291
Bionics, 32, 33, 34, 35, 36, 37
Bollett, Jean Luc, 18
Bollay, William, 221, 304, 309
Borsodi, Fred, 167, 168
Bowsworth, John T., 311, 314
Boundary Layer Research, Inc., 50
Bowman, James S., Jr., xix, 126, 133, 348
Bradfield F. B., 65
Brant, Robert W., xix, 112, 115, 117–120, 269, 348
Braunschweig, DLR, 36, 37, 159, 225, 229, 267
Braun, Stuart C., 295
Brown, W. S., 75
Brouettes, Hendrik, 50
Bryan, George H., iv, 13, 162, 182, 309, 348
equations of motion, 9–11, 111, 119, 258
linearized equations, 10
modified Euler angles, 10, 258
rotary derivatives, 266
Bryant, L. W.,
free-rudder oscillations, 67
nomenclature for stability derivatives, 266
spinning, 130, 131
stability boundaries, 137, 138, 267
Bryson, Arthur E. Jr., 14, 17
Bull, Gifford, 36
Burcham, Frank W., Jr., 315
Burk, Sanger M., Jr., 133
Burke, James D., 203
Burken, John J., 311, 315
Busemann, Adolph, 169
Buttrill, Carey S., 302
Byers, Martin E., 131, 158
Byrnes, Daniel P., xix
C* parameter, 154
California Institute of Technology, xviii, 13, 45, 46, 61
California, University of, Los Angeles, xix, 308
Calspan (formerly Cornell Aero. Lab.), 37, 225, 329, 330
Cambridge University, 29
Campbell, Donald P., 305
Campbell, John P., 219, 220, 237, 238
Canadian National Research Council (NRC), 36, 37
Canadian Aerosciences Institute, 254
Campbell, Frank W., Jr., 315
Canard configuration problems
low directional stability, 253, 254
possible deep stall, 252, 253
pusher propellers, 257
spin recovery, 254, 255
canard aircraft, 91, 104, 240, 241, 252-257
AASI Jet Cruiser, 255
Beech Model 200 Starship I, 252-254
Eurofighter 2000, 257
The Beech Model 200 Starship I, 252-254
JAI Lavi, 237
Rockwell/Daimler-Benz (MBB) X-31A, 257, 314
Rutan Long EZ, 252
Rutan Tundra zs, 252, 253
Rutan Voyager, 257
Saab JAS 39 Gripen, 256, 257
Sukhoi Su-35, 257
Canterill, Coy R., xix, 348
Carpenter, M. R., 145
Carroll, J. V., 192
Carroll, Thomas, 22
Carson, T. H., 81
Carter, Cecil, 115, 118, 128
category IIa landings, 194
Cavin, R. K., 302
Chalk, Charles R., 31, 32
Schwartz, J. R., 35, 133, 134, 142, 145, 161, 210, 217, 253
Champagne, Robert, 177
Chance-Vought, 24
Chandler, Phillip R., 319
Chapman, G. T., 142
Chen, Robert T. W., 262
Chichester-Miles Leopard, 120
Chin, James, 305
Choi, S-W., 71
Clarke, Robert, 311, 314
Cleveland, F. A., 342
closed-form solutions, 281
Clouting, Lawrence A., 168
Cobra maneuver, 157, 158, 160
Cohen, Doris, 67
cole, Henry A., Jr., 295
Collar, A. R., 262, 292, 295, 298
Collins FCS-240 digital autopilot, 193, 194
crashworthiness, 162, 163, 167, 193, 194
crashworthiness effects on stability and control
aerodynamic center shift, 168
elevator control power, 165
downwash at horizontal tail, 164
high-altitude stall buffet, 181, 182
propulsion system interactions, 182, 186
supersonic altitude instability, 181-186
supersonic directional instability, 113-115, 179-181
transonic pitchup, 176-179
turbo change, 164, 168, 175, 176
computational fluid dynamics, 70, 97
computer-aided design
Advanced Aircraft Analysis Program, 243
LinAir pro program, 243
Smetsen, Frederick, 243
crashworthiness, 162, 163, 167, 193, 194
crashworthiness effects on stability and control
elevat answer, 165
downwash at horizontal tail, 164
high-altitude stall buffet, 181, 182
propulsion system interactions, 182, 186
supersonic altitude instability, 181-186
supersonic directional instability, 113-115, 179-181
transonic pitchup, 176-179
turbo change, 164, 168, 175, 176
computational fluid dynamics, 70, 97
computer-aided design
Advanced Aircraft Analysis Program, 243
LinAir pro program, 243
Smetsen, Frederick, 243
crashworthiness, 162, 163, 167, 193, 194
crashworthiness effects on stability and control
elevat answer, 165
downwash at horizontal tail, 164
high-altitude stall buffet, 181, 182
propulsion system interactions, 182, 186
supersonic altitude instability, 181-186
supersonic directional instability, 113-115, 179-181
transonic pitchup, 176-179
turbo change, 164, 168, 175, 176
computational fluid dynamics, 70, 97
computer-aided design
Advanced Aircraft Analysis Program, 243
LinAir pro program, 243
Smetsen, Frederick, 243
crashworthiness, 162, 163, 167, 193, 194
crashworthiness effects on stability and control
elevat answer, 165
downwash at horizontal tail, 164
high-altitude stall buffet, 181, 182
propulsion system interactions, 182, 186
supersonic altitude instability, 181-186
supersonic directional instability, 113-115, 179-181
transonic pitchup, 176-179
turbo change, 164, 168, 175, 176
computational fluid dynamics, 70, 97
computer-aided design
Advanced Aircraft Analysis Program, 243
LinAir pro program, 243
Smetsen, Frederick, 243
Cook, Michael V., (cont.)
 hang glider tests, 199
 lighter-than-air modes of motion, 272
 on modern control methods, 323
text, 18
Cook, William H., xviii, xix, 348
 B-47 yaw damper, 306
 compound internal balance, 73
 on all-moving tail for the B-52, 78
 on automation, 240
 on B-29 elevator overbalance, 62
 on B-47 transonic pitchup, 179
 on B-47 wing twist, 291, 292
 on flat-sided control surfaces, 67
 on manual elevator control, Boeing 707, 73
 on mechanical control details, 78, 79
 on rudder lock, 221
Cook, Wyatt, 240
Cooper, George E., 33, 191, 348
 Cooper-Harper rating scale, 33, 34, 150, 327, 328
Cornell Aeronautical Laboratory (later Calspan), 31, 36, 37, 112, 150
cost function, 226, 317
Covert, Eugene E., xix,
Cox, Harold Roxbee (Lord Kings Norton), 290
Coyle, Shawn, 41
crude lift control, 185–187, 188
Crane, Harold L., 52
Cranfield College of Aeronautics, Cranfield University, 13, 33, 199, 267
crossflow concept, 93, 94
crosswind landing gear, 43, 105–107, 171, 233, 253, 254
crosswind takeoffs and landings, 43, 105–107, 171, 233, 254
crowley , John W., Jr. (Gus), 30
culick, Fred E. C., xix, 3, 142, 143
cunningham, Thomas, 320, 321
curtis, frederick, 115
curtiss, gleen H., 3, 5
curtiss, gleen H., 3, 5
curtiss G-46 Commando, 63, 75–77, 80
 F-5L flying boat, 60, 304
 JN-2, 14
 JN-4H Jennie, 19, 21
 June Bug, 3
 P-40 Warhawk, 65, 146, 147
 SB2C Helldiver, 46, 47
 Tanager, 231, 232
 XB-60, 74
 XS2B2C-1, 92
 Cznznczheim, Joseph, 348
DaRos, Charles J., 115, 117, 118
dassault mirage 2000, 86
 rafale, 86
 Dassault-Breguet/Dornier Alpha Jet, 142, 218
davies, H., 50
 day, charles, 231
 day, sean G., xix
 day, richard, 115
deep stall
 Boeing 727, 209
 British Aircraft Corporation BAC 1-11, 209
defined, 209, 210
 Canadair CL-600, 209
 Douglas DC-9, 209
 General Dynamics F-16, 210, 212
 Handley Page Victor, 209
 Hawker Siddeley Trident 1C, 209
 Learjet Model 23, 209, 211
 McDonnell Douglas C-17, 211
 Tupolev Tu 134, 209
 Defense Advanced Research Projects Agency (DARPA), 289
de Havilland,
 comet, 81, 173
 DH-4, 19
 DH-108, 178
 Deperdussin, 5, 6
 Delaney, Noel, 46
 Delit T.U., 311, 330
desktop Aeronautics Company, 243
 DeVerte Aviation Corporation Trainer, 336
 DeVYoung, John, 92, 93
 Diehl, Walter S., 30
 Diffranco, D., 149
digital computers in flight dynamics analysis, 14, 109, 116, 119, 264, 269
digital flight control systems, 309, 316
dihedral effect, 2, 4, 7, 35, 36, 52, 93, 97, 171, 295–297
direct lift control, 187–189, 190, 193, 194, 321, 345
direct propeller forces, 52, 53
direct thrust moments, 46–49, 196
direction cosine, 221
 directional stability, 93–95, 215–217, 253, 254
displays, 238–240
dive recovery ramps, 165
doe, Hans K., 128
 Doetsch, Karl-H., 33, 15, 274, 348
 Doelter, James H., 231, 241
dorsal fins, 221, 224
douglas company
 AD-1 Skyraider, 47
 A2D-1 Skyshark, 189, 295
 A3D-1 Skywarrior, 100–103, 172, 291, 295
 A4D-1, A-4 Skyhawk, 43, 82, 100, 101, 172, 205–209, 219
 A-20 Havoc, 47–49
 A-26 Invader, 36, 47–49, 97–99
 B-19, 74, 75
 C-17, 86, 209
 C-54 Skymaster, 63, 74
 C-74, 67
 C-124 Globemaster, 75
 C-133, 75
 D-558-II Skyrocket, 177, 178, 181
 DC-2, 66, 67
 DC-3, 41–43, 172, 221, 222, 234
 DC-4, DC-4E, 20, 72, 74, 80, 164, 221
 DC-6, 61, 75
 DC-7, 61, 76
 DC-8, 61, 76, 174, 291, 297
 DC-9, 76, 174, 209, 291
 DC-10, 82, 88, 174, 291
Index

381

F4D-1 Skyray, 100, 101, 119, 127, 175, 189, 190, 195
Mark 7 bomb, 112
SB2D-1 Dauntless, 27, 61
X-3 research airplane, 112
downbursts, 277, 279
downsprings, 77, 78, 234, 240
downwash due to power, 51
Doyle, J. C., 321
Drake, Douglas E., 193
Draper, Charles S., 111
Drinkwater, Fred J. III, 189, 191
Dryden, Hugh L., 30
Duncan, William J., 13, 15, 17, 262, 287, 349
Dunn, Orville R., xix, 74–77, 349
Durand, T ulvio S., 192, 193, 333
Durand, W . F ., 17, 22, 182
Durham, Wayne C., 140
Dusto, Arthur R., 297
dyadic forms of the equations of motion, 274, 276
dynamic directional stability, 137, 138, 140
dynamic fuel slosh baffles, 205
Boeing KC-135A, 206
Cessna T -37A, 206
Douglas A4D-1 fuselage tank, 205, 206
in launch vehicles (Saturn V), 207
Lockheed P-80C tip tanks, 205
dyadic forms of the equations of motion, 274, 276
dynamic directional stability, 137, 138, 140
dynamic fuel slosh baffles, 205
Boeing KC-135A, 206
Cessna T -37A, 206
Douglas A4D-1 fuselage tank, 205, 206
in launch vehicles (Saturn V), 207
Lockheed P-80C tip tanks, 205, 206
pendulum analogy, 206, 207
EF 2000 Eurofighter, 39, 86, 318
Efremov, A. V ., 349
elevator angle–airspeed gradient, 19, 21, 23, 27, 43
Elgerod, A. L., 310
Eiler, Bob, 138
Enevoldson, Einar K., 142, 144, 210, 238
engine-out control, 47–50, 343
English Electric Canberra, 75
Lightning, 78, 81, 82, 178
equations of airplane motion
alternate axes sets, 267–270
arbitrary origin of body axes, 284
near-orbital flight, 282, 283
numerical integration, 263, 264, 280
Eulerian integration, 280
eulerian integration, 280
eulerian integration, 280
perturbation terms, 10, 262, 263
run-up-Kutta integration methods, 280, 281
steady-state solutions, 281, 282
trajectory (point mass) forms, 284
ever also modes of airplane motion
equivalent system models, 33, 148–152
ERCO Eccouge, 233, 235, 255
Ericson, Albert L., 164, 165
Ericsson, G. E., 142
Ericsson, Lars E., 141, 158
Ensautil-Pelletier, Robert, 3
Etheridge, J. D., 192
Etkin, Bernard, xviii, 15, 17, 83, 159, 182, 349
fabric-covered control surface bulge, 67
Farley, Harold C., Jr., 336
Farman, Henri, 3
Federal Aviation Administration (U.S.), 44, 49, 235, 241
FAR Part 21, 243
FAR Part 23, 243, 255
FAR Part 25, 57
FAR Part 61, 241
FAR Part 91, 236
FAR Part 103, 199, 200, 243
feeler ailerons (used with spoilers), 107, 108
Feeney, T. A., 81
Feest, T. W., 134
Ferber, Ferdinand, 11
Ferré, William M., 239, 240
Field, Edmund J., 153
Finn, E., 125
Fischenberg, D., 159, 226, 278
Flanders, James, 115, 118
flap-type control surfaces, invention of, 3
Flax, Alexander H., 290
Flettner, Anton, 4
FLEXSTAB program, 297, 299
flight director displays, 229, 240
floating main wings, 240
floating rudders, 47–49, 67
Florida University of, 14
fly-by-wire systems, 82, 86, 312
fly-by-wire systems, 82, 86, 312
safety issues, 87–89
fly-by-light systems, 89
flying qualities, xvii, 19–44, 324–373
flying quality requirements, 22, 30, 41–43, 146–148
British requirements (UK DEF STAN, BCAR), 32, 199
civil requirements, 32
European Joint Aviation Requirements (JAR), 32
Federal Air Regulations (F AR, U.S.), 32
German requirements, 32, 38
International Civil Aviation Organization (ICAO), 32
NACA requirements, 27, 31, 146, 234
personal airplanes, 234
specification C-1815, 31
specification MIL-F-8785C, 33, 150, 151, 342
specification MIL-F-8785C, 32, 33, 150, 151, 342
specification MIL-F-83300, 39, 40
standard MIL-STD-1797 (U.S.A.F), 34, 41, 151, 154, 322
specification R-1815–A, 30
specification SR-119A, 30
Focke-Wulf, 63, 92
Fokker, Anthony H. G., 7, 52, 231, 287
D-VII, 7–9
D-8, 287
<table>
<thead>
<tr>
<th>Fore-and-Aft Horizontal Tails (Three Surfaces)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grumman X-29A research airplane, 253</td>
<td></td>
</tr>
<tr>
<td>Piaggio P180 Avanti, 253</td>
<td></td>
</tr>
<tr>
<td>Sukhoi Su-27K, 253</td>
<td></td>
</tr>
<tr>
<td>Forebody strakes, 257</td>
<td></td>
</tr>
<tr>
<td>Forsstrom, Karl S., xix</td>
<td></td>
</tr>
<tr>
<td>Foster, John V., 161</td>
<td></td>
</tr>
<tr>
<td>Franklin P-2 glider, 214</td>
<td></td>
</tr>
<tr>
<td>Frazer, R. A., 262</td>
<td></td>
</tr>
<tr>
<td>Free-Flight Wind Tunnel, 250</td>
<td></td>
</tr>
<tr>
<td>Free-Spanning Wind Tunnels, 121–124</td>
<td></td>
</tr>
<tr>
<td>Fremaux, C. M., 131</td>
<td></td>
</tr>
<tr>
<td>French National Academy, 18</td>
<td></td>
</tr>
<tr>
<td>Frequency-Damping Boundaries, 150</td>
<td></td>
</tr>
<tr>
<td>Frequency response, 270, 304, 305</td>
<td></td>
</tr>
<tr>
<td>Frise, Leslie G., 63</td>
<td></td>
</tr>
<tr>
<td>Froude, William, 50</td>
<td></td>
</tr>
<tr>
<td>Fuel shift</td>
<td></td>
</tr>
<tr>
<td>effect on spiral stability, 207–209</td>
<td></td>
</tr>
<tr>
<td>in external fuel tanks, 209</td>
<td></td>
</tr>
<tr>
<td>Fuller, Richard G., xix</td>
<td></td>
</tr>
<tr>
<td>Fung, Y.C., 287, 288</td>
<td></td>
</tr>
<tr>
<td>Furlong, Chester G., 169, 170, 178</td>
<td></td>
</tr>
<tr>
<td>Gal-Or, Benjamin, 160</td>
<td></td>
</tr>
<tr>
<td>Gandy, R.W.G., 67</td>
<td></td>
</tr>
<tr>
<td>Gates, Sidney Barrington, 349</td>
<td></td>
</tr>
<tr>
<td>Aileron differential, 65</td>
<td></td>
</tr>
<tr>
<td>Equilibrium spin analysis, 130, 131</td>
<td></td>
</tr>
<tr>
<td>Joins Royal Aircraft Factory, 29</td>
<td></td>
</tr>
<tr>
<td>Spin studies, 30</td>
<td></td>
</tr>
<tr>
<td>Spring tabs, 30, 75</td>
<td></td>
</tr>
<tr>
<td>Stability boundaries, 267</td>
<td></td>
</tr>
<tr>
<td>Stability derivative nomenclature, 266</td>
<td></td>
</tr>
<tr>
<td>Teors the U.S., 30</td>
<td></td>
</tr>
<tr>
<td>Gato, W., 145</td>
<td></td>
</tr>
<tr>
<td>Gautraud, John, 115, 118</td>
<td></td>
</tr>
<tr>
<td>Gawron, V.J., 39</td>
<td></td>
</tr>
<tr>
<td>Gee, Brian, 349</td>
<td></td>
</tr>
<tr>
<td>General Aerodynamics</td>
<td></td>
</tr>
<tr>
<td>Gnat and Predator, 217, 218</td>
<td></td>
</tr>
<tr>
<td>General Dynamics (Lockheed Martin)</td>
<td></td>
</tr>
<tr>
<td>F-16 Fighting Falcon, 85, 86, 143, 154, 157, 158, 160, 210, 212, 311, 313, 337</td>
<td></td>
</tr>
<tr>
<td>F-111 Aardvark, 245, 246, 246</td>
<td></td>
</tr>
<tr>
<td>Gara, Joseph, 349</td>
<td></td>
</tr>
<tr>
<td>Gerlach, Otto H., 13</td>
<td></td>
</tr>
<tr>
<td>German Aerospace Center (DLR), 36, 37, 159, 225–229, 267</td>
<td></td>
</tr>
<tr>
<td>German Aerospace Society (DGLR), 18</td>
<td></td>
</tr>
<tr>
<td>Gerzianics, Michael A., 157</td>
<td></td>
</tr>
<tr>
<td>GHAME Hypersonic Vehicle Model, 184</td>
<td></td>
</tr>
<tr>
<td>Gibson, John C., xvi, 15, 349</td>
<td></td>
</tr>
<tr>
<td>Dropback criterion, 150, 154, 342</td>
<td></td>
</tr>
<tr>
<td>Effect of rear fuselage design in spans, 34</td>
<td></td>
</tr>
<tr>
<td>Engine gyroscopic effect, 7</td>
<td></td>
</tr>
<tr>
<td>Failed applications of optimal control, 319</td>
<td></td>
</tr>
<tr>
<td>Low horizontal tail, 178</td>
<td></td>
</tr>
<tr>
<td>Neutral point concept, 12</td>
<td></td>
</tr>
<tr>
<td>Nichols criterion, 152, 153, 331</td>
<td></td>
</tr>
<tr>
<td>Piot categories, 330</td>
<td></td>
</tr>
<tr>
<td>Roll ratcheting, 311, 312</td>
<td></td>
</tr>
<tr>
<td>Stability and control myths, 49</td>
<td></td>
</tr>
<tr>
<td>Superaugmentation, 314</td>
<td></td>
</tr>
<tr>
<td>Time-domain criteria, 154, 159, 342</td>
<td></td>
</tr>
<tr>
<td>Transfer-function criteria, 149, 150</td>
<td></td>
</tr>
<tr>
<td>Gilruth, Robert R., 24, 26, 30, 31, 34, 38, 166, 345, 350</td>
<td></td>
</tr>
<tr>
<td>Longitudinal stability, 27, 93</td>
<td></td>
</tr>
<tr>
<td>Maneuvering stick force, 28</td>
<td></td>
</tr>
<tr>
<td>NASA Manned Spacecraft Center, 27</td>
<td></td>
</tr>
<tr>
<td>Rolling requirements, 27, 29, 146, 155</td>
<td></td>
</tr>
<tr>
<td>Short-period oscillations, 30, 31</td>
<td></td>
</tr>
<tr>
<td>Three-part flying qualities method, 27, 161, 324</td>
<td></td>
</tr>
<tr>
<td>Wing flow transonic testing method, 168</td>
<td></td>
</tr>
<tr>
<td>Gilyard, Glenn B., 185</td>
<td></td>
</tr>
<tr>
<td>Glauert, Hermann, 162, 350</td>
<td></td>
</tr>
<tr>
<td>Control surface effectiveness theory, 3, 4, 57–59</td>
<td></td>
</tr>
<tr>
<td>Ground effect theory, 213</td>
<td></td>
</tr>
<tr>
<td>Non-dimensional equations of motion, 264, 266</td>
<td></td>
</tr>
<tr>
<td>Vortex ring state, 41</td>
<td></td>
</tr>
<tr>
<td>Glenn, John E., 81</td>
<td></td>
</tr>
<tr>
<td>Glaster, Meteor jet, 365</td>
<td></td>
</tr>
<tr>
<td>Goetz, Harry J., 46, 345, 350</td>
<td></td>
</tr>
<tr>
<td>Gomann, M. G., 158, 159</td>
<td></td>
</tr>
<tr>
<td>Goranson, R. Fabian, 65</td>
<td></td>
</tr>
<tr>
<td>Goto, Norihito, xvi, 330</td>
<td></td>
</tr>
<tr>
<td>Gough, Melvin N., 21, 57</td>
<td></td>
</tr>
<tr>
<td>GPS satellite navigation, 237, 242, 243</td>
<td></td>
</tr>
<tr>
<td>Gracey, William, 198, 199</td>
<td></td>
</tr>
<tr>
<td>Graham, Ernest W., 206, 207, 304</td>
<td></td>
</tr>
<tr>
<td>Graham, F. Dunstan, xviii, 149, 350</td>
<td></td>
</tr>
<tr>
<td>Inertial coupling, 112</td>
<td></td>
</tr>
<tr>
<td>Powered controls, 86</td>
<td></td>
</tr>
<tr>
<td>text, 17, 275, 304</td>
<td></td>
</tr>
<tr>
<td>Grantham, William D., 342, 343</td>
<td></td>
</tr>
<tr>
<td>Gray, W.H., 178</td>
<td></td>
</tr>
<tr>
<td>Green, George, 198, 199</td>
<td></td>
</tr>
<tr>
<td>Greenberg, Harry, 67, 75</td>
<td></td>
</tr>
<tr>
<td>Greenwell, D.I., 159, 159</td>
<td></td>
</tr>
<tr>
<td>Greenwood, D.T., 260</td>
<td></td>
</tr>
<tr>
<td>Grey, Jerry, 333</td>
<td></td>
</tr>
<tr>
<td>Grinstead, F., 292, 295, 298</td>
<td></td>
</tr>
<tr>
<td>Gross, Morton, 200</td>
<td></td>
</tr>
<tr>
<td>Ground effect</td>
<td></td>
</tr>
<tr>
<td>Image system theory, 213</td>
<td></td>
</tr>
<tr>
<td>Model-launching rig, 214</td>
<td></td>
</tr>
<tr>
<td>Vortex lattice representation, 213, 214</td>
<td></td>
</tr>
<tr>
<td>Wind-tunnel tests, 213</td>
<td></td>
</tr>
<tr>
<td>Ground roll stability, 215–217</td>
<td></td>
</tr>
<tr>
<td>Grumman</td>
<td></td>
</tr>
<tr>
<td>EA-6B Prowler, 144, 145</td>
<td></td>
</tr>
<tr>
<td>F4F Wildcat, 45</td>
<td></td>
</tr>
<tr>
<td>F6F-3 Hellcat, 36, 45, 47, 63</td>
<td></td>
</tr>
<tr>
<td>F8F Bearcat, 47</td>
<td></td>
</tr>
<tr>
<td>F9F-6 Cougar, 83, 178, 189</td>
<td></td>
</tr>
<tr>
<td>F11F, 325</td>
<td></td>
</tr>
<tr>
<td>F-14 Tomcat, 143, 246</td>
<td></td>
</tr>
<tr>
<td>Gulfstream G-2, 36, 173</td>
<td></td>
</tr>
<tr>
<td>OV-1 Mohawk, 125</td>
<td></td>
</tr>
<tr>
<td>TBF Avenger, 63</td>
<td></td>
</tr>
<tr>
<td>X-29A research airplane, 86, 141, 159, 253, 255, 289, 300, 305, 311, 314, 316</td>
<td></td>
</tr>
<tr>
<td>XF10F Jaguar, 104, 105</td>
<td></td>
</tr>
<tr>
<td>Grumman/American/Gulfstream</td>
<td></td>
</tr>
<tr>
<td>AA-1B Yankee, 128, 131–136</td>
<td></td>
</tr>
<tr>
<td>AA-5 Tiger, 128</td>
<td></td>
</tr>
<tr>
<td>T-2 trainer, 128</td>
<td></td>
</tr>
<tr>
<td>Guggenheim Aeronautical Laboratory (GALCIT), xviii, xix, 61</td>
<td></td>
</tr>
<tr>
<td>Guggenheim Safe Airplane Competition, 231, 232</td>
<td></td>
</tr>
</tbody>
</table>
Index

383

Guichetau, P., 142
Gunston, Bill, xviii, 101
gusts, turbulence, 234, 236, 238, 277–279
Gwinn Aircar, 233
gyroscopic gimbal error, 103, 104
Hacker, T., 17
Hage, Robert E., 17, 243
Haise, F. W., 234, 236
Halfman, R. L., 287
Hallion, Richard P., 181
Ham, Peter, xviii, 15, 225, 350
Hamilton, Sir W. R., 258–262
Hancock, Geoffrey J., 18
Handley Page rotating wing, 247
Handley Page safe airplane, 231
Hannah, M. E., 120
Hanson, Gregory D., 317
Harder, Robert L., 298
Harper, Charles W., 92
Harper, John A., 221, 222
Harper, Robert P., Jr., 31, 33, 150, 350
Harris, R. G., 53
Hartshorn, A. S., 65
Haus, Frederic C., 13, 350
Hawker Hurricane, 44, 63
Telem, 75
Hawker-Siddeley Harrier, 54
Taildog missile, 157
Heald, Ervin R., xix, 351
Hedman, Sven G., 95, 297
Hedrick, I. Grant, 35
Heffer, Robert K., xix, 40, 193, 229, 333
Hedeman, Edward H., 43, 247
Heller, Michael, 144
Hepp, R. Richard, xix, 115, 351
Hess, Ronald A., 193, 328
Hewes, Donald E., 237
High-Incidence Research Model (HIRM), RAE, 267
Hildebrand, F. B., 280
Hill, J. D., 231
Hing moment calculations, 61
Hinz, Hans, 115
Hoadley, Henry H., 50
Hoek, Donald E., 95
Hodgkinson, J. W., 18, 148, 351
Hoffmann, L. G., 309, 320
Hoffinger, G., 317
Hogan, E. J., Jr., 195
Hogge, Jeffrey R., 140
Hoh, Roger H.
command augmentation, 311
equivalent systems method, 149
Military Standard, MIL-STD-1797, 34
pilot-in-the-loop, 311, 322
rudder for coordination, 155–157
V/STOL flying qualities, 40, 41
Hollenball, Euclid C., 137, 295
Hommel, Robert, 133
Honeywell Corporation, 82, 83, 320
Hood, Manley J., 164
Hopkin, H. R., 266
Hopkins, H. Z., 209
House, Rufus O., 93, 12
Huff, Wayne, 115
Hunsaker, Jerome C., 12, 19, 351
Hunter, Paul A., 62, 234, 237
Hyde, J. L., 148
hydraulic boosted controls, 73, 79, 80, 100, 101, 146
Iliff, Kenneth W., 225, 228
Imlay, Frederick H., 104
inertial coupling in rolls, 109–120
effect of sideslip, 120
general aviation aircraft, 120
simplifications, 116–118
Weight Field conference on, 115–118
inertial effects of propellers and rotors, 56
independent assessment boards, 35
Inderhees, Lester J., 66
Institute of the Aeronautical Sciences, 274
Intrument Landing System approaches, 37, 236–238,
240, 242, 243
integrated servo actuators (ISA), 85, 86
inverso problem in flight mechanics, 160
irreversible powered controls, 80, 81
Israel Aircraft Industries Lavi fighter, 86
Jackson, Bruce E., xix
Jacobs, Eastman N., 30
Jahnke, C. C., 142, 143
Jarvis, Calvin R., 316
Jategaonkar, R. V., 225, 226, 228
jet and rocket effects, 53–56
damping, 55, 56
Jenwell, Wayne, F., 229
Jex, Henry R., xix, 3, 15, 202, 303, 351
Johnson, B. A., 81
Johnson, C. L. (Kelvey), 30, 164
Johnson, Erwan H., 299
Johnson, K. G., 120
Johnson, Walter A., 279
Johann, A. M. (T), 171, 172
Johnson, Donald E., 138–140, 160, 310, 311, 313, 351
Jones, B. Melvill, 11, 13, 17, 72, 255, 260, 264, 265,
270, 351
Jones, C. K., 234, 236
Jones, I. M. W., 267
Jones, Robert T., 270, 351
aileron differential, 65
all-moving tail, 78
beveled controls, 67
low aspect ratio pointed wings, 93
oblique wings, 247, 248, 250
rudder snaking, 67
swepback wing, 169
Jones, Stephen K., 280
Jordan, F. L., 144
Joukowski, Nikolai, 11
JSASS (Japan), 95
jump phenomena, 120
Kalman, R. E., 317, 318, 326
Kalviste, Juri, xix, 15, 131, 138, 281, 352
Karmen-Tsien rule, 162
Kamesh, S., 274
www.cambridge.org
© Cambridge University Press
Cambridge University Press
0521021286 - Airplane Stability and Control: A History of the Technologies That Made Aviation
Possible, Second Edition
Malcolm J. Abzug and E. Eugene Larrabee
Index
More information
Karpel, Motti, 159
Katzoff, S., 59, 61, 94
Katayanagi, R., 352
Kauffman, William M., 35, 36
Kayten, Gerald G., 97–99
Kelley, Henry, 115, 118
Kelly, James D., 205
Kheis, J. N., 158, 159
Kilkenny, Elizabeth A., 199
King, Charles H., Jr., xix
Kirkman, George, xix
kit-built airplanes, 199, 200, 243
Klemm, Alexander, 13, 231
Klein, Robert, 305
Klinar, Walter J., 124
Klyde, David H., 284, 312
Koehler, R., 312
Koehler, W., 226
Kolk, W. Richard, 17
Korzeniowski, Otto C., xvii, 13, 75, 92, 111, 352
Koven, William, xix, 35, 97–99, 193
Krag, B., 226
Kremer Prize, 202
Kress, Robert, 115
Kroeger, R. A., 134
Krone, Norris, 288, 289
Kroo, Ilan, 249, 251
Küchemann, D., 30
Kuehnel, Helmut A., 237–239
Kuhn, Richard E., 55
Kulda, Richard J., 307
C-46 boost elimination program, 80
time vector analysis, 274, 275
Larson, Greg, 284
lateral control requirements, 43, 146, 147
lateral control departure parameter (LCDP), 137, 138
Lavender, T., 299
Lawrence, R. E., 299
Lee, Dong-Chan, 128, 131
Lee, John G., 50
Levavasseur, Leon, 1, 3
Lewis, F. L., 17, 282
Libbey, Charles E., 136
Lichtenstein, Jacob H., 124–126
Lien, Wallace A., 167
lift curve slope, 92, 97, 164, 288
lifting bodies, 229, 230
Liebenthal, Otto, 1, 4, 199
Lindbergh, Charles, 241
Linden, Jack, 35
Linear System Modeling Program, 276
Linse, Dennis J., 227
Lissaman, Peter, 203
lateral approximate modes, 273, 274
Lockheed, Lockheed Martin
A-12, 37
C-5A Galaxy, 39, 291, 342, 343
Constellation, 80
F-22, 86, 87, 160, 339, 340
F-94C, 189
F-104, 10, 115, 178
F-117A, 37, 86, 135–138
T-33, 337, 311
X-33, 229
Lofin, L. H., 244
Loschke, Paul C., 238
Love, J. Richard, 292
Lovell, P. M., Jr., 295
low horizontal tails, 172, 178
Lownenberg, M. H., 142
Lorin, Harold, 207
Lutze, Frederick H., 140
Ly, Uy-Lou, 149
Lynch, Waldo, 73
MacCready, Paul B., xix, 203, 204
MacNeal, Richard, H., 298
MacNeal-Schwendler MSC/NASTRAN, 297, 298
Magaleno, Raymond E., 300, 301
Maggio, Bernard, 2, 169, 171
Maine, Richard E., 225
Mancuso, Dewey, 115
maneuver margin and point, 202, 300
Mangold, Peter, 140, 161, 313
manual reversion (from hydraulic boost), 73, 100, 101
Marcy, H. T., 105
Martin Company
B-10B, 25
B-10B, 25
B-26 Marauder, 47–49
XPB2M-1 Mars, 80
Masaki, Mamoroo, 115
Mauro, Tamara, 115
Masiello, M. F., 145
Maskrey, Robert H., xix, 81
Mason, W. H., 140
www.cambridge.org
Massachusetts Institute of Technology (MIT), 13, 19
Chrysalis, 200
Daedalus, 200
Monarch, 200
Mathcad, MatSoft, 276
Mathews, Charles W., 67, 79, 345
MATLAB, Mathworks, 14, 276
matrix forms of the equations of motion, 274, 276
Mattlage, C. E., 193
Maxim, Sir Hiram, 1, 4, 304
maximum and desirable control force levels, 57
Mayo, R. H., 231
McAERO program, 97
McAvney, William H., 21, 57
McCarthy, C. J., 24
McCook Field, 19
McCook, Barnes W., Jr., 17, 255
McCutchen, Charles, xix, 11
McDonnell Aircraft
F-4 Phantom, 43, 78, 169, 210
XF-88, 160, 189
XF3H-1, 189
McDonnell Douglas
A V-8B Harrier II, 54
F-15 Eagle, 137, 145, 226, 310
MD-11, 181, 291, 313, 315
MD-90, 76, 291
T-45A Goshawk, 35, 195, 217
MD-11, 181, 291, 313, 315
McWha, James, 352
Mulder, Jan, 353
mean aerodynamic chord (mac), 90, 91
Mehr, K. R., 142
Melsa, James L., 280
Merrick, Robert, 115, 118
Messerschmitt P1101, 244
metacenter, 11, 12
Michigan, University of, 13, 14, 134
Mikoyan-Gurevich
MiG-21, 78
MiG-23, 251
MiG-25, 141
MiG-27, 251
MiG-29, 157
Milikan, Clark B., 30, 46, 50
Milliken, William F., xvi, 13, 353
Milne, R. D., 299
Milne-Thomson, Louis M., 274, 276
minimum approach airspeed, 188–193
minimum drag speed, 188–190
Minnesota, University of, 26
MIT Dynamic Analysis and Controls Lab., 81
MIT human-powered aircraft
Chrysalis biplane, 200
Daedalus, 200
Monarch, 200
MIT Museum, 274
Mitchell, David G., 40, 138, 139, 149, 311, 331, 332
Mitsubishi Zero, 146, 147, 290
modes of airplane motion, classic
Dutch roll, 181, 196, 207, 234, 272, 274, 284,
306–309
longitudinal short period, 31, 32, 39, 40, 140, 207,
267, 271, 284, 300, 310, 342–344
phugoid, 9, 22, 40, 182–184, 267, 271, 284
roll, 39, 272, 284
spiral, 235–237, 272, 284, 307
modes of motion, constrained
airspeed, 272
yaw, 272
modes of motion, coupled
lateral divergence, 272
longitudinal divergence, 272
roll-spiral, 230, 272
modes of motion found at high Mach number
height or density, 1, 183, 284
kinematic lateral directional, 284
Moiran monoplane, 60
Mokrzycki, G. A. (G. A. Andrew), 270
Montoya, R. J., 320
Moog, Inc., 86
Moog, W. C., Jr., 81
Mooney aircraft, 68
Moorhouse, David J., 34, 321, 330
Mönnich, W., 226
Moore, John, 309
Morgan, Morien B., 30
Mourino, Luigi, 302
Moul, Martin T., 137, 139, 140, 142
mountain wave, 279
Moyes, John F., 86
MRCA Tornado, 86
Mueller, Lee J., 342, 343
Mueller, Robert K., 274, 352
Mukhopadhyay, V., 321
Mulkens, Marc J. M., 267
Multhopp, Hans, 93
Munk, Max M., 93
Murakoshi, Allen Y., xix
Murray, D., 112
Museum of Flying, Santa Monica, CA, xix, 66, 67
Myers, Albert F., xix, 281
Myers, Thomas T., 160, 284, 313
386

NACA Research Authorization 509, 22
NAE (Canada), 9-m wind tunnel, 200
Nagati, Gawad, xii, 128, 131
Napolitano, Marcello R., 226
NASP Integrated Atmospheric Model, 279
NATC, Patuxent River, 31, 36
National Aerospace Plane (NASP), 279, 283
National Aeronautics and Space Museum, 2, 44
National Physical Laboratory, 130
National Research Council (U. S.), 2
Naval Air Systems Command, 32, 47, 148
naval aircraft problems, 30, 187–196
"backside" approaches, 188–193, 310
required touchdown point precision, 187
tail length restrictions, 187
thrust response time, 189, 191
Naval Weapons Center, China Lake, 103, 104
New York, State University of, 14
New York University, 13
Newell, F. D., 272
Newton, Sir Isaac, 9, 276
Nguyen, Luat T., 142, 144, 161, 210, 353
Nickel, Paul, 112, 113
North American
A-26, 165
A-37, 253
A-38, 81
A-52, 21
A-6A, 286, 288
A-6B, 152, 172, 175
AD-1 flight tests, 251
AL-1 flight tests, 251
IIFT test, 251
mandrill rolling and yawing moments, 247
Stanford University flying model, 251
trailing-edge controls, 248
untrimmed moments and side force, 250
wing torsional divergence, 248
offset centers of gravity and fins, 51, 52
O'Hara, J. C., 112
Oliver, Frank, 339, 340
Olmstead, Stanley, 74
ONERA, France, 130, 142
Ormerod, Albert O., 267
Ornisston, Robert A., 199
Osder, Stephen, xix, 16, 83, 84, 88, 319, 353
Oswald, W. Bailey, 30
Packard-Le Pere LUSAC-11, 20
Padfield, Gareth, xviii
Pai, S. I., 288, 293, 294
Pamadi, B., 18
PAN AIR program (Boeing), 97
Parke, Darrel, 115
Paris, A. C., 226
Parsons, Thomas, 115
Patton, James M., Jr., 126, 134
Paukson, John W., 137, 138, 142
Pavelka, Jerry, 115
Pawsey, G. L., 267
PB/2V lateral control criterion, 27, 28, 65, 146
Pedriero, N., 161
Penuad, Alphonse, 1, 9
Pengelly, C. Desmond, 79
Pepe, Philip, W., 124, 126
Peirce, William W., 17
Perkins, Courtland D., xviii
Perrin, W. G., 4, 57
Pfeifer, Edward, 306
phase stabilization, 300, 301
Phean, D. J., 189
photo recorder, Wright Field, 22
Phillips, W. F., 260, 274
Phillips, W. Hewitt, xviii
Pilatus, Paul, 307
Pilot, 115
Pilots, 307
Pilot-induced oscillations, 325
on automatic pilots, 304
on Bryan's stability derivatives, 10
on canard stalls, 252
online control systems, 34, 35
on Glrotch/Gates maneuverability criteria, 28
on Maxim's machine, 2
on pilot-induced oscillations, 325
on power effects, 42, 45, 52
on transonic flight problems, 178
on variable-stability airplanes, 38
on wing-flow method, 168, 169
spring tabs, 75
wing leveler, 237, 239
Piaggio, P.I.180 Avanti, 253
Pickett, Martin D., 279
pilot-induced oscillations, 87, 148
categories, 328–330
C-17, 87
Vought/NASA F-8, 330
F-86, 87
F-111, 330
modern transport airplanes, 333
NT-33, 329
Rutan Voyager, 318
Space Shuttle Orbiter Enterprise, 324, 325
YF-12, 330
pilot-in-the-loop analysis methods, 87, 148
algorithmic model, 326, 327
bandwidth-phase delay criteria, 331, 332
compensatory operation, 326–328
crossover model, 327
Neal-Smith approach, 330, 331
simple gain models, 327, 332
Smith-Geddes criterion frequency, 331
structural model, 326
pilot ratings, 33, 34
pilot work load studies, 238–340
Pinsker, Werner J. G., 112, 118, 138, 142, 274, 354
Piper Aircraft
Arrow, PA-28R, 78, 133, 135
Cherokee, PA-28, 78
Cheyenne, PA-31T, 240
Comanche PA-24, 78
Navajo, PA-31, 52, 240
Twin Stinson (later Apache) PA-23, 49
Planes, J. B., 149
Platz, Reinhold, 7
Plum Tree test site, NASA, 136
Polhamus, Edward C., 142, 244–246
Poisson-Quinton, Phillipe, 354
Poisson’s equations, 260
Potts, David W., 319
Powers, Bruce G., 283, 284, 341
Prandtl, Ludwig, 92
Pradhan, J. N., 1
Priest, W. J., 160
Prince, University, 43, 213, 227, 242
principal axis inclination instability, 181
propeller tilt, 46, 47
propulsion-controlled aircraft (PCA), 314, 316
propeller forces in yaw, 52, 53
Pugatchov, Viktor, 157
Puglisi, Sir Alfred G., 290
Purser, Paul E., 219, 220
q-springs (artificial feel), 82
QUADPAN program, 97
quaternions, 258–262
Questar Venture, 136
Rae, William J., 14
Rahn, Robert O., xix, 101, 175
rapid rolls to steep turns, 155–157
Rayleigh, Lord, 162
recording instruments, NACA, 20, 21
Rediess, Herman A., 279
redundant hydraulic controls, 83–89
redundancy, analytic and physical, 88, 89
Reed, R. Dale, 223
Reeder, John F., 55
reference axes
body axes, 267–270
hybrid axes, 269, 270
principal axes, 269
stability axes, 269
wind axes, 268, 269
wind-tunnel stability axes, 269, 270
Regan, Frank J., 183, 244
Regis, Edward, 240
Reid, Henry J., 20
Reid, Lloyd D., 16, 17, 354
Reissner, Hans, 11
Relf, E. F., 13, 16, 53, 129, 354
Renier, O., 130
Republic Aircraft
P-47 Thunderbolt, 165–167, 289
F-84F Thunderstreak, 178, 189, 288
F-12, 74, 75
Research and Technology Organization (RTO), 18
restructurable controls, 321
reverse dihedral due to upstrem flow, 52
reverse rolling, 79
Rhoads, Donald W., 112
Rhode, Richard V., 166
Rubner, Herbert S., 53, 354
atmospheric turbulence models, 278
propeller side force theory, 52, 53
jet air intake forces, 53
Ringland, Robert F., 187, 191, 192
Ritchie, Perry, 166, 167
Robbins, Robert, 306
Robinson, A. C., 260
Rockwell Corporation,
Aero Commander, 49, 127
B-1, 37, 38, 310
HIMAT, 281
Space Shuttle Orbiter, 36, 37, 86, 154, 155, 229,
269, 283, 324, 325, 341
X-15, 37
Rodden, William P., xix, 354
arbitrary origin of body axes, 284
dihedral effect on flexible wing, 295–297
mean and structural axes, 299
MSC/NASTRAN, 298
unsteady aerodynamics, 159
Rodruck, W. E. B., 200
Regallo, Frank, 199
Rogers, Kenneth, 159
Rolf, J. M., 17
rolling pullouts, 112
roll rate capability, 27–29, 146–148
roll rate requirements, missile-armed fighters, 148
roll-to-yaw ratio, 37
Root, L. Eugene, 66, 67, 77, 92, 354
root locus (Evans) method, 270, 308–310
Roskin, James, xviii, 101, 175
Roskos, K. F., 153
rotary derivatives, 10, 266, 267
Routh’s criterion for stability, 118, 137, 267
Royal Aeronautical Society, 18
Royal Aircraft Establishment (RAE) (now DERA),
36, 41, 125, 141, 142, 190
Royal Aircraft Factory S.E.-5, 7, 8, 264
Rubbert, P. E., 95, 297
rudder deflection to coordinate maneuvers, 155–157
rudder lock, 220, 224
Boeing KC-135, 222
Boeing Model, 307, 221
Boeing Model, 707, 222
Douglas DC-3, 221, 222
exaggerated, 221
Waco CG-4A, 224
Waco CG-13, 224
rudder forces, engine dead, 47–49
rudder snaking oscillation, 66, 67
Rudlick, Georges, 217
Rudlicki, Georges, 217
Russell, John M., 18
Rutan, Dick, 257
Rutan, Elbert L. (Burt), 91, 252, 257
Rutowski, Edward S., xix
Ryan Fr-I Fireball, 35
Saab, JA-39, 86, 87
Sachs, Gottfried, 182
Saegesser, Lee D., xix
safe maneuver limits, 119
safe personal aircraft, 231–243
Schaefer, W. S., 88
Schaeffer, Harry, 289
Schaffer, Roger D., xix, 74
Schelhorn, Arno E., xix
Scheller, Lawrence J., xix, 279
Schiff, Barry, 49
Schiff, L. B., 130, 142, 161, 283, 284
Schill, Lawrence J., xix, 279
Schlaff, Bernard A., 189
Schmid, L., 182
Schmidt, David K., 300, 328
Schmidt, L. V ., 18
Schmidt, Stanley F., 115, 118
Schmitt, V. R., 83
Schmitz, V. R., 83
Schmued, Edgar, 30
Schroeder, R. W., 20, 231
Schuler, John M., 112
Schoen, Richard G., 120, 207
Seidman, Oscar, 124
separation of linearized equations, 262, 263
Shafer, Mary F., 39, 226
Shanks, G. T., 41
Shar, David E., 355
Shewell, Richard S., 174
Shields, E. R., 189
Shortal, Joseph A., 169, 171
side stick controls, 34, 57
sidelip and angle of attack conventions, 270
sidelip excursions in rolls, 155
sidewash, 94
Sikorsky, Igor, 5
Silver, Brent W., 257
Silverstein, Abe, 59, 61, 94
SIM2 computer program, NASA, 269, 270
single engine failure, 47–50
single pilot IFR operations, 242, 243
Sisk, T. R., 234, 236
Sit, D. M., 145
Skog, Richard B., 291, 292, 294
Skow, Andrew M., 142
Sleeman, William C., Jr., 51
slipstream effects, 45, 50–52
Sliwa, Stephen M., 126, 134
Smelt, Ronald, 50
Smetana, Frederick O., 17, 243
Smith Aviation Trainer, 136
Smith, John W., 185
Smith, Rogers E., 330, 331
Smith, Terry D., 355
Society of Automotive Engineers (SAE), 18
Sodeman, Paul T., 209, 211
Sond, Ronald F., 128
Sopwith Camel, 7
Sorce, M. M., 11
Sorenson, Emil L., 167
Soule, Hallety A., 22–25, 30, 121, 355
SPAD (Socié té Pour Avions Dé perdussin), 5
special airspeeds, multi engine, 49, 50
Sprerry Company
A-12 autopilot, 82, 103, 313
“Stabilizer”, 304
splitter-plate (tadpole) rudders, 219
spin recovery
NACA design rules for, 124–126, 133, 134, 346
piloting techniques, 101, 126–128
RAE design rules for, 125
spin research
computed motions, 123, 128–131
corning rotary balances, 129, 130
drop models, 121, 123, 136
equilibrium spin analysis, 129, 130
factors other than tail design, 126–128, 134–136, 346
forebody geometry, 140
free-spinning wind tunnels, 121–124, 133
nonlinear effects, 140
oscillatory rotary balances, 130, 131
spin resistant, 233, 247
rotary derivatives, 129
spin research
computed motions, 127, 129–131
coning rotary balances, 129, 130
drop models, 121, 123, 136
equilibrium spin analysis, 129, 130
factors other than tail design, 126–128, 134–136, 346
forebody geometry, 140
free-spinning wind tunnels, 121–124, 133
nonlinear effects, 140
oscillatory rotary balances, 130, 131
free-spinning wind tunnels, 121–124, 133
nonlinear effects, 140
oscillatory rotary balances, 130, 131
spin resistant, 233, 247
oscillatory post-stall gyration, 127, 144
oscillatory post-stall gyration, 127, 144
spring tabs, 77, 78
Sprerry, Kenneth P., 178
Squerr, H. B., 54
Sri-Jayanthi, M., 227

stability and control
at the design stage, 90–99
power effects, 46–56
teachers, 13, 14, 17
texts, 17, 18
stability and control estimation, drawings
bodies, 93
computer-aided design, 243
downwash and sidewash, 93–95
finite-element methods, 95, 97, 98, 297, 298
RAeS data sheets, 95
wings and tails, 91–93
wing–body interference, 93
USAF DA TCOM, 95
stability and control estimation, wind-tunnel data, 97
stability and control myths, 44
stability augmentation, xvii, 66, 181, 303–323
adaptive systems, 320, 321
command augmentation systems, 33, 310–312
decoupled controls, 321
degree of authority, 310, 311
digital augmentation, 316
effect of valve friction, 303, 307
inappropriate applications, 240
kinematic coupling minimization, 120
Mach hold systems, 185
Mach trim compensators, 175, 176
mechanical devices, 101–103, 234
nonsynchronous sampling rates, 316
optimal designs, failed applications of, 319
rate-limited commands, 310
robust controllers, 320, 321
roll ratcheting, 311, 312
superaugmentation, 33, 312, 314
use required, 100, 181, 306, 338, 340
wing levels, 235–237
stability augmentation design methods, 270, 304, 305, 308–310, 316, 318
Bode diagrams, 307
equivalent derivative method, 304, 307
frequency response methods, 270, 304, 305
Linear Quadratic Gaussian (LQG), 317, 318
Linear Quadratic Optimization (LQ), 316, 317
Nyquist diagrams, 307
root locus methods, 270, 308–310
singular value methods, 321
time domain methods, 317, 317
stability boundaries, 137, 138, 267, 268
stability derivatives
aeroelastically corrected, 298
dimensional, 262, 266	nondimensional, 264–266
rotary, 266, 267
stability derivative extraction, 224–229
elementary methods, 224, 225
extended Kalman filter method, 226, 227
maximum likelihood method, 225, 226
unstable airborne, 227
weight moment method, 224
Stack, John, 162, 163, 166
stall recovery, 252, 257
Standard Atmosphere, 277, 278
Stanford University, 13, 19
Stapleford, Robert, 32, 309, 320
Staples, K. J., 17
state-variable formulation, 274, 276
state vector, 276
static margin, stability, 12, 30, 336
Statler, Irving C., xix, 128
stealth aerodynamic issues, 335–340
faceted airframes, 335–337
parallel-line planforms, 337, 338
suppressed or no vertical tails, 338–340
Steearman-Hammond Model Y, 233
Steearman, Ronald O., 218, 219
Sterr, A. J., 322, 343
Stengel, Robert F., 16, 328, 355
inertial coupling analysis, 120
LQ stability augmenter design, 317
on LQG controllers, 317, 318
pilot cues, variable-stability airplanes, 38
single pilot IFR operations, 242
stability derivative extraction, 227
supersonic modes of motion, 182–184
Stephens, A. V., 121–123
Stephens, William C., 310
Stevenson, B. L., 15
stick force levels, 57
stick force per g, 28
stick pushers and shakers, 178
Stimson Reliant SR-6E, 22, 24, 25
Stough, H. Paul III, 126, 134
Stout Sky Car, 233
Street, William G., 57–59
stretch, control cable, 24, 29, 127
Stuton, D., 18, 32
Strumplf, Albert, 284
Sud Caravelle, 173
Sukhoi Su-27, 157, 253
supermaneuverability, 157–161
cold for recovery, 157, 161
Cobra maneuver, 157
forebody controls, 160, 161
thrust vector control, 159
unsteady aerodynamic effects, 158, 159
vortex effects, 161
Supermarine Spitfire, 41–44, 82, 234
Swedish Aeronautical Research Institute, 297
swepturn wing effects on stability and control, 169–174
dihedral effect at high angles of attack, 171, 172
leading edge devices, 172
pitching moments at stall, 172, 174
pylon effects, 173, 174
roll damping reversal, 169, 172
wing tip stall, 169–174
swepturn wings, 288, 289
system matrix, 276
systems concept in stability augmentation design, 304
systems engineering, 43
Systems Technology, Inc., xix, 31, 32, 190, 263, 266, 278, 319
Szalai, Kenneth, 315, 355
tail–tails, 133, 136, 209–211
tactical airplane maneuverability, 146–161
tail surface size, 91, 92
Taylor, H. D., 50
tensor forms of the equations of motion, 276
Index

T eper, Gary L., 192, 263, 279
Test Pilot School, Edwards Air Force Base, 36
Test Pilot School, Patuxent River, 36
Thayer, W. J., 81
Theodorsen, Theodore, 166
Thomas, H. H. B. M., xviii, 30, 95, 112, 355
Thompson, Floyd L., 22, 30
Thompson, Peter M., 319, 320, 326
Thorp, John, 78
three-surface aircraft, 253
thrust-vectoring, 38, 160, 322, 340
tilted thrust line, 46, 47
time-domain response requirements, 152–155
time response parameter, 154
time vector analysis, 274, 275
Tischler, M. B., 18, 40
Tobak, Murray, 130, 142
Tobie, H. N., 154
Tokyo, University of, 13
Toll, Thomas A., 63, 70, 289, 355
Tonent, Aldo, 356
Tomayko, J. E., 83
Toot, Louisa C.,
Toronto, University of, 53
Townsend, Guy, 291
trailing edge angle, 66–68
Transall, Arbeitsgemeinschaft, 226
transfer function model for unsteady flow, 158, 159, 228, 229
transfer functions, 33, 148–152, 305
transfer function dipoles, 310
transfer function numerators, 139, 192, 193, 310
transition equations and matrices, 276
Trevelyan, A., 264
trim changes due to flaps and power, 242
Tristant, D., 130
Trouncer, J., 54
Tsien, H. S., 162
Tu-160 Blackjack, 251
Tu-22M Backfire, 251
variable-stability airplanes, 33–39
as trainers, 36
future of, 37–39
invention of, 35, 36
Leaftet Model, 24, 36
NT-33, 37, 311
pilot cues in, 38
Princeton VRA, 36, 38
USAF/Calspan B-26, 36
USAF/Calspan TIFS, 36, 37
VISTA/F-16D, 39, 40
v- and w-planes, 309
Waco XCG-3 glider, 64, 65
Walker, Joe, 112
Wallace, Arthur R., 93
Wallis, Barnes N., 244–246, 250, 251
Wanner, Jean-Claude L., xviii, 14, 356

Teper, Gary L., 192, 263, 279
Test Pilot School, Edwards Air Force Base, 36
Test Pilot School, Patuxent River, 36
Thayer, W. J., 81
Theodorsen, Theodore, 166
Thomas, H. H. B. M., xviii, 30, 95, 112, 355
Thompson, Floyd L., 22, 30
Thompson, Peter M., 319, 320, 326
Thorp, John, 78
three-surface aircraft, 253
thrust-vectoring, 38, 160, 322, 340
tilted thrust line, 46, 47
time-domain response requirements, 152–155
time response parameter, 154
time vector analysis, 274, 275
Tischler, M. B., 18, 40
Tobak, Murray, 130, 142
Tobie, H. N., 154
Tokyo, University of, 13
Toll, Thomas A., 63, 70, 289, 355
Tonent, Aldo, 356
Tomayko, J. E., 83
Toot, Louisa C.,
Toronto, University of, 53
Townsend, Guy, 291
trailing edge angle, 66–68
Transall, Arbeitsgemeinschaft, 226
transfer function model for unsteady flow, 158, 159, 228, 229
transfer functions, 33, 148–152, 305
transfer function dipoles, 310
transfer function numerators, 139, 192, 193, 310
transition equations and matrices, 276
Trevelyan, A., 264
trim changes due to flaps and power, 242
Tristant, D., 130
Trouncer, J., 54
Tsien, H. S., 162
Tu-160 Blackjack, 251
Tu-22M Backfire, 251
variable-stability airplanes, 33–39
as trainers, 36
future of, 37–39
invention of, 35, 36
Leaftet Model, 24, 36
NT-33, 37, 311
pilot cues in, 38
Princeton VRA, 36, 38
USAF/Calspan B-26, 36
USAF/Calspan TIFS, 36, 37
VISTA/F-16D, 39, 40
v- and w-planes, 309
Waco XCG-3 glider, 64, 65
Walker, Joe, 112
Wallace, Arthur R., 93
Wallis, Barnes N., 244–246, 250, 251
Wanner, Jean-Claude L., xviii, 14, 356

Cambridge University Press
Malcolm J. Abzug and E. Eugene Larrabee
Index
More information

© Cambridge University Press www.cambridge.org
Index

Warner, Edward P., 19–22, 231
Washington, University of, 13
Wasiko, Richard J., 192, 193
Weeb, George J., Jr., 195, 196
Weick W-1A, 233, 234
Weil, Joseph, 51, 115, 178
Weiselsberger, C., 212
Weisshaar, Terrence A., xix, 288
Weissman, Robert, 137, 138, 142
Wendt, Harold O., 76
Wenzinger, Carl J., 134
West Virginia University, 226
Westbrook, Charles B., xviii, 31, 34, 115, 128, 356
Wetmore, J. W., 212, 213
whirling arm tests, 267
Whitaker, Arnold, 305
Whitbeck, Richard F., 309, 320
White, Maurice D., 27, 29, 93, 189
White, Roland J. (Jim), 16, 27, 93, 189, 356
Wright brothers, 1–3, 5
White, William L., 133
Whittaker, Phillip, 309
Whitten, James B., 79, 237, 239
Wilkie, Lloyd, 115
Wilson, George C., 195
wing leading-edge extensions (LEXs), 158
wind shears, 277
wind-tunnel tests
free-to-roll tests, 141
free-spinning tests, 121–124
MIT tests, 1915–19, 19
model oscillation, 266
NACA Stability Wind Tunnel, 266, 267
NASA Ames 40–by 80-Foot Wind Tunnel, 209
NASA Free-Flight Wind Tunnel, 250
powered models, 45
transonic throat, 169, 339
inertial coupling in rolls, 112
quasirigid model, Boeing B-47, 300
springy tabs, 77
White, William L., 133
Whittaker, Phillip, 309
Whitten, James B., 79, 237, 239
Wilkie, Lloyd, 115
Wilson, George C., 195
wing leading-edge extensions (LEXs), 158
wind shears, 277
wind-tunnel tests
free-to-roll tests, 141
free-spinning tests, 121–124
MIT tests, 1915–19, 19
model oscillation, 266
NACA Stability Wind Tunnel, 266, 267
NASA Ames 40–by 80-Foot Wind Tunnel, 209
NASA Free-Flight Wind Tunnel, 250
powered models, 45
transonic throat, 169, 339
wing fences, 172, 173
wing pylons, 173, 174
wing rock, self-induced, 141, 142
wing slats, 172, 173, 231, 232
wing torsional divergence, 287–289
wing twist, effect on rate of roll, 29, 43, 71, 72, 147
Wood, R. McKinnon, 123
Woodcock, Robert J., 34, 342
World War I airplanes
arrival and departure stalls, 6
spin characteristics, 6, 7
stability and control, 1, 6, 7
Workman, F., 264
Wright brothers, 1–3, 9, 287
bank to turn, 1
control methods, 5
roll–yaw coupling, 1–3, 5
wing stall, 1, 3
Wright Field, USAF, 21, 31, 112, 115, 117, 148,
165–167
Wright, K. V., 121
Wright, Ray H., 169
Wright, Theodore P., 231
Wykes, John H., 113, 115, 118, 128, 299, 356
Yeager, Jeana, 257
Yeung, W. W. H., 70
Yip, Long P., 253
Young, J. W., 120
Zagainov, G., 158, 159
Zipfel, Peter H., 14, 18, 276
Zimmerman, Charles H., 16, 356
rotary balance, 130
spin research, 121–123
stability boundaries, 137, 138, 140, 267, 268
z-plane, 309