THE MOTION OF BUBBLES AND DROPS IN REDUCED GRAVITY

Orbiting spacecraft provide a valuable laboratory for experiments on physical and biological systems in a reduced gravity environment. Materials processing experiments have commonly involved the growth of crystals from the melt or solution and the processing of alloys and composites. Biological experiments have been performed on a variety of subjects, including protein crystal growth, bioreactors, and the adaptation of humans to extended periods of weightlessness. In these studies, fluid masses containing bubbles and drops are encountered routinely. This book is the first to provide a clear, thorough review of the motion of bubbles and drops in reduced gravity, particularly motion caused by variations in interfacial tension arising from temperature gradients on their surfaces. The emphasis is on theoretical analysis from first principles; experimental results are discussed and compared with predictions where appropriate. Students and researchers interested in fluid mechanics in reduced gravity will welcome this state-of-the-art reference.

R. Shankar Subramanian is Professor of Chemical Engineering at Clarkson University.

R. Balasubramaniam is Staff Scientist at the National Center for Microgravity Research on Fluids and Combustion, NASA John H. Glenn Research Center.
THE MOTION OF BUBBLES AND DROPS IN REDUCED GRAVITY

R. SHANKAR SUBRAMANIAN
Clarkson University

R. BALASUBRAMANIAM
National Center for Microgravity Research on Fluids and Combustion
at NASA John H. Glenn Research Center
Dedicated to our parents

Sita Lakshmi and R. K. Ramaswamaniam

and

Saraswathi and D. Ramaswamy
Contents

Preface page xv

PART ONE. INTRODUCTION
1 The Role of Gravity and Interfacial Tension in the Motion of Bubbles and Drops 3
 1.1 Bubbles and Drops and the Influence of Gravity 3
 1.2 The Reduced Gravity Environment Aboard Spacecraft 5
 1.3 Mechanisms That Can Cause the Motion of Bubbles and Drops in the Absence of Gravity 7
 1.4 Interfacial Tension 10
 1.4.1 Elementary Concepts 10
 1.4.2 The Dependence of Interfacial Tension on Adsorbed Surfactant Concentration 14
 1.4.3 The Dependence of Interfacial Tension on Temperature 15
 1.5 Description of Interfacial Tension Driven Motion 16
 1.6 Scope of the Book 20

2 The Governing Equations 22
 2.1 Introduction 22
 2.2 Conservation Equations 24
 2.2.1 Conservation of Total Mass 24
 2.2.2 Conservation of Momentum 24
 2.2.3 Conservation of Energy 27
 2.2.4 Conservation of Species 28
 2.3 Boundary Conditions 29
 2.3.1 General Comments 29
 2.3.2 Fluid-Solid Interface 30
 2.3.3 Fluid-Fluid Interface 31
 2.4 Physical Assumptions 35
 2.5 Important Dimensionless Parameters 37
 2.6 Conservation Equations in Common Coordinate Systems 40

PART TWO. THE MOTION OF ISOLATED BUBBLES AND DROPS
3 Motion Driven by a Body Force 47
 3.1 Motion When Inertial Effects Are Negligible 47
 3.1.1 Introduction 47
 3.1.2 Analysis 48
 3.1.3 Results 54
3.2 Motion Accounting for Small to Moderate Inertial Effects 59
3.2.1 Introduction 59
3.2.2 Asymptotic Expansions 59
3.2.3 The Role of Small Inertial Effects 61
3.2.4 Numerical Solutions for the Case of Intermediate Values of the Reynolds Number 64
3.3 Motion of a Spherical Bubble at Large Reynolds Number – Asymptotic Analysis 66
3.3.1 Introduction 66
3.3.2 Analysis at Leading Order 67
3.3.3 Higher-Order Analysis 70
3.3.4 Hydrodynamic Force on the Bubble 71
3.4 Motion of a Spherical Liquid Drop at Large Reynolds Number – Asymptotic Analysis 72
3.4.1 Introduction 72
3.4.2 Inviscid Solutions for the Velocity Field 73
3.4.3 Outer Velocity and Pressure Fields 74
3.4.4 Inner Velocity and Pressure Fields 75
3.4.5 Solution for the Tangential Velocity Fields in the Boundary Layer 78
3.5 Motion of Highly Deformed Bubbles and Drops 80
3.5.1 Introduction 80
3.5.2 Determination of the Rise Velocity 81

4 Thermocapillary Motion
4.1 Governing Equations
4.1.1 Introduction 83
4.1.2 Problem Statement, Physical Assumptions, and Scales 83
4.1.3 Governing Equations and Boundary Conditions 84
4.2 Motion When Convective Transport Is Negligible 88
4.2.1 Introduction 88
4.2.2 The Case of Zero Gravity 88
4.2.3 Inclusion of the Gravitational Effect 94
4.3 Motion When Inertia Is Important, but Convective Transport of Energy Is Negligible 99
4.3.1 Introduction 99
4.3.2 Calculation of Small Departures of the Shape from a Sphere Due to Inertia 99
4.3.3 Correction to the Migration Velocity Due to Deformation 103
4.4 The Case of an Arbitrary Temperature Gradient 105
4.4.1 Introduction 105
4.4.2 Analysis 105
4.4.3 A Useful Special Case 108
4.5 The Case of an Axisymmetric Interfacial Tension Gradient 108
4.5.1 Introduction 108
4.5.2 Solution for the Fields 109
4.5.3 The Hydrodynamic Force and the Quasi-Steady Velocity 110
4.6 Motion in the Presence of Surfactants 111
4.6.1 Introduction 111
4.6.2 The Way in which Surfactants Affect the Motion of Drops 111
4.6.3 Modeling the Effect of Surfactants on Thermocapillary Migration 113
CONTENTS

4.7 Effect of Insoluble Surfactant When Convective Transport Dominates – Stagnant Cap Limit
4.7.1 Solution for the Drag on a Drop and Its Migration Velocity 115
4.7.2 Surfactant Distribution along the Cap 117
4.7.3 Surface Velocity Distribution over the Clean Surface 120
4.8 Effect of Insoluble Surfactant When Both Surface Convection and Diffusion Are Important 121
4.8.1 Introduction 121
4.8.2 Expansion for Small Surface Péclet Number 123
4.8.3 Expansion for Small Elasticity Number 124
4.8.4 Series Improvement Using Padé Approximants 125
4.8.5 Numerical Solution 127
4.9 Effects of Newtonian Surface Rheology and Temperature Gradients Induced by Motion 133
4.9.1 Introduction 133
4.9.2 Motion of a Drop with a Newtonian Interface Subjected to an Arbitrary Interfacial Tension Gradient 134
4.9.3 Contribution Due to Stretching and Shrinkage of Interfacial Area Elements 135
4.10 Motion Due to a Source of Energy at the Drop Surface 137
4.10.1 Introduction 137
4.10.2 Analysis 137
4.11 Unsteady Motion 139
4.11.1 Introduction 139
4.11.2 Governing Equations and Initial and Boundary Conditions 140
4.11.3 Solution by Laplace Transforms 141
4.11.4 Discussion 144
4.12 Influence of Convective Transport of Energy – Asymptotic Analysis for Small Marangoni Number 145
4.12.1 Introduction 145
4.12.2 The Regular Perturbation Approach 147
4.12.3 Solution by the Method of Matched Asymptotic Expansions 149
4.13 Influence of Convective Transport of Energy – Asymptotic Analysis for Large Marangoni Number in the Gas Bubble Limit 155
4.13.1 Introduction 155
4.13.2 Governing Equations 156
4.13.3 Solution by the Method of Matched Asymptotic Expansions 157
4.13.4 The Case of Large Reynolds Number 159
4.13.5 Temperature Field in the Thermal Wake 164
4.13.6 The Case of Negligible Reynolds Number 166
4.14 Influence of Convective Transport of Energy – Asymptotic Analysis for Large Marangoni Number for a Drop 169
4.14.1 Introduction 169
4.14.2 Governing Equations and Asymptotic Scalings 170
4.14.3 Leading Order Outer Temperature Fields 174
4.14.4 Leading Order Inner Temperature Fields 177
4.14.5 The Gas Bubble Limit 181
4.15 Migration When Convective Transport Is Important – Results from Numerical Solution of the Governing Equations 182
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15.1 Introduction</td>
</tr>
<tr>
<td>4.15.2 Results in the Gas Bubble Limit</td>
</tr>
<tr>
<td>4.15.3 Results in the Case of Drops</td>
</tr>
<tr>
<td>4.15.4 Influence of Shape Deformation</td>
</tr>
<tr>
<td>4.16 Experimental Results on Isolated Bubbles and Drops</td>
</tr>
<tr>
<td>4.16.1 Introduction</td>
</tr>
<tr>
<td>4.16.2 Experiments on Earth</td>
</tr>
<tr>
<td>4.16.3 Experiments in Reduced Gravity</td>
</tr>
<tr>
<td>4.17 Flow Structures</td>
</tr>
<tr>
<td>4.17.1 Introduction</td>
</tr>
<tr>
<td>4.17.2 Motion Driven by Thermocapillarity</td>
</tr>
<tr>
<td>4.17.3 Motion under the Combined Influence of Gravity and Thermocapillarity</td>
</tr>
</tbody>
</table>

PART THREE. INTERACTIONS OF BUBBLES AND DROPS

5 General Solutions

5.1 Solutions of Laplace’s and Stokes’s Equations in Bicircular Coordinates 229
5.1.1 Introduction 229
5.1.2 Bicircular Coordinates 229
5.1.3 Solution of Laplace’s and Stokes’s Equations in Bicircular Coordinates 232
5.1.4 Solution by the Method of Reflections 235

6 Interactions When Motion Is Driven by a Body Force

6.1 Motion Normal to a Plane Surface 237
6.1.1 Introduction 237
6.1.2 Theoretical Analysis 237
6.1.3 Comparison with Experimental Results 244
6.2 Interaction between Two Drops 244
6.2.1 Introduction 244
6.2.2 Motion along the Line of Centers 245
6.2.3 Motion Normal to the Line of Centers 247
6.2.4 Concluding Remarks 250

7 Interactions When Motion Is Driven by Thermocapillarity

7.1 Motion Normal to a Plane Surface 252
7.1.1 Introduction 252
7.1.2 Analysis 252
7.1.3 Some Results from the Analysis 256
7.1.4 Some Related Problems 261
7.1.5 The Case When the Drop Is Very Close to the Plane Surface 262
7.1.6 Comparison of Theoretical Predictions with Experimental Data 265
7.2 Motion of a Bubble in an Arbitrary Direction Near a Rigid Plane Surface 268
7.2.1 Introduction 268
7.2.2 Analysis 269
7.2.3 Results 271
7.3 Axisymmetric Motion of Two Interacting Drops 274
7.3.1 Introduction 274
CONTENTS

7.3.2 Analysis in Bispherical Coordinates 275
7.3.3 Alternative Approaches 278
7.3.4 Results in the Axisymmetric Case 281
7.3.5 Related Problems 285

7.4 Motion of a Pair of Bubbles under the Combined Action of Gravity and Thermocapillarity 285
7.4.1 Introduction 285
7.4.2 Predictions for Bubbles of Equal Size 287
7.4.3 Predictions for Bubbles of Unequal Size 289
7.4.4 Flow Structures 292
7.4.5 Experimental Results 296

7.5 Interactions between Two Bubbles Oriented Arbitrarily with Respect to the Temperature Gradient 298
7.5.1 Introduction 298
7.5.2 Analysis 299
7.5.3 Results 303

7.6 Interactions among Three or More Drops 307
7.6.1 Introduction 307
7.6.2 Pairwise-Additive Approximation 307
7.6.3 Results for a Chain of Three Bubbles 308
7.6.4 Behavior of a Suspension of Drops Moving under the Influence of Gravity or Thermocapillarity 312

7.7 Axisymmetric Motion of a Droplet within a Stationary Drop – Concentric Case 317
7.7.1 Introduction 317
7.7.2 Analysis 318
7.7.3 Results 322

7.8 Axisymmetric Motion of a Droplet within a Stationary Drop – Eccentric Case 326
7.8.1 Introduction 326
7.8.2 Analysis 327
7.8.3 Results for the First Few Legendre Modes of the Surface Temperature 331

7.9 Axisymmetric Motion of a Compound Drop – Concentric Case 337
7.9.1 Introduction 337
7.9.2 Analysis 338
7.9.3 Results 341

7.10 Axisymmetric Motion of a Compound Drop – Eccentric Case 343
7.10.1 Introduction 343
7.10.2 Analysis 344
7.10.3 Results 345

7.11 Interactions When Convective Transport Effects Are Not Negligible 349
7.11.1 Introduction 349
7.11.2 Analysis 350
7.11.3 Experimental Observations 356

PART FOUR, RELATED TOPICS

8 Mass Transfer between a Bubble or Drop and a Continuous Phase 361
8.1 Introduction 361
8.2 Governing Equations for the Dissolution or Growth of a Stationary Sphere in a Large Liquid Body

8.2.1 Introduction
8.2.2 The Case When Density Variations Are Permitted in the Continuous Phase
8.2.3 The Limiting Case of a Gas Bubble

8.3 Stationary Sphere in a Large Liquid Body – The Quasi-Stationary Solution
8.3.1 Introduction
8.3.2 Quasi-Stationary Concentration Field
8.3.3 Time Evolution of the Radius of the Sphere

8.4 Stationary Sphere in a Large Liquid Body – Similarity Solution for Growth from Zero Initial Size
8.4.1 Introduction
8.4.2 Analysis

8.5 Stationary Sphere in a Large Liquid Body – Asymptotic Expansions
8.5.1 Introduction
8.5.2 Governing Equations
8.5.3 Expansion in the Parameters \(N_c \) and \(N_\theta \)
8.5.4 Expansion in the Square Root of Time
8.5.5 Comparison with a Numerical Solution
8.5.6 Extensions to Include Other Effects

8.6 Mass Transport from a Drop in Thermocapillary Motion at Small Compositional Pécelt Number
8.6.1 Introduction
8.6.2 Governing Equations for the Concentration Field
8.6.3 The Local and Average Mass Transfer Coefficients and the Governing Equation for the Evolution of the Radius of the Drop
8.6.4 Solution for Small Compositional Pécelt Number

8.7 Mass Transport from a Drop in Thermocapillary Motion at Large Compositional Pécelt Number
8.7.1 Introduction
8.7.2 Analysis

9 Motion Driven by the Interface in a Body of Fluid
9.1 Introduction
9.2 Flow in a Rectangular Liquid Layer
9.2.1 Introduction
9.2.2 Velocity Field
9.2.3 Shape of the Free Surface
9.2.4 Temperature Field
9.3 Transient Development of the Flow and Free Surface Shape in a Rectangular Liquid Layer
9.3.1 Introduction
9.3.2 Governing Equations and Time Scales
9.3.3 Evolution of the Velocity Field for Small Values of Time
9.3.4 Unsteady Deformation of the Free Surface for Large Bond Number
9.3.5 Simultaneous Evolution of the Flow and Free Surface Deformation for Large Bond Number
CONTENTS

9.3.6 Unsteady Deformation of the Free Surface for Small Bond Number 411
9.3.7 Simultaneous Evolution of the Flow and Free Surface Deformation for Small Bond Number 413
9.4 Flow in Multiple Rectangular Layers 416
 9.4.1 Introduction 416
 9.4.2 Motion Driven by a Single Fluid-Fluid Interface 417
 9.4.3 Motion Driven by Two Interfaces 418
9.5 Flow Near an End Wall in a Thin Rectangular Liquid Layer 419
 9.5.1 Introduction 419
 9.5.2 Analysis 420
 9.5.3 Results 425
9.6 Effects of Inertia and Convective Energy Transport on the Flow in a Deep Liquid Layer 426
 9.6.1 Introduction and Governing Equations 426
 9.6.2 Scaling Analysis 428
 9.6.3 Solution for the Scaled Streamfunction and Temperature Fields 429
 9.6.4 Results 432
9.7 Flow in Cylindrical Layers and Float Zones 435
 9.7.1 Introduction 435
 9.7.2 Flow in Cylindrical Layers 436
 9.7.3 Flow in Float Zones 439
9.8 Flow in the Spherical Geometry 441
 9.8.1 Introduction 441
 9.8.2 Flow in a Stationary Spherical Liquid Drop 441
 9.8.3 Flow Induced by a Bubble Attached to a Wall 446

References 449

Index 467
Errata

The correct versions in each case are given below.

Page 8, line 20: proportional to the square of the distance

Page 26, line 2 below Equation (2.2.8): dimensions of force per unit volume

Page 41, Figure 2.6.3: upper case Φ should be replaced by lower case φ

Page 116, line 2 below Equation (4.7.5): Ferrers’ functions

Page 172, line 3 from the bottom: for τ'', but … equation for T'_{φ} of

Page 231, lines 4 and 5 below Equation (5.1.5): spindle-shaped surfaces when $\eta > \frac{\pi}{2}$, apple-shaped surfaces when $\eta < \frac{\pi}{2}$,

Page 430, Equation (9.6.24): The correct form is given below.

\[G_i = Be^{-r\eta} \left(1 + \sum_{n=1}^{\infty} C_n e^{-nr}\right) \quad (9.6.24) \]

Prepared by R. S. Subramanian and R. Balasubramaniam

October 28, 2004
Preface

This monograph is principally about the motion of bubbles and drops caused by variations in interfacial tension arising from temperature gradients on their surfaces. We have attempted to provide a reasonably comprehensive picture of the progress and the current status of research on this subject. It is our opinion that, in the long run, this driving force for the motion of bubbles and drops will prove to be as ubiquitous in a reduced gravity environment as gravity is on the surface of Earth.

The book is divided into four parts. In Part One, we introduce the reader to the role of gravity and interfacial tension in the motion of bubbles and drops in Chapter One and cover the governing equations in Chapter Two. Part Two is devoted to the motion of isolated bubbles or drops and contains two chapters. Some important aspects of the motion of bubbles and drops due to gravity, which is a familiar body force, are treated in Chapter Three. This is done for the purpose of completeness in coverage and to provide contrast where needed with features of the motion driven by the interface, which is discussed in Chapter Four. In Part Three, which is composed of three chapters, we discuss the interactions of bubbles and drops with each other and with neighboring boundaries. General solutions are given in Chapter Five and are then used in Chapters Six and Seven, which are devoted to body-force-driven motion and motion driven by the interface, respectively. In Part Four, two chapters cover topics that are closely related to the main theme. Chapter Eight deals with mass transport to bubbles and drops in reduced gravity conditions, and Chapter Nine is devoted to motion that occurs in a body of fluid due to interfacial tension gradients on its free surface. Although the emphasis in this work is on theoretical analysis, we have presented and discussed experimental results wherever appropriate and possible.

We hope that scholars who choose to work on bubbles and drops, on fluid mechanics in reduced gravity, and on interfacial phenomena will find this book useful. We have employed a level that is suitable for advanced students in engineering and science with the expectation that some of this material may be used in courses dealing with transport phenomena associated with motion driven by the interface. Also, the topics covered should be of interest to scientists studying the processing of materials in reduced gravity.

We have used the following system for numbering equations, figures, and tables. In each section, equations are numbered sequentially, beginning with 1. The identification number assigned to an equation also includes the chapter number and the section number, separated by periods. Thus, an equation number has the form C.S.N, where C designates the chapter number, S is the section number, and N stands for the sequential
number within the section. Regarding symbols, we have used a uniform convention throughout the book, to the extent possible. In some instances, however, it has been necessary to use the same symbol with different connotations in different parts of the book. Definitions of the symbols used commonly are given when they are first introduced and repeated when needed.

We are grateful to our mentors, to our present and former students, and to our colleagues, too numerous to mention individually, who have offered valuable suggestions along the way. We alone are responsible for any errors and omissions. We would appreciate readers informing us about any errors that they may find. We wish to thank Florence Padgett of Cambridge University Press for her consistent encouragement and support, Nancy Mieczkowski of GRAFIXWORKS.COM, Lorain, Ohio, for preparing the drawings, and Erin Subramanian, Potsdam, New York, for preparing the bulk of the equations. We are indebted to our spouses and children for the patience and understanding they have displayed during the years when we devoted time toward the preparation of this work. Finally, we wish to express our appreciation to the National Aeronautics and Space Administration for steady support of our research program in numerous ways and to the European Space Agency for their kind hospitality during the years when we collaborated with them on the design and conduct of the flight experiments.