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Introduction

This first chapter summarizes the main bulk characteristics of insulating
oxides, as a prerequisite to the study of surfaces. The foundations of the
classical models of cohesion are first recapitulated, and the distinction
between charge-transfer oxides and correlated oxides is subsequently es-
tablished. Restricting ourselves to the first family, which is the subject of
this book, we analyse the mixed iono-covalent character of the anion—
cation bonding and the peculiarities of the bulk electronic structure. This
presentation will allow us to introduce various theoretical and experi-
mental methods — for example, the most common techniques of band
structure calculation — as well as some models — the partial charge model,
the alternating lattice model — which will be used in the following chapters.

1.1 Classical models of cohesion

Ionic solids are made up of positively and negatively charged ions — the
cations and the anions, respectively. The classical models postulate that the
outer electronic shells of these ions are either completely filled or empty,
so that the charges have integer values: e.g. O™~ (2p® configuration) or
Mgt (3s” configuration). The strongest cohesion is obtained when anions
and cations are piled up in an alternating way — the anions surrounded
by cations and vice versa — , a stacking which minimizes the repulsion
between charges of the same sign.

The hard-sphere model

In the first models, due to Born and Madelung, the ions are described as
hard spheres, put together in the most compact way (Kittel, 1990).

Ionic radii The radii of these spheres are estimated from inter-atomic
equilibrium distances measured in the bulk compounds. Typical values of
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2 1 Introduction

the ionic radii are: r(O™~) = 1.4 A, r(Mg**) = 0.78 A. They obey some
simple rules (van Meerssche and Feneau-Dupont, 1977):

eIn a given column of the periodic table, the ionic radii grow with
the atomic number: e.g. r(Lit) = 0.78 A < r(Na®t) = 098 A <
r(K*) =133 A,

e For a given element, the ionic radii grow with the electron number:
e.g. r(Fet*tt) = 0.67 A < r(Fett) = 0.82 A. This increase is associated
with the expansion of the electronic shells induced by electron—electron
repulsions.

e [so-electronic ions have ionic radii which decrease as the atomic num-
ber grows, because the electrons are more localized by the attractive
field of the nucleus: eg. rO ™) = 146 A > r(F) = 133 A >
r(Nat) =098 A > r(Mgtt) = 0.78 A > r(Al**1) = 0.57 A. In a series
of iso-electronic ions, anions are thus larger than cations.

The determinations of ionic radii have been constantly refined. The
most recent compilations give values, not only as a function of the charge
state of the atom but also as a function of its coordination number Z
(Shannon, 1976). An increase in Z is always associated with an increase
of the ionic radius: e.g. r =099 Aif Z =4, r=112AifZ =7, r =124
AifZ =9andr=139 Aif Z = 12, for Na*t,

Madelung energies The lattice electrostatic energy involves a sum of el-
ementary coulomb interactions between pairs of ions (if), bearing charges
Qi and Qj, at a distance R;;:

1 0,
Bu=3 %%
it

(1.1.1)

This is called the Madelung energy. For a binary crystal containing N
formula units, in which the charges are equal to —Q and + nQ (e.g. TiO;:
Q =2, n=2), Ey may be written:

N Q%a

Em = R (1.1.2)

as a function of the smallest inter-atomic distance R. The geometric di-
mensionless constant «, called the Madelung constant, depends only upon
the lattice type. Special care must be taken to sum up the alternating
series in o. In real space, it is necessary to divide the lattice into neutral
entities, without dipolar or quadrupolar moments, according to prescrip-
tions given by Ewald (1921) and Evjen and Frank (Evjen, 1932; Frank,
1950). Summations in reciprocal space may also be performed to reach
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1.1 Classical models of cohesion

convergence more rapidly. Typical values of « are:

NaCl lattice o = 1.747565
CsCl lattice oa = 1.762675
ZnS blende lattice o = 1.6381
rutile lattice o =4.816
B-quartz lattice o = 4.439.

The Madelung energy per formula unit depends upon the lattice type
through «, upon the square of the ionic charge and upon the first neighbour
inter-atomic distance. For example, En/N is equal to 9 eV for NaCl, 48 eV
for MgO, and 146 eV for TiO, rutile.

Relative stability of crystal lattices

The hard-sphere model introduced

by Born and Madelung was later used to understand the relative stability
of crystal structures. Some structures, typical of binary oxides, are repre-
sented in Fig. 1.1. An important parameter is the ratio r,./r_ between the
cation and the anion ionic radii (r4 and r_, respectively). When cations

|
—8

freristobalite

Fig. 1.1 Some binary oxide structures.
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4 1 Introduction

are large enough to prevent anion—-anion contact, the first neighbour inter-
atomic distance R is fixed by the smallest anion—cation distance and reads
R =r, 4+ r_. If this is not the case, cations may move in cavities whose
size depends only upon the anion radius; then R is fixed by r_. This
regime occurs when ry /r_ becomes smaller than a critical ratio (ry/r_)c,
a function of the lattice type. For example, (r/r_). is equal to 0.73,
0.41 and 0.22 respectively for the CsCl, NaCl and ZnS structures. The
Madelung energy Epp is equal to:

NQ?%a
EM=—"—"TF"F—, 1.1.3
M ) (11
when r; /r_ is larger than (ry/r_)., and to:
2
Ey = NQ« (1.1.4)

o [T+ /ro)]

otherwise. The variations of Ey as a function of ry./r_ are represented
in Fig. 1.2 for three simple cubic structures: CsCl (coordination number
Z = 8), NaCl (Z = 6) and ZnS (Z = 4). The intersection points of the
three curves define the limits of stability for each structure:

ZnS structure ry/r— <0.35
NaCl structure 035 <ry/r_<0.70
CsCl structure 070 < ry/r—.

Structures with increasing coordination numbers Z correspond to in-
creasing ry /r_ ratios. The law is qualitatively well obeyed along series of
compounds which involve the same anion: for example, in the series LiCl,
NaCl, KCl, RbCl and CsCl, the first four compounds display a NaCl
structure, while the last one crystallizes in a CsCl structure. In the series
Nal, Agl, Csl, along which r, increases, a ZnS structure is found for Agl
(ry/r— =0.51), a NaCl one for Nal (r,./r_ = 0.45) and a CsCl one for Csl
(ry/r— = 0.75). Conclusions qualitatively similar apply to compounds of
stoichiometry MX; which crystallize in structures such as a-quartz (SiO;:
Z = 4), rutile (Ti0,: Z = 6) or fluorine (CaF,: Z = 8):

a-~quartz structure ry/r— <041
rutile structure 041 <ry/r_ <0.73
fluorine structure 073 <ry/r_.

A discussion of lamellar structures and ternary systems may be found
in van Meerssche and Feneau-Dupont (1977).
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1.1 Classical models of cohesion 5
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Fig. 1.2. Madelung energy for the three cubic structures ZnS, NaCl and CsCl as
a function of the ratio r, /r_ between the anion and cation ionic radii, at fixed
values of r_. The quantity —a/(1 + r4/r_), proportional to Ey, is shown along
the vertical axis. The intersection points of the three curves define the limits of
stability for each structure.

The iodine series, which was quoted above, proves that the model works
well, except in the vicinity of the critical values, where some discrepancies
may appear. This shows that the non-coulombic contributions to the
cohesive energy, although small in absolute value, may become relevant
when tiny energy differences exist. We will discuss the origin of these
interactions in Section 1.2.

Pauling’s rules The preceding discussion provides an understanding of
the four empirical rules which, according to Pauling, control the electro-
static stability of ionic compounds.

e Cations are surrounded by an anion polyhedron. The shortest distance
between an anion and a cation is equal to the sum of the ionic radii.
The ratio r, /r_ fixes the coordination.

e The sum of the anion—cation bond strengths, around a given anion, is
equal to the charge of this ion. This rule allows a prediction of the
anion coordination number in complex structures, such as those met
in ternary compounds. It makes use of the concept of bond strength,
which, according to Pauling’s definition, is equal to the cation charge
divided by its coordination number.
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6 1 Introduction

¢ Coordination polyhedra are generally linked by vertices. This is espe-
cially true when the cation charge is high and the cation coordination
number low. When edges or faces are shared, the structure stability
decreases.

e In a crystal with several types of cations, the polyhedra around those
which have the higher charge or the lower coordination, tend to avoid
each other. This rule is well exemplified in the perovskite structures.

This discussion stresses that, as a first approximation, cohesion is gov-
erned by coulomb interactions and that the prediction of equilibrium
structures only requires a knowledge of the charges and ionic radii.

Born’s model and later developments

The hard-sphere model, presented above in its most simplified form, was
later refined in order to account for the cohesion energy and the elastic
properties of ionic crystals.

Short-range repulsion A first improvement is related to the repulsive
forces which become effective at short inter-ionic distances. In the original
model, steric — or hard-core — repulsive forces prevent two ions i and
J from coming closer than the sum of their ionic radii r; and r;. The
short-range repulsion energy is infinite if R;; < r; +rj, and zero otherwise,
which may be written in the form:

n
v, = (’il‘{tjrf> , (1.1.5)

with n = oo. The existence of repulsive interactions, impeding inner
electronic shells from overlapping, results from Pauli’s principle. Yet, there
exists no analytical expression deduced from first principles to account
for it. Depending upon the fields of research, various empirical laws are
used, among which the Lennard—Jones law:

A
and the Born—Mayer one:
R.‘
Vij = Bexp (—#) . (1.1.7)

Each of these contains two parameters which are functions of the inter-
acting ions i and j: A and n in (1.1.6), with 5 < n < 12; B and p in (1.1.7),
with p of the order of 0.2 to 0.3 A. In both cases, the repulsion energy
decreases strongly when the inter-atomic distance gets larger, so that only
first neighbour interactions are relevant. The Lennard-Jones form is often
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1.1 Classical models of cohesion 7

used to describe the cohesion of van der Waals systems, for example rare
gas crystals or clusters. In the physics of metals or insulators, one usually
chooses the Born—-Mayer law, which has a better microscopic basis, since
exchange interactions involve atomic wave functions which exponentially
decrease far from the nucleus.

Born’s model, or rigid-ion model In Born’s model, the total energy of a
binary compound, containing N formula units, is thus equal to the sum of
the Madelung energy Eym and the short-range repulsion energy between
first neighbours (Born and Huang, 1954; Tosi, 1964):

N Q%u

R
= —-— . 1.1.
E R + NZB exp( p) (1.1.8)

The crystal structure determines the Madelung constant « and the number
Z of anion—cation bonds per formula unit. In binary compounds, Z is
equal to the coordination number of the ion which has the larger number
of first neighbours (e.g. Z = 6 for TiO,). The minimization of E with
respect to R yields the equilibrium distance Ry between first neighbours
in a given structure. Ry is the solution of the implicit equation:

2
ZBexp (——R—0> = poc(zz .

p) " R
The cohesion energy, necessary to separate the system into independent
ions, is equal to:

(1.1.9)

_ N __P_) 111
Ecoh—NR0<1 &) (1.1.10)

The first factor in the parenthesis is associated with Ey and the second
with the short-range interactions. Since the ratio between p and Ry is
generally of the order of 0.1, the largest contribution to the cohesion
energy is Ey, which justifies a posteriori the hard-sphere model. Despite
its simplicity, Born’s model has been used with success in many different
instances; for example, it has helped in the interpretation of many bulk
phonon dispersion curves (Bilz and Kress, 1979).

Improvements Further improvements have been introduced, as experi-
mental data have become more reliable. For example, neutron scattering
experiments have proved that the longitudinal optic mode frequencies at
the zone centre are systematically lower than predicted. Various models
result from the idea that this discrepancy may be assigned to the neglect
of ionic polarization.
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8 1 Introduction

e The shell model: the ions are described by a core, including the nucleus
and the inner electrons, and a zero-mass shell representing the valence
electrons (Dick and Overhauser, 1958). The core and the shell bear
opposite charges. They are harmonically coupled by a spring of stiffness
k. The electric field & exerted by neighbouring ions shifts the shell with
respect to the core position. If Y is the shell charge, & induces a dipole
moment equal to €Y 2/k. The ion polarizability o in the model, is thus
equal to: o = Y?2/k. The value of k may be deduced from the value
of the optical dielectric constant e, thanks to the Clausius-Mosotti
relationship:

€n—1 4nd
ex+2 3

(1.1.11)

Only short-range inter-ionic forces between the shells are taken into
account, while long-range forces involve all species, except the core
and shell associated with the same ion. The weak polarizability of the
cations is very often neglected.

e Other refinements: in the literature, many other refinements to Born’s
model have been introduced: among others, one finds models which take
into account the mutual ion polarizability (van der Waals interactions),
the extended shell model, the overlap shell model, the deformable shell
model, the breathing shell model and the double shell model (Cochran,
1971). In covalent crystals such as diamond, where the charges are not
located on the sites but rather on the bonds, the so-called bond charge
model was proposed. Some authors found it necessary to introduce non-
integer charges in some systems: in a classical approach, this raises the
question of potential transferability and of the nature of the quantum
terms responsible for the charge transfers. During the last few years, an
increasing effort has been put on the derivation of inter-ionic potentials
from ab initio methods (e.g. Allan et al., 1990; Harding, 1991; Harrison
and Leslie, 1992; Purton et al., 1993; Allan and Mackrodt, 1994).
The classical models are generally recognized to be less well suited to
open shell systems, like transition metal oxides, than to simple oxides
(Stoneham and Harding, 1986). More details on all these models may
be found in specialized papers on this subject (Bilz and Kress, 1979). In
most cases, it is likely that the increasing complexity of classical models
simply hides the need to treat the quantum effects correctly.

Applications of the atomistic models

The pair potentials have been widely used to describe various cohesion
properties of insulating compounds:
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1.2 Origin of the insulating state 9

e bulk static properties, such as the cohesion energy, the thermal ex-
pansion coefficient, the relative stability of polymorphs (Catlow and
Mackrodt, 1982),

e structural phase transitions, such as the anti-ferrodisplacive cubic—
tetragonal transition in SrTiOs, the tetragonal-orthorhombic transition
in LayCuQ,4 (Piveteau and Noguera, 1991) or the amorphization of
a-quartz under pressure (Binggeli et al., 1994),

e bulk dynamic properties: the phonon dispersion curves, the bulk mod-
ulus and the elastic coefficients (Bilz and Kress, 1979),

e thermodynamics of defects: the energies of formation of defects, the
vacancy migration energy (Harding, 1990), the thermodynamics of non-
stoichiometric oxides (Harding, 1991; Boureau and Tetot, 1989), the
simulation of superionic conductors (Lindan and Gillan, 1994),

e surface static properties: the surface tension, the relaxation effects
(Catlow and Mackrodt, 1982; Mackrodt, 1988),

e surface dynamic properties: the phonon frequencies, the vibrational
entropy, the mean square displacements (Kress and de Wette, 1991),

e surface defects: steps, kinks, doping, surface vacancies (Mackrodt, 1984;
Stoneham and Tasker, 1988; Colbourn, 1992),

e interfacial properties (Stoneham and Tasker, 1988),

e small cluster properties (Martins, 1983; Ziemann and Castelman, 1991).

1.2 Origin of the insulating state

While the classical models can reproduce and sometimes predict some
structural properties, they are unable to inform about the electronic char-
acteristics of insulators, because they assume that the electrons are frozen
around the ionic cores. The next step consists in finding the microscopic
origin of the forbidden gap present in the electronic excitation spectrum,
which is the defining property of the insulating state.

Charge-transfer oxides; correlated oxides

The gap width is fixed by the electronic excitation of lowest energy.
Starting from a classical model with localized electrons, two types of
excitations may be considered.

Charge-transfer excitation When an electron is transferred from an
anion to a cation, a charge-transfer excitation is produced:
X"t +0~ 5 X 40 (1.2.1)

The charge-transfer energy 4 is related to the cation nth ionization po-
tential I,, and to the oxygen second electronic affinity A>. To a first
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10 1 Introduction

approximation, 4 reads:

A=A4,—1,—Vx+ Vo, (1.2.2)
if the two ions are infinitely far from each other, or:
1
A:AZ_In_VX+VO—E, (1.2.3)

if they are located at a distance R; in these expressions, Vx and Vo
are the electrostatic potentials acting on a cation (Vx < 0), and on an
oxygen anion (Vo > 0). For MgO, in which 4; = —9 eV, I, = 15 eV,
Vo = —Vx =24 eV and R = 21 A, 4 = 17 eV, while for NaCl,
A=115eV (41 =376+ 2¢eV,I; =514 ¢V, Vo = —Vx = 8.9 eV and
R =282 A). For NiO: 4y =—9¢eV, I, = 18.15¢V, Vo = —Vx = 24.1 eV
and R = 2.09 A, which yields A4 = 14 eV. The values found for 4, in this
simple approximation, are larger than the measured gap widths, which are
respectively equal to 7.8 eV, 8.9 eV and 4 eV for the three compounds.

Cation charge fluctuation A second type of excitation may occur when
two cations exchange an electron. Its energy U is associated with the
reaction:

Xt Xt o XD+ 4 gD+ (1.2.4)

It is related to the (n+ 1)th and nth cation ionization potentials I,y and
I,, corrected by an electrostatic term; U reads, to a first approximation:

1
U=l —I— 7. (1.2.5)

This approach yields U close to 13 eV in NiO (I3 = 36.16 ¢V, I, = 18.2 eV
and R = 2.96 A), a value slightly lower than the charge-transfer excitation
energy. The cation charge fluctuations have to be considered whenever
the ions have an unfilled outer electronic shell. Otherwise, the energy
difference I,+; — I, is very large and cannot be the lowest excitation
energy of the system.

In a compound, when U happens to be large, the electronic structure
can no longer be described by a one-electron effective Hamiltonian, and
the mean-field approaches for electron—electron interactions are not valid.
In a mean-field approximation, all the electronic configurations on a
given ion have equal probabilities. For example, the two-electron wave
function of the hydrogen diatomic molecule involves the configurations H-
H and HtH~ with equal weight, in the bonding state. Beyond the mean-
field approximation, the configuration HtH™ has a decreasing weight as
U gets larger: the electrons move in a correlated way to avoid being
located on the same atom. A partial localization results, which the band
structure calculations do not reproduce well (Mott, 1974). In the physics of
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